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ABSTRACT 

A number of statistical tools have been developed over 
the years for assessing the risk of reentering objects to 
human populations.  These tools make use of the 
characteristics (e.g., mass, material, shape, size) of 
debris that are predicted by aerothermal models to 
survive reentry.  The statistical tools use this 
information to compute the probability that one or more 
of the surviving debris might hit a person on the ground 
and cause one or more casualties. 
 
The statistical portion of the analysis relies on a number 
of assumptions about how the debris footprint and the 
human population are distributed in latitude and 
longitude, and how to use that information to arrive at 
realistic risk numbers.  Because this information is used 
in making policy and engineering decisions, it is 
important that these assumptions be tested using 
empirical data. 
 
This study uses the latest database of known 
uncontrolled reentry locations measured by the United 
States Department of Defense.   
 
The predicted ground footprint distributions of these 
objects are based on the theory that their orbits behave 
basically like simple Kepler orbits.  However, there are 
a number of factors in the final stages of reentry - 
including the effects of gravitational harmonics, the 
effects of the Earth’s equatorial bulge on the 
atmosphere, and the rotation of the Earth and 
atmosphere - that could cause them to diverge from 
simple Kepler orbit behavior and possibly change the  
probability of reentering over a given location.  In this 
paper, the measured latitude and longitude distributions 
of these objects are directly compared with the predicted 
distributions, providing a fundamental empirical test of 
the model assumptions. 
 
 
1. INTRODUCTION 

One of the hazards of the space age is that many objects 
in orbit eventually reenter the Earth’s atmosphere.  
Often for large objects, some components tend to 
survive reentry and pose a hazard to persons on the 
ground.  A whole science has developed around 

predicting what portions of a satellite survive the violent 
forces and heating of reentry.  Such aerothermal models 
as ORSAT and SCARAB [1] use detailed information 
on shape and material type of various components to 
predict what will and will not survive to reach the 
ground.  From this information, a reentry “footprint” 
can be computed that can be used to determine risk on 
the ground. 
 
For controlled reentries, the reentry target zone can be 
chosen to avoid populated areas on the Earth.  For 
uncontrolled reentries, however, statistical tools must be 
used to map human distributions on the Earth under the 
spacecraft orbit.  The exact time and location for 
uncontrolled reentries are notoriously difficult to predict 
with any accuracy.  In the hours immediately preceding 
a reentry, it may be possible to narrow the possible 
ground tracks of the reentering object.  But when the 
risk calculation is needed weeks, months, or years 
before reentry, essentially any location on Earth over 
which the spacecraft flies is a potential debris landing 
site.  Nevertheless, it is possible to use even this vague 
information to compute meaningful risk statistics.   
 
 
2. BASIC STATISTICAL TOOLS 

Consider a piece of a reentering satellite that falls into a 
small geographical region representing a tiny fraction of 
the Earth’s surface with area A.  The region contains a 
number of individual human beings N.   If the area of 
the surviving piece α is smaller than the person-area of a 
typical human being, then the risk is driven by the 
number of people in the region, not the size of the 
surviving debris piece.  If, however, the surviving piece 
is large, then the risk increases with increasing size.  
This “enhanced” debris-person area α' can be computed 
based on assumptions about the size of the debris and a 
“typical” human. 
 
Assuming that the people in the small geographic region 
are distributed randomly and that the piece falls at a 
random location within the region, then the probability 
becomes a simple binomial distribution – what is the 
probability that a given number of people will be under 
the piece when it falls versus those who will be 
elsewhere in the geographic region. 



 
A simple approximation to the probability of one or 
more casualties within a small geographic area can be 
computed using the Poisson relation 
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Note that the last approximation is only true when N α' 
<< A, which is typically the case for standard types of 
re-entries where the risk is primarily from being struck 
by pieces as they fall.   
 
Computing the total ground risk simply consists of 
summing over all possible small geographic regions 
under the ground-track of the reentering satellite and 
weighting them for the fraction of time the satellite 
spends over that region.   
 
 
3. RISK CALCULATIONS FOR ORBITS 

Of course, orbiting objects do not orbit an Earth with 
homogeneously distributed populations.  Approximately 
three quarters of the Earth’s surface is covered by 
oceans, and the population on land is unevenly 
distributed.   
 
For computing ground risks, NASA’s Orbital Debris 
Program Office uses the databases from the 
Socioeconomic Data and Applications Center (SEDAC) 
at Columbia University [2].  Currently, NASA uses the 
Gridded Population of the World, version 3 (GPWv3).  
This data set estimates the population in 
latitude/longitude grid positions on the Earth divided 
into 2.5×2.5 arc minute cells for reference years 1990-
2015 in 5-year intervals.  These cells are approximately 
4.6 km long in the north-south direction.  At the 
equator, the cells are also approximately 4.6 km wide in 
the east-west direction, but are narrower at more 
northerly and southerly latitudes. 
 
As mentioned above, predicting accurate reentry 
footprints weeks, months, or years in advance is not 
possible with current computer models.  Instead, 
planners are left predicting the generalized likelihood of 
a reentering object ending up in each latitude/longitude 
bin.   
 
Note that the calculations described in this paper assume 
the Earth is a perfect sphere, ignoring the minor 
difference between the geocentric and geographic 
latitudes [3].  For these calculations, the differences are 
very minor. 
 
The distribution in longitude is relatively easy to 
estimate.  The rotation of the Earth and the precession 

of the ascending node of the orbit should result in a 
random distribution in longitude.  Note that this should 
be true of orbits designed with inclinations to maintain a 
particular plane orientation (e.g., with respect to the 
Sun).  By the time the orbits decay to low altitudes, the 
orbit plane “lock” – which is dependent upon semi-
major axis as well as inclination – will no longer apply. 
 
The other important distribution should be that in 
latitude.  For a satellite with a given inclination i, there 
exists a maximum and minimum latitude λmax and λ
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The ground-path of the satellite will not go north of the 
maximum latitude, nor south of the minimum latitude. 
 
For a perfectly circular Kepler orbit, the object’s 
location should be uniformly distributed not in latitude, 
but in argument of latitude.  Argument of latitude is the 
angle in the orbit plane of the object measured from its 
last north-bound equator crossing.  This corresponds to 
the sum of the argument of perigee and the true anomaly 
angles.  Of course, in reality, perfect Kepler orbits do 
not exist.  But for any generalized elliptical orbit with 
randomized (uniformly distributed) argument of 
perigee, a reasonable assumption would be that the 
argument of latitude would be uniformly distributed for 
such an orbit as well. 

 
Figure 1. The argument of latitude is the angle in the 
orbit plane of a satellite measured from the last north-
bound/ascending equator crossing. 
 
The relationship between the inclination i, the latitude λ,  
and the argument of latitude u is given by  
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Because u can be in any quadrant, further information 
must be sought on whether the object is moving 
north/ascending or south/descending at the particular 
latitude.  Using inverse trigonometric equations, 
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Using this distribution and the gridded population of the 
world, the NASA Orbital Debris Program Office has 
computed average population density under orbits as a 
function of year and inclination [4].  An example chart 
with two reference dates (showing the projected future 
growth of the Earth’s population) is shown in Fig. 2.  
Note that sheltering by buildings or other structures is 
ignored for these calculations. 
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Figure 2. This chart shows the average population 

beneath an orbit as a function of orbit inclination for 
two reference years (based on global population 

databases and future population predictions).  The 
population is weighted by the time each object spends 

over various latitudes and longitudes based on the 
distributions outlined in the text.   

 
 
4. POSSIBLE UNMODELED EFFECTS 

These theoretical calculations assume the orbiting 
objects are behaving similar to perfect Kepler orbits.  
There are several reasons to believe these assumptions 
might not be valid (for a summary of the orbital effects 
described here, refer to [5]). 
 
First, satellites do not orbit a perfectly spherical Earth.  
There is a latitudinal variation in mass that is enhanced 
near the equator and is reflected in the J2

 

 spherical 
harmonic term of the Earth’s gravitational field.  The 
effect of this term is to change the speed and azimuth of 
the orbit slightly as it passes over the equator relative to 
an ideal Kepler orbit.   

Second, in addition to equatorial enhancement of the 
gravitational field, the radius of the Earth is somewhat 
greater at the equator than at the poles.  This results in 
the atmosphere extending farther out into space near the 
equator relative to the center of the Earth.  In addition, 
there is an enhancement of the atmospheric density in 
the subsolar regions due to solar heating.  This “diurnal 
bulge” always stays in the tropics, so it further enhances 
the equatorial atmospheric density at a particular radius 
from the center of the Earth relative to that near the 
poles.  There can also be density enhancements near the 
poles due to magnetospheric heating, so the exact 
latitudinal distribution of atmospheric density can be 
quite complex.   
 
Third, the atmosphere rotates with the Earth, and the 
drag is a function of the relative velocity between the 
orbiting satellite and the local velocity of the 
atmosphere.  Consequently, as the satellite crosses the 
equator, the relative velocity of the satellite with respect 
to the atmosphere will be different than when the 
satellite is at the northernmost or southernmost regions 
of its orbit. 
 
All of these effects have the potential of making the 
drag on an orbiting satellite non-uniform in argument of 
latitude, possibly resulting in unmodeled latitude biases 
in the reentry location and perhaps altering the resulting 
ground risk.   
 
 
5. EMPIRICAL VALIDATION 

To answer whether the idealized orbit distribution 
assumptions described above are applicable, we can use 
a statistical database of reentry locations and compare 
the distributions in latitude and longitude to those 
predicted by theory. 
 

 
Figure 3. The geographic coordinates of the 

81 random object reentries described in the text are 
plotted here on a map of the Earth.  Many of the 

satellites were in orbits with low inclinations, so there 
tend to be more reentries nearer the equator.  Note that 

most of the reentries occurred over water. 
 
In 2008, a similar analysis was done with a list of 47 
satellites (rocket bodies and spacecraft) that reentered 



between 2003 and 2007 [6].  The database at that time 
had insufficient sample to make positive conclusions 
about the geographic distributions of reentries.  Since 
that time, more re-entries have occurred – enough to 
revisit the calculations to see if any new conclusions can 
be reached.  
 

 
Figure 4. The cumulative distribution in longitude of  

81 random object reentries (solid curve) is compared to 
the theoretical uniform distribution (dotted line).   

Kuiper’s statistic is the sum of the maximum differences 
between the two distributions both above and below the 
theoretical curve.  The value is shown compared to the 

90% confidence value for 81 random points drawn from 
a uniform distribution.  As can be seen, this data set has 

a Kuiper’s statistic smaller than the 90% confidence 
value, indicating this data is consistent with a random 

draw from the uniform distribution. 
 
For this study, only reentries were used that had been in 
orbit at least 15 days (to make sure the orbit nodes had 
time to be thoroughly “randomized”), and had an 
accurate latitude/longitude determination by the U.S. 
Department of Defense.  In addition, only near-circular 
orbits were chosen.  These were defined as objects with 
final orbit eccentricity values (based on two-line 
element sets) less than 0.0075 – corresponding to orbits 
with differences between apogee and perigee of less 
than 100 km.  Figure 3 shows the geographic 
distribution of the 81 orbits used for this study. 
 
The easiest parameter to test is the distribution in 
longitude, because it should exhibit a simple uniform 
random distribution around the Earth.  Because 
longitude “wraps around” the Earth, Kuiper’s statistic is 
appropriate to use [7].  This statistic, similar to the more 
familiar Kolmogorov-Smirnov test, measures the 
difference between a cumulative data distribution and 
the corresponding cumulative theoretical distribution.  
Kuiper’s statistic is the sum the maximum difference 
both above and below the theoretical distribution.   
Kuiper’s statistic works so well with periodic 
distributions because it gives the same result, no matter 

where the “zero” value is defined.  Note that Kuiper’s 
statistic is useful for other distributions, not just those 
that are periodic. 
 
Fig. 4 shows the longitude distribution analysis.  The 
data are well within the 90% confidence range for a 
random sample of 81 points from a uniform distribution.  
Therefore, to the limits of finite sampling, these data are 
completely consistent with random longitude of reentry. 
 
Figure 5 shows the distribution of reentry latitude as a 
function of inclination. 
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Figure 5. The reentry latitude of the 81 objects in the 

reentry database is here shown as a function of 
inclination.  The diamond represents the envelope of 
maximum and minimum latitudes possible for a given 

inclination.   
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Figure 6. In this plot, the inclination of the 81 objects in 

the reentry database is here shown as a function of 
argument of latitude. Markers are added to show the 

geometric significance of the argument of latitude 
angle.  For example, an argument of perigee value of 0° 

corresponds to the north-bound equatorial crossing, 
and 90° corresponds to the farthest north point in the 

orbit.    
 



Figure 6 shows the same data, but this time showing the 
distribution in argument of latitude. 
 
Figure 7 shows the argument of perigee cumulative 
distribution and the Kuiper statistic for that data.  As 
with the longitude distribution, the Kuiper’s statistic is 
well within the 90% confidence limit of a random 
selection from a uniform distribution. 
 

 
Figure 7. The cumulative distribution in argument of 
latitude of 81 random object reentries (solid curve) is 

compared to the theoretical uniform distribution (dotted 
line).   This data set has a Kuiper’s statistic smaller 

than the 90% confidence value, indicating this data is 
consistent with a random draw from the uniform 

distribution. 
 
Figure 7 also demonstrates one of the limitations of 
Kuiper’s statistic.  Visual examination of the curve 
seems to indicate that the cumulative distribution dips 
for both the northern hemisphere segment (0° to 180°) 
and the southern hemisphere segment (180° to 360°).  
Kuiper’s statistic may not be the best tool to identify 
periodicity with twice the frequency of the argument of 
latitude.  However, it is possible to separate the data for 
these two hemispheres and examine them separately.  
Figure 8 shows the 37 northern hemisphere reentries, 
and figure 9 shows the 44 southern hemisphere 
reentries.  Note that this apparent imbalance between 
the total number of northern and southern hemisphere 
re-entries (the probability of which should be 
approximately equal) is well within the 90% confidence 
limit for 81 random selections from a binomial 
distribution (analogous to the number of “heads” and 
“tails” from 81 random coin tosses). 
 
Figures 7 and 8 show that even though there appears to 
be significant variation from the uniform distribution, 
the finite number of samples is insufficient to show any 
deviation from the uniform distribution. 
 

 
Figure 8. The cumulative distribution in argument of 

latitude of 37 random object northern hemisphere 
reentries (solid curve) is compared to the theoretical 
uniform distribution (dotted line).  This data set has a 

Kuiper’s statistic smaller than the 90% confidence 
value, indicating this data is consistent with a random 

draw from the uniform distribution. 
 

 
Figure 8. The cumulative distribution in argument of 

latitude of 44 random object southern hemisphere 
reentries (solid curve) is compared to the theoretical 
uniform distribution (dotted line).  This data set has a 

Kuiper’s statistic smaller than the 90% confidence 
value, indicating this data is consistent with a random 

draw from the uniform distribution. 
 
One more possible test is to combine the northern and 
southern hemisphere reentries using a parameter that 
represents the argument of latitude angle measured from 
the last equatorial crossing (either north-bound or south-
bound).  Such an angle would take values from 0° to 
180°, with 90° representing the farthest north or south 
point in the orbit.  Figure 9 shows the distribution of 
these “combined” data. 
 



 
Figure 9. The cumulative distribution of 81 random 

object reentries (solid curve) is compared to the 
theoretical uniform distribution (dotted line).  The 

parameter is the combination of the data in Figures 7 
and 8, and shows the argument of latitude measured 
from the last equator crossing (either north-bound or 
south-bound).  This data set has a Kuiper’s statistic 

larger than the 90% confidence value, but is still within 
the 95% confidence values, indicating this data is 
consistent with a random draw from the uniform 

distribution – but may hint at some sort of bias in the 
reentry location.  A larger data set is needed to resolve 

the question. 
 
 
6. CONCLUSIONS 

In this paper I used empirical data to examine several of 
the assumptions used in computing ground risk from 
reentering objects.  It was shown that for the 81 near-
circular orbits examined, the geographic distribution 
was statistically consistent with the predicted ideal orbit 
distributions.  This indicates that the current methods of 
computing ground risk are valid. 
 
However, there appeared to be possible biases in the 
argument of latitude distributions that can only be 
resolved with better statistics. Further study is 
encouraged.  In addition, there are probably more re-
entry data available than I have accumulated here.  I 
hope to be able to expand the database for future 
studies. 
 
I note that I did not examine the behaviour of more 
elliptical orbits.  Examination of the database indicated 
an unexpected number of moderately elliptical reentries 
(e > 0.0075).  Future studies will include the statistics of 
these elliptical orbits.  
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