National Aeronautics and Space Administration

Environmentally Responsible Aviation N+2 Advanced Vehicle Concepts NRA Status

NASA's Subsonic Transport System Level Metrics

.... Innovative technology for dramatically reducing noise, emissions and fuel burn

CORNERS OF THE TRADE SPACE	N+1 = 2015*** Technology Benefits Relative To a Single Aisle Reference Configuration	N+2 = 2020*** Technology Benefits Relative To a Large Twin Aisle Reference Configuration	N+3 = 2025*** Technology Benefits
Noise (cum below Stage 4)	-32 dB	-42 dB	-71 dB
LTO NO _x Emissions (below CAEP 6)	-60%	-75%	better than -75%
Performance: Aircraft Fuel Burn	-33%	-50%**	better than -70%
Performance: Field Length	-33%	-50%	exploit metro-plex* concepts

***Technology Readiness Level for key technologies = 4-6. ERA will undertake a time phased approach, TRL 6 by 2015 for "long-pole" technologies

** RECENTLY UPDATED. Additional gains may be possible through operational improvements

* Concepts that enable optimal use of runways at multiple airports within the metropolitan area

Technical input from Fundamental Programs, NRAs, Industry, Academia, Other Gov't Agencies

Where did the numbers come from? Fuel Burn - Technology Readiness 2020

Technology Benefits Relative to Large Twin Aisle (Reference: 777-200LR "like" Vehicle)

Reference Fuel Burn = 279,800 lbs

Progress – Propulsion Airframe Aeroacoustics Tube and Wing/Hybrid Wing Body/SOA Engine (2009/10)

N+2 Advanced Vehicle Concepts NRA

- The Study
 - Twelve months in duration
 - Five tasks
 - Tasks 1-4 relate to a full sized concept
 - Task 5 relates to a subscale testbed vehicle
 - \$10.9M total awarded to three teams
- 2 Options
 - 50/50 cost share required, up to two awards, 17 months duration
 - Option 1
 - Preliminary design of subscale testbed
 - NASA share: up to \$12.5M per team
 - Option 2
 - Testing to reduce risk / increase confidence of preliminary design
 - NASA share: up to \$10M total

Task 1

- Future Scenario
 - What does the world that you are designing to look like?
 - Formation flight?
 - What are your assumptions that are driving your design?
 - What is the NextGen scenario in 2025 that you are designing to?
 - What level of completion is NextGen at?
 - What is the interplay between your concept and NextGen?
 - How would you like NextGen to be tweaked to accommodate your PSC?

Task 2

- Develop a M = 0.7 <u>0.85</u> conceptual design of a 2025 EIS subsonic transport that simultaneously meets the Noise, Emissions and Fuel Burn goals
- Design Mission

• Provide concept data packages for all designs

Tasks 3 & 4

- Technology Maturation Plans (TMP's)
 - 15 year Roadmap for each of the critical technologies
 - Key research, analyses, tool and method development
 - Necessary ground and flight tests
 - Starting and ending TRL & SRL
 - Cost, schedule and technical outcome
 - Useful for advocacy beyond ERA Project timeframe
 - "Is the problem physics, or is it money?"
- FY 2013 2015 Critical Technology Demonstrations
 - Long poles, enabling technologies, or first victories
 - Scalability beyond PSC

Airframe

– Sorted by:

- Integrated Propulsion/Airframe
- Propulsion
 Subscale Testbed
- How to de-scope from deluxe to bare bones (cost, complexity, schedule, risk)
- Provides guidance to Phase II of ERA Project

Task 5

- Conceptual Design of a Subscale Testbed Vehicle (STV)
- Proposal for completing Preliminary Design of the STV
- <u>ROM</u> cost and schedule for completing design, construction and initial flight testing of the STV
- STV requirements
 - Same configuration as the PSC
 - Same Mach and cruise speed as PSC
 - Retractable Landing Gear
 - Sufficient scale to demonstrate noise, emissions & fuel burn goals
 - Notionally ~ 50% or larger
 - Adaptable for future modifications
 - Engines
 - To demonstrate UAS in the NAS technologies
 - Projected 20 year research life

Schedule 2010 2011 Aug Sep Nov Dec Jan Feb Mar Apr May Jun Jul Oct Nov Dec **Contract Start** Option 1 Award Down Select Kick-Off 3 Month TIM PSC **Final Presentations** Conceptual Review Design Review Public, Location: TBD

Lockheed Martin

Lockheed Martin

Lockheed Martin

- The Lockheed Martin ERA design is a non-traditional "Box Wing" concept for improved structural and aerodynamic efficiency.
- It incorporates advanced technologies in the areas of:
 - advanced propulsion for significant fuel burn and noise reduction
 - new light weight materials
 - laminar wing aerodynamics
 - other efficiency technologies
- The concept is envisioned to integrate into existing airport infrastructure without significant changes and to provide a passenger experience consistent with the best of today's airliners.

Northrop Grumman

Innovative Configurations and Technologies Frable Efficient Long-Endurance Performance Systems

- Technologies and configurations that improve energy efficiency are beneficial to both military and civil aircraft
 - Civil or military applications only become important in the integration of the technologies
 - Application can affect the degree of benefit the system sees from a particular technology
- Technologies and configurations that improve energy efficiency generally work in one of three ways
 - Reducing drag
 - Reducing weight
 - Increasing efficiency of propulsion systems
- Reductions in drag and weight, and increases in efficiency of propulsion systems are just as applicable to civil aircraft as military aircraft

Boeing

Boeing

- Boeing's Blended Wing Body (BWB) proposal takes advantage of the improved L/D of the BWB platform, and will use many of the technologies that have previously been identified with the BWB:
 - PRSEUS lightweight, damage arresting composite structure
 - Laminar flow
 - Acoustic shielding inherent in the configuration
 - Proven low speed flight controls
 - High efficiency, new technology engines
- Boeing's study will investigate both geared turbo fans and open rotors

