ISS - Enabling Exploration through Docking Standards

ISSMars-DC Conference April 2011

C.A. Hatfield Docking Systems Manager International Space Station Program

- Connecting spacecraft from different nations has required unique development and expensive integration and test
 - Apollo-Soyuz Test Project
 - International Space Station
- Expansion of spacefaring nations (and non-governmental entities) will compound this issue in the future
 - Exploration cooperation could be much easier with internationally accepted interface standards
- One of the key elements involved in mating dissimilar spacecraft is docking systems
 - Enabling dissimilar spacecraft mating for crew and cargo exchange
 - Enabling spacecraft assembly (e.g., APAS joining USOS and Russian Segments on ISS)

- The ISS partnership has developed an International Docking System Standard (IDSS)
 - An expanded version is expected to be approved in the second quarter 2011 by the ISS partnership
 - The latest version of IDSS can be found at <u>http://internationaldockingstandard.com/</u>
- It is expected that several versions of IDSS compatible docking systems will eventual emerge
 - Both NASA and ESA are currently developing systems
- NASA will install an adapter to use this standard on the U.S. segment of ISS beginning in 2015
 - The two new adapters will replace existing APAS adapters used by the Space Shuttle

Docking System Early Design Progression

C.A. Hatfield ISSMars Conference April 2011

Docking and Berthing

Docking

- Enables direct mating of vehicles
- Controlled by chasing vehicle
- Attenuates contact forces and moments

Berthing

- Large passageway and load carrying capability
- Ease of utility routing in pressurized volume
- Needs manipulator for installation

Androgynous Peripheral Attach System (APAS)

Common Berthing Mechanism (CBM)

Evolutionary

- Based on peripheral type architecture, incorporating proven hard capture system
- Peripheral systems satisfy capture performance requirements for the widest range of vehicles (small crew capsules to orbiter like vehicles)
- Peripheral systems allows for max pass through the docking interface without hardware dismantling

Androgynous

Enables either vehicle to be the active "chaser"

Allows both docking and berthing

Enables Low Impact technology

- All previous docking mechanisms have required the use of impacts (i.e. velocity or post-contact thrusting) to create the energy required for soft capture mechanism interface alignment and capture between mating docking interfaces
- Low impact technology can accommodate wide range of vehicle contact and capture conditions

- NASA plans to use the International Space Station as the first use of the IDSS
 - Will be the docking system used on the U.S. segment of the ISS for all visiting vehicles
- All vehicles visiting the USOS will be required to be IDSS compliant
- NASA is building and qualifying the NDS system as reference design
- NASA will provide the NDS data package to commercial vehicle providers having agreements with NASA to provide services, who can
 - Build their own design
 - "Build to print" the NDS design
 - Buy the system from the production vendor
 - Request NASA provision the NDS

- Low Impact six degree of freedom force feedback platform for soft capture
- IDSS Compatible
- Simple interfaces to host vehicle
- Block development with a family of configurations planned

ISS Docking and Berthing Ports

C.A. Hatfield ISSMars Conference April 2011

New Docking Adapter Configuration

- Until recently, new CBM-based adapters were planned for ISS
- Change was made to use existing Pressurized Mating Adapters (PMA) as a base for the new adapters
 - Providers greater clearance for winged vehicles
 - Frees an additional CBM port for potential use

Passive

Active APAS

APAS

PMA

- NASA is working closely with the ISS partnership to further refine the IDSS standard
 - Further revisions after the upcoming release are not anticipated in the near future
 - NDS team is collaborating with other agencies to agree on remaining interface features (e.g., connectors)
- NDS design kicked off CDR this week
 - Long lead part procurement underway
 - Flight representative EDU assembly early 2012
 - Qualification program begins late 2012, complete 2013
- ISS Docking Adapters planned for launch beginning in 2015
- <u>http://dockingstandard.nasa.gov/documents.html</u>

- NASA and the ISS partnership are jointly developing a key standard to enable future collaborative exploration
- The IDSS is based on flight proven design while incorporating new low impact technology
 - Low impact technology accommodates a wide range of vehicle contact and capture conditions
- This standard will get early demonstration on the ISS
- Experience gained here will enable operational experience and the opportunity to refine the standard
- NASA and ESA are developing new docking system; others are expected later
 - ESA: IBDM
 - NASA: NASA Docking System (NDS)

Page No. 12

C.A. Hatfield ISSMars Conference April 2011

Backup

-301/Core

- Active, Fully Androgynous*, 120VDC power, integrated electronics
 - Configuration can dock in either active or passive mode to all configurations or to any IDSS compatible system

• <u>-302/Short</u>

- Reduced height; electronics boxes remotely mounted
- Current NDS ISS adapter and Hub baseline
- Note: This configuration detailed features are under review

<u>-303/Lower Voltage</u>

- Same as -301 except 28VDC power input
 - -301 avionics was designed to support power board swap out; board has not been designed

Ready to Dock (Active Mode) Soft Capture System Extended

Ready to Dock/Launch (-301 Passive Mode) Soft Capture System Retracted

Ready to Dock/Launch (-302 Passive Mode) Electrical Boxes mounted in host

Page No. 14 C.A. Hatfield ISSMars Conference April 2011

<u>Return</u>

NDS-to-Host Vehicle Interfaces

Vehicle to hook pyro 2 x (Active/Passive)

Structural I/F

48-bolts on 53.150" (1350 mm) DIA BC (thru holes on NDS, inserts on host, NDS provides bolts) 3 shear pins different than

<u>NDS Data</u> 2 x TIA-422-B or MIL-STD-1553B (A/B Docking Umbilicals 2 x ISS FRAM type connectors (Channel A/B), each has: • Two 8 AWG power circuits w/ both • <u>MIL-STD-1553B</u> • <u>100 Base T Ethernet</u> <u>All wiring passed thru to inside of</u> <u>tunnel for host</u>

<u>Seal I/F</u> <u>Two concentric seal beads</u> (NDS provides)

Electrical Bonding NASA-STD-4003, Class R/H

<u>NDS Power</u> 2 Connectors for 120V (or 28v) feeds (A/B) for system and heater power

<u>Return</u>

	-301			-302***		
Title/Description	Base Mass	Basic Mass + MGA	Avg MGA	Basic Mass	Basic Mass + MGA	Avg MGA
Allocated Mass	n/a	750	N/A	n/a	704	N/A
System Roll-up*	679.65	744.31	10%	630.65	684.54	9%
Hard Capture System (HCS)**	480.43	527.39	10%	357.39	387.01	8%
Soft Capture System (SCS)	135.16	147.20	9%	135.22	147.27	9%
*System Roll-up mass includes top components assembled at a higher level than the HCS and SCS sub-assemblies **Box masses below are included in the Hard Capture System Mass Above. The same boxes are used in -301 & -302 ***302 Mass does not include host provided h/w (MMOD shield, box mounting, extension cables, etc.)						
Control BoxAssy** (Qty 2)	31.51	34.39	9%	31.51	34.39	9%
Motor Box Assy** (Qty 2)	34.05	37.04	9%	34.05	37.04	9%
Power Box Assy** (Qty 2)	45.35	49.39	9%	45.35	49.39	9%

<u>Return</u>