NASA INSPIRE Summer STEM Experience

Prital Thakrar

NE-M2

Structures & Mechanisms Design Engineering

CPLANE

The ARES I - VAB Platforms

Project Definition:

New VAB platform design has sliding platform pairs that meet at the rocket in the middle of the VAB. Cantilevered platforms can deflect unevenly under load.

Assignment:

Modify VAB platform design to allow load sharing between platforms and prevent tripping hazard when ends deflect under load.

VAB Platforms (cont'd)

11 Platform Pairs designed by a NASA contractor, but not fabricated

The Issue

Walking Surface
Uneven Edge

VAB Platforms

Platform Pair Side View

Initial Schemes

- 1. Forced pin / receptacle (if drive system permits)
 - 2. Alter drive system to use #1
- 3. Use an actuator to activate pin
- 4. Use a lever to activate pin

Preliminary Work

- 1. Find VAB platform drawings
 - 2. Find platform models
- 3. Determine which drive wheel actuator was used
- 4. Find drive actuator vendor technical specifications

Required Calculations

- · Weight of One Platform
- · Load on Front Wheels
- Total Wheel Slipping Torque
- Total Drive System Torque
- Wheel Slipping Torque < Drive System Torque?
- Tangent Propelling Force From Drive System
- Rolling Resistance Torque
- Total Horizontal Force Available
- Load Required to Lift End of Platform
- Available Load to Use
- Tangent Force
- Perpendicular Force
- Friction
- Total Engagement Load
- Remaining Load.
- Pin Length (if applicable)

The "Fun" Part

The Findings

✓ Pin method works!

0→	5°	10°	15°	20°	25°
Tangent Force	118.2279	238.2796	362.0934	491.8515	630.1453
	lbs	lbs	lbs	lbs	lbs
Perpendicular Force	1356.513	1372.198	1399.022	1438.078	1491.051
	lbs	lbs	lbs	lbs	lbs
Friction	271.3026	274.4396	279.8043	287.6155	298.2102
	lbs	lbs	lbs	lbs	lbs
Total Engagement Load	389.5305	512.7192	641.8977	779.4671	928.3555
	lbs	lbs	lbs	lbs	lbs
Remaining Load	2110.47	1987.281	1858.102	1720.533	1571.645
	lbs	lbs	lbs	lbs	lbs
Length of Pin	5.715026	2.835641	1.866025	1.373739	1.072253
	in	in	in	in	in

Calculations show that the actuator is capable of driving pins into sockets, locking the platforms ends together

The Solution Roller Receptacle Assembly

The Solution Roller Receptacle Assembly (cont'd)

The Solution Roller Receptacle Assembly (cont'd)

The Solution Pin Assembly

Parts modeled in Pro/E 3-D CAD software

The Solution Pin Assembly (cont'd)

The Solution Pin Assembly (cont'd)

The Solution (cont'd)

Cardboard Prototype of Pin Mechanism

The Solution (cont'd)

Side View of Fixed Platforms and Sliding Platforms with Pin Mechanism

The Solution (cont'd)

- **√Pros**
- ✓ Conservative calculations
- ✓ Rollers
 - ✓ Counters indefinite friction coefficient
- √ Washers:
 - ✓ Avoids scraping off paint
- ✓. Cost-Effective
- ✓ Easily machined
- √ Simple
 - √ Fewer breakages
 - √ Less maintenance
- ✓ Load Sharing
 - ✓ Reduce weight of platforms

·Cons

- Deflection from extensive pin length
- Low tolerance on installation position

Past the Project

Experience with Mentor & Co-Workers

Past the Project (cont'd)

Merritt Island

STEM Experience

Influence & Knowledge Gained >

- Confirmed: I Love Physics
- Statics
- · Double Major: Aerospace Eng. & Electrical Eng.
- Pro/ENGINEER Wildfire 3.0
- Design process tips

NASA Experience

- Several career fields
- Friendly environment
- Rich history
- Importance of collaboration
- Cooperative Learning Opportunity
- Unity

Future Plans

- Aerospace Engineering & Electrical Engineering
- Applying for Co-Op Program / Internships
- Work for/with NASA & Other Companies
- Continue to Pursue Other Interests
 - Music
 - Public Speaking
 - Tutoring
 - Programming
 - Business

Thank you, INSPIRE!

