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SUMMARY

An in-depth tutorial on the thermoelastic constitutive equations for elastic,
anisotropic materials is presented. First, basic concepts are introduced that
are used to characterize materials, and then notions about how anisotropic
material deform are presented. Next, a common notation used to describe
stresses and strains is given, followed by the rules of indicial notation used
herein. Based on this notation, Hooke’s law and the Duhamel-Neuman law
for isotropic materials are presented and discussed.

After discussing isotropic materials, the most general form of Hooke’s law
for elastic anisotropic materials is presented and symmetry requirements
that are based on symmetry of the stress and strain tensors are given.
Additional symmetry requirements are then identified based on the
reversible nature of the strain energy and complimentary strain energy
densities of elastic materials. A similar presentation is then given for the
generalized Duhamel-Neuman law for elastic, anisotropic materials that
includes thermal effects. Next, a common abridged notation for the
constitutive equations is introduced and physical meanings of the elastic
constants are discussed.



SUMMARY - CONCLUDED

As a prelude to establishing various material symmetries, the
transformation equations for stress and strains are presented, the most
general form of the transformation equations for the constitutive matrices
are presented. Then, specialized transformation equations are presented for
dextral rotations about the coordinate axes. Next, the concepts of material
symmetry are introduced, the mathematical process used to describe
symmetries is discussed, and examples are given. After describing the
mathematics of symmetry, the criteria for the existence of material
symmetries are presented and the classes of material symmetries are given.
Then, the invariance conditions and simplifications to the constitutive
equations are presented for monoclinic, orthotropic, trigonal, tetragonal,
transversely isotropic, and completely isotropic materials.

After establishing a broad range of material symmetries, the engineering
constants of fully anisotropic, elastic materials are derived from first
principles and then specialized to several cases of practical importance.
Lastly, reduced constitutive equations are derived for states of plane stress,
generalized plane stress, plane strain and generalized plane strain.
Transformation equations are also derived for these special cases.
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PREFATORY
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MOTIVATION AND APPROACH

Knowledge of anisotropic materials has become prominent in the last
few decades because of the applications of advanced, lightweight fiber-
reinforced composite materials to aircraft and spacecraft

The material presented herein is redundant in several sections, by
design

e First, to reinforce concepts and enhance learning

e Second, to provide stand-alone sections that can be used
independently for various reasons

e Third, to serve as a comprehensive reference document

12
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BASIC CONCEPTS

The macroscopic physical, or material, properties of a body are
specified by constitutive equations

e For example, a relationship between stress, strain, and temperature
is commonly specified for solid materials

The material properties of a solid, regardless of its shape, are generally
functions of the coordinates of the material particles

e Solids for which the material properties vary pointwise are
described as inhomogeneous (e.g., a bi-metallic strip)

e For homogeneous solids, the material properties are the same for
every particle of the solid

The material properties of a homogeneous solid are described
mathematically as invariant with respect to coordinate-frame
translations

15



BASIC CONCEPTS - CONCLUDED

A body is described as isotropic at a point if its properties at that point
are independent of direction

e A body that is not isotropic is described, in the most general case,
as anisotropic

A body that is isotropic at a given point is described mathematically as
invariant with respect to coordinate-frame rotations (for that point)

A body is described as homogeneous and isotropic if its properties are
independent of direction, and identical, at every point of the body

Distortion is defined as deformation that consists of a change in
shape without a change in volume (pure shearing deformation)

Dilatation is defined as deformation that consists of a change in
volume without a change in shape (pure expansion-contraction-type
deformation)

16



BASIC NOTIONS OF DEFORMATION

® Pure normal stresses acting within a homogeneous, isotropic solid
produce only volumetric, extensional (dilatational) deformations

e The angle between every pair of intersecting material line elements,
that lie in the planes that are perpendicular to the normal stresses
in the solid, remains unchanged during deformation (no shearing)

LTl

Deformed shape of Deformed shape of
an anisotropic solid Normal stress an isotropic solid
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BASIC NOTIONS OF DEFORMATION - CONTINUED

® Pure shearing stresses acting within a homogeneous, isotropic solid
produce only distortional, shearing (deviatoric) deformations

e The angle between every pair of intersecting material line elements
that lie in the planes of the shearing stresses in the solid change
during deformation, but the length of the line elements does not
change (no dilatation)

ﬁ—ﬂ@

Shearing stress
g Deformed shape of

Deformed shape of [ 3 :
an isotropic solid

an anisotropic solid
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BASIC NOTIONS OF DEFORMATION - CONTINUED

® Pure shearing stresses acting within a homogeneous, isotropic solid
produce only distortional, shearing (deviatoric) deformations that are
only in the plane of the shearing stresses

@Ar@

Deformed shape of Deformed shape of
an anisotropic solid an isotropic solid

=
|
|

________

® All unrestrained thermal expansion is volumetric and uniform within
a homogeneous, isotropic solid; not so in a homogeneous, generally
anisotropic solid

19



BASIC NOTIONS OF DEFORMATION - CONCLUDED

Strains that are caused by unconstrained thermal expansions, that
do not produce stresses, are defined as free thermal strains

A solid is described as ideally elastic (usually just called elastic)
when it recovers to its initial, stress- and strain-free configuration upon
removal of the applied loads or temperature field

e For this case, there exists a one-to-one (unique) mathematical

relationship between the stresses and strains that act within the
loaded solid

20



NOTATION FOR STRESSES AND STRAINS

In the development that follows, stresses and strains are defined
relative to standard rectangular Cartesian coordinates (x,, X,, X;)

033

X3
13 Y

s ; 4_7}
—g- 5, X,

0'12

23

(0] .
" Shearing stresses

Normal stresses

The normal strains ¢, €., and &,; correspond to the normal stresses

O.15 O, and o, , respectively

The shearing strains 2¢,, = v,,, 2¢,; = v,3, and 2¢,, = y,; correspond to the

shearing stresses o,,, 6,3, and o,; , respectively

21



INDICIAL NOTATION

The rules of indicial notation associated with Cartesian tensors are
used herein

In particular, all indices appear as subscripts, unless noted otherwise

(1 +v)o, - vd,0, |

m|—

e Forexample, g; =

Latin indices take on the values {1, 2, 3} , and repeated latin indices
3

imply summation over this set; e. g.; O = z O =0, + 0, + O3

Indices that are not summed in an equation are called free indices and
take on the complete set of possible values

The symbol 0, is known as the Kronecker Delta Symbol and is
equal to one when j = k and is equal to zero otherwise

22



CONSTITUTIVE EQUATIONS
FOR ISOTROPIC MATERIALS
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HOOKE’S LAW
HOMOGENEOUS, ISOTROPIC, LINEAR-ELASTIC SOLID

In the 17th century, Robert Hooke began developing a constitutive
law for elastic, isotropic solids

e The concept of elastic deformation was introduced by Hooke in
1676

Hooke’s work led to the following equations that are in use today

2(1

€En = E[OH - V(Gzz + 033)] 28, =¥, = (E+V) Oy
2(1 +

€2n = é[ozz - V(Gﬂ + 033)] 28, =¥y = (EV) O3
2(1

€33 = é[css - V(011 + 022)] 28, = Yy = (E+V) O2;

or in indicial notation & = 1E[(1 + ”V)O'ij — "vﬁijokk ]

24



HOOKE’S LAW - CONCLUDED
HOMOGENEOUS, ISOTROPIC, LINEAR-ELASTIC SOLID

The inverted form of Hooke’s law is given by

_ E _ — E - E
O = vyt ozvL(1 7 V)En +V(En + e 2= 1w V2T [1ay) B
_ E _ — E - E
O2= Gyt oavl(1 7 V)Eat V(En + e = 2 av) 12T 14y B
Oss = z )[(1 _V)833+V(811 +822)] 023=L B

T (1+v)(1-2v

or in indicial notation

Ci= Gy 2”\,)[(1 - 2v)e, + VO &,

For these equations, it is important to remember that the strains are
caused by the externally applied loads and displacements

e Strains of this type are called (stress-induced) mechanical
strains and are the result of the internal stresses

25



THE DUHAMEL-NEUMANN LAW
HOMOGENEOUS, ISOTROPIC, LINEAR-THERMOELASTIC SOLID

Hooke’s law was extended by J. M. C. Duhamel (circa 1838) and
F. E. Neumann (circa 1888) to include the first-order effects of thermal
loading

This law is based, in part, on the premise that the total strain ¢, ata
point of a solid, subjected to thermomechanical loading, consists of

mechanical strain ¢ and strain caused by free thermal expansion ¢;

e The mechanical strain ¢; is the stress-induced strain caused by the
externally applied loads and displacements, and the stress-induced

strain caused by nonuniformity in the temperature field or in the
thermal expansion properties of the material

o € = si(j' + 8; where ei(; = é[(-' + V)Oii - Vé‘)ij()‘k'< ] ’ 8; = aﬁii(T o Tref) ’ T is
the temperature field, and T, is the temperature field at which the
body is deemed stress and strain free (or negligible)

26



THE DUHAMEL-NEUMANN LAW - CONTINUED
HOMOGENEOUS, ISOTROPIC, LINEAR-THERMOELASTIC SOLID

The temperature fields T and T, are, in general, functions of position

within the body; that is, T = T(x,, x,, x;) and T = T.( X0 Xo Xs)

e T Iis,in general, also time dependent and T, is typically uniform,

with a value equal to a nominal ambient temperature

Thermal stresses are caused by two effects:

e The spatial nonuniformity in the field «(T-T.) and

e Geometric restraints that prevent stress-free thermal expansion

When a solid is subjected to a nonuniform temperature field or its
thermal expansion properties vary, there arises a mismatch in the
thermal expansion of neighboring material particles

e Internal, "thermal stresses™ develop to maintain continuity of the
material body, which induces mechanical strains

27



THE DUHAMEL-NEUMANN LAW - CONTINUED
HOMOGENEOUS, ISOTROPIC, LINEAR-THERMOELASTIC SOLID

The work of Hooke, Duhamel, and Neumann led to the following
thermoelastic constitutive equations that are used today

2(1

€, = I"E[oﬂ — V(O + 033)] +a(T-T,) 2¢,=Y,, = 21 +v) I; v) O,
2(1

€,, = |15[022 - v(o, + 033)] +a(T-T,) 2e,,=Y,s = ( I; v) O.;
2(1

€33 = é[()'% - V(011 + O'22)] + a(T - Tref) 2g,; = ¥, = (E-I-V) O3

or in indicial notation

£, = %[(1 + v)o, - V8,0, | + ad (T - T,

28



THE DUHAMEL-NEUMANN LAW - CONTINUED
HOMOGENEOUS, ISOTROPIC, LINEAR-THERMOELASTIC SOLID

The inverted form of the Duhamel-Neumann law is given by

_ Ea(T_Tref)
O = i -zl (1 7 Ve Viea o) - o)

Ea T_Tref

0= (1 — a1~ V)Ea * V(En + )] - (5 - 2v) |

_ E _ _ Ea(T_Tref)
5= (vt 2wl (1~ Vet V(en +ea) [ - =

E E

21 +v) 8= (1 4v) &0

- E E -
On= 7 71 . €12 O3 =

O, =—-E E or in indicial notation

Ea(T B Tref)
i (1-2v)

o E (1 -2v)e, + vd,e, | - O

i (1 +v)(1-2v)

29



THE DUHAMEL-NEUMANN LAW - CONCLUDED
HOMOGENEOUS, ISOTROPIC, LINEAR-THERMOELASTIC SOLID

The constitutive equations show that an isotropic material is
characterized fully by two independent e/astic constants E and v, and
by one thermal expansion coefficient o

e E isthe modulus of elasticity, which is also called Young’s
modulus and the elastic modulus

e vV is Poisson’s ratio and a is the coefficient of linear thermal
expansion

E
2(1 +v

e E and v arerelatedby G = ) , Where G is called the

shear modulus or the modulus of rigidity

30



GENERALIZED HOOKE’S LAW
FOR
HOMOGENEOUS,
ANISOTROPIC,
LINEAR-ELASTIC SOLIDS
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GENERAL FORM OF HOOKE’S LAW

|

111111111
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The generalization of Hooke’s law to anisotropic materials is attributed
to Cauchy (in 1829) and postulates that every component of the stress
tensor is coupled linearly with every component of the strain tensor;

l.e.,

Sij —

or in indicial notation by

32
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GENERAL FORM OF HOOKE’S LAW - CONTINUED

SijkI are called the components of the (4th-order) compliance tensor
and are often called compliances or compliance coefficients

e Without further simplication, there are 3* (or 81) independent
compliance coefficients that must be determined from experiments,
to fully characterize a given homogeneous material

The previous equation indicates that each normal-stress component
produces shearing strains in all three coordinate planes, in addition to
three extensional strains

Similarly, each shearing-stress component produces extensional
strains along all three coordinate directions and shearing strains in the
two planes perpendicular to the plane of the shearing stress, in addition
to a shearing strain in the plane of the shearing stress

33



GENERAL FORM OF HOOKE’S LAW - CONTINUED

Thus, dilatational deformation (expansion-contraction) and
distortional deformation (shearing) are fully coupled in an
anisotropic material, unlike common isotropic materials

The inverted form of generalized Hooke’s law is given by

c1111 C1122 c1133 C1123 C1113 c1112

N
N
-
—h
N
N
N
N
N
w
N
N
N

w
W
N
w
w
W
w
w
N

N
(]
N
N
(]
@
N
(%]
N

-
w
N
-
w
W
-
w
N

=y
N
N
-
N
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=y
N
N

(2]
N
N
N N N N N N N N

00000000

00000000

00000000

N
-
W
N
-
N

00000000

- = gnsz g1131 g1121 £,
3 2213 2212; V2232 V2231 V2221 €,
3 C3313 C3312 C3332 C3331 C3321 €33
3 C2313 C2312 C2332 c2331 Czsz1 €3
3 C1313 C1312 C1332 C1331 C1321 €13
3 C1213 C1212 C1232 C1231 C1221 B
3 Caz1s Caz12 Cazse Cazar Cozay Es2
3 gsns gsnz g3132 g3131 33121 i:
3 2113 V2112 V2132 V2131 V2121

or in indicial notation by Oj; = Cijklskl

Note that C,,, have units of stress; e.g., Ib/in?
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GENERAL FORM OF HOOKE’S LAW - CONTINUED

® CijkI are called the components of the (4th-order) elasticity or stiffness
tensor and are often called stiffness coefficients

e Note that Sijk, and CijkI are constants for a homogeneous material

® The number of independent coefficients in ¢,=S,,0, can be reduced
by enforcing symmetry of the stress and strain tensors

e ¢ =S,0, isthesameas ¢, =S,,04

o ;=& gives Siiklokl — Sjiklokl ’ which lmP|IeS Siim = Sim for a general
stress state at a point in a body

e o,=0, canbeusedtoshowthat S, =S,

® S,=S,, and S,,=S,, yield 36 independent compliance coefficients

35



GENERAL FORM OF HOOKE’S LAW - CONTINUED

The proof that S, = S, is given as follows

The constitutive equation ¢,=S,,0, can be expressed as ¢,=S,,0,

because | and k are summation indices and interchanging them
doesn’t alter the content of the equation

Equating ¢, =S,,0, and ¢,=S,,0, gives S0, = S;.0u

Next, enforcing o, =0, gives S,.0u =S;.0., Which implies

Sijkl = Sijlk

for a general stress state at a point in a body

36



GENERAL FORM OF HOOKE’S LAW - CONTINUED

The number of independent coefficients in o,=C,t, can also be
reduced directly by enforcing symmetry of the stress and strain tensors

o Gii - Cijklakl is the same as 0-ji = Cjiklskl

e o,=0; gives C;.&,=C;.e,, Whichimplies C,,=C;, fora general
Strain state at a point in a body

° g = €, can be used to show that C,,=C,,

C.=Ci, and C,,=C,, vyield 36 independent stiffness coefficients

Cauchy’s generalized form of Hooke’s Law ends up with 36
independent compliance or stiffness coefficients

37



GENERAL FORM OF HOOKE’S LAW - CONTINUED

The expanded form of Cauchy’s generalized Hooke’s law &; = S0, is
obtained as follows

First, expanding the last summation index gives

€ = [Siik10k1] + [Siik20k2] + [Siik30k3]

Then, expanding the summation index k gives

€= lSij11011 + Sij21021 + Sij31031l + lSij12012 + Sij22022 + Sij3203zl +

lsij13013 + Sij23023 + Sij33033]

Next, enforcing o, = o, Yyields

& = Sij11011 + Sij22022 + Sij33033 +
(Sij23 + Sij32)023 + (Sij13 + Si131)013 + (Sij12 + Sij21)012
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GENERAL FORM OF HOOKE’S LAW - CONTINUED

® Then, enforcing the conditions S;,=S;. give the result
Sii e Sii11011 + Sii22022 + Sii33033 + 28ij23023 + 28ii13013 + 28ii12012

® Applying this equation for all, independent values of the free indices i
and j results in the following matrix representation of Cauchy’s

generalized Hooke’s law Sij —_ Sijklakl .

£, S1111 S1122 S1133 231123 2S1113 2S1112 O,
€55 32211 Szzzz 82233 232223 252213 232212 O,,
€33 — S3311 83322 83333 233323 283313 233312 O33
2823 232311 282322 282333 482323 482313 432312 Oz
2213 281311 281322 281333 4S1323 481313 4S1312 g13
' i 2S1211 2$1222 281233 4S1223 4S1213 4S1212 | ”

39



GENERAL FORM OF HOOKE’S LAW - CONTINUED

Similarly, the expanded form of Cauchy’s generalized Hooke’s law
o, = C,.e, is obtained as follows

First, expanding the last summation index gives

O; = [Ciik18k1] + [Ciikzskz] + [Ciik38k3]

Then, expanding the summmation index k gives

O; = lcij11811 + Ci121821 + Cii31831] + lcii12£12 + Cij22£22 + Cij32832] +

lcij13813 + Cij23£23 + Cii33£33]

Next, enforcing &, =¢, Yyields

Oy = Cyj1€1y + Cpptap + Cype€sy +
(Cij23 + Cij32)823 + (Cij13 + Cij31)813 + (Cij12 + Cij21)£12

40



GENERAL FORM OF HOOKE’S LAW - CONTINUED

e Then, enforcing the conditions C,,=C,. give the result
O; = Cij11811 + Cij22£22 + Cij33833 + zci123€23 + 2Cii13813 + 2Cii12£12

® Applying this equation for all, independent values of the free indices i
and j results in the following matrix representation of Cauchy’s

generalized Hooke’s law Gii - Ciiklskl .

O, C1111 C1122 C1133 C1123 C1113 C1112 £,

O, C2211 szzz C2233 szzs C2213 C2212 f €5

O33 — C3311 C3322 C3333 C3323 C3313 C3312 €33

O2 C2311 C2322 C2333 C2323 C2313 C2312 2823

g: g1311 g1322 g1333 g1323 21313 g1312 g::
| Y1211 1222 1233 1223 1213 1212 |
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GENERAL FORM OF HOOKE’S LAW - CONTINUED

The compliance coefficients Sijk, and the stiffness coefficients CijkI

are described as components of a fourth-order tensor (field) because
each are the components of a linear transformation that relates
components of the second-order stress tensor (field) to components of
the second-order strain tensor (field)
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REDUCTIONTO 21 INDEPENDENT CONSTANTS

The number of independent elastic, compliance and stiffness
coefficients is reduced from 36 to 21 by enforcing the
thermodynamic properties of reversible, elastic deformations

e The key quantity to be examined is the strain-energy density of
an elastic solid

e The reduction to 21 is attributed to George Green (1793-1841)

The strain-energy density ?% of a generally elastic solid is defined as

the work of the internal stresses, done through stress-induced
mechanical deformations, that is stored in a loaded body

In an ideally elastic solid, experimental evidence indicates that all of
the work done by external forces is converted into elastic-strain energy
that can be recovered upon unloading, thus a loaded body has the
potential to perform work
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REDUCTIONTO 21 INDEPENDENT CONSTANTS
CONCLUDED

The existence of a strain-energy density function for linear- and
nonlinear-elastic materials can be shown directly by using the first and
second laws of thermodynamics

e Theterm "density"” is used herein to indicate that the strain energy
is defined per unit volume of material

The expression for the strain-energy density function % is obtained by

determining the strain-energy-density increment d?% associated with
an infinitesimal change in the deformation of a body

e d? can be obtained directly from the laws of thermodynamics or by

determining the work done by the internal forces of a body on a
differential volume element of material
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STRAIN-ENERGY DENSITY

The strain-energy-density increment d? is given by
dZ = o,,d¢,, + 0,,d¢e,, + 0,,de,; + 20,,d¢,; + 20,,d¢,;, + 20,,d¢,,

where the stresses depend on the mechanical strains; that is,

O; = oij(8115822!833!823!813!812)
This expression is written compactly in indicial form as
d% = Gii(SPQ) dsii
The strain-energy density Z is obtained by integrating d? over the

deformation associated with a loading process, that starts at a strain-
free state and ends at a particular strain state; that is,

qu
% - f Gij(81158225833’8235813!812) dsij = %(qu)
0
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STRAIN-ENERGY DENSITY - CONTINUED

For an arbitrary process that involves loading followed by total
unloading, the strain-energy density % is given by the circuit integral

A= i o,(€,,) dg;

In addition, because strain-energy density is not lost during an arbitrary
elastic loading-unloading process (conservation of energy - first law
of thermodynamics), it follows that

A= gﬁ Oy(&,,) de; =0

For the condition that ZZ = 0 for an elastic loading-unloading process to
be true, it requires that there must exist a strain-energy density function

2 for which dZ is an exact differential; that is, Z =¢ dZ =0
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STRAIN-ENERGY DENSITY - CONTINUED
ILLUSTRATION OF ELASTIC LOADING-UNLOADING PROCESSES

Two Independent Loading Systems

Strain
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STRAIN-ENERGY DENSITY - CONTINUED
ILLUSTRATION OF ELASTIC LOADING-UNLOADING PROCESSES

One Loading System

\Af ? \ O SAtress
¢y % >
A, 7 o)

Elastic loading-unloading cycle

Strain

48



STRAIN-ENERGY DENSITY - CONTINUED

Because Z=%(¢c,), it follows mathematically that an exact

U
e, de,

differential has the property that d7 =

e A function with this property is described in mathematics as a
potential function, thus % is sometimes referred to as the elastic

potential

o 4

’ i = 0.
7 de; gives Je, i

Equating dZ =o,(g,,) de; with dZ =

e The last equation on the right indicates that the stress-strain
relations are derivable from a potential function when the
deformation process is elastic

e A material of this type is called a hyperelastic or a Green-
elastic material
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STRAIN-ENERGY DENSITY - CONCLUDED

The statement Z = i dZ =0 also indicates that an arbitrary elastic

loading-unloading process is a path-independent process

e This result arises because the integral of an exact differential
depends only on the limits of integration (end points of the
process), according to the fundamental theorem of calculus

A necessary condition for a function Z = Z(¢,,) to be path independent

U _ OU

is for the following condition to be valid: JE. 0E..  OJE.. OE
ij ki ki ij

e This condition arises from the connection of the path integral with
Stokes’ integral theorem
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PROOF THAT C,,,=C,,

First, note that asa:gik. = asa:,?sii and ‘Zf =0; give g:: = ?.;::
Then, o, =C,.t. gives g:: = agkl[cijrssrs] =C. g%: = C,:0,.9, = Cy
Also, o, =C, .., gives %::' = a(::ij[Ck,pqepq] = Chinq %L;: = Clipa0pi0q = Cuij
Thus, g:k‘: = ?;::' yields C,, = C,; , which reduces the number of

independent stiffness coefficients to 21
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ILLUSTRATION OF THE PATH-INDEPENDENCE CONDITION

® The function Z = Z(&..,£..,8:5,825€13€1,) Can be viewed as an ordinary,

simply connected, continuous, smooth function of six independent
variables

® To enable visualization of the path-independence condition, consider

the case of a similar function of two independent variables, 7(X1, Xz)

J 0
7dx1 + 7d

i i x2

e The chain rule of differentiation gives d7 =

e The vector form of d77 is given by

~ d ~ 0F ~ o — >
d7 = ('1ax1 + Izaxz) . (dx1|1 +dx2|2) = V77 * dx
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ILLUSTRATION OF THE PATH-INDEPENDENCE CONDITION
CONTINUED

e Let 2 denote a path traversed in a loading-unloading cycle, then

— -
i dZ=0 becomes i VZ+dx =0
P P

® Recall that Stokes’'Theoremis given by g%scj e dX = ff ne [3 X Q’]dA
S

where

e g(x,x;) is an arbitrary vector field with continuous first derivatives

e f(x,x,) is the unit-magnitude normal-vector field for any smooth

surface S enclosed by the curve ds

53



ILLUSTRATION OF THE PATH-INDEPENDENCE CONDITION
CONTINUED

— -
e Applying Stokes’ theorem to i VZ+dx =0 gives

2

ﬁv?-di:ff A+ |VxvZ|aa=o

where S(P2) is the surface enclosed by the path 2

® For asimply connected region, the necessary and sufficient conditions
for the line integral to vanish are given by the requirement that the
integrand in the double integral vanish; that is,

ﬁ’[%xV_é]:O
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ILLUSTRATION OF THE PATH-INDEPENDENCE CONDITION
CONTINUED

® Because the unit-magnitude normal-vector field for an arbitrary

smooth surface S(P) is generally nonzero, the necessary and
sufficient conditions for the line integral to vanish become

— — -
VxVZ=0

— —> 4 & ¢ Y a0 A
® Expanding VxV?:O gives (|1(;9X +|26 )X(h 7+I2 7):0

627 ('i\1x/i~2)+ 627 (/: /.~)=6

which simplifies to aX,9X,

3 FY S
e Simplifying further gives ( ax;’; - BXZ( )(i1xi2)=o which yields

97 _ 37

IX,0X,  9X,0X,

the condition
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ILLUSTRATION OF THE PATH-INDEPENDENCE CONDITION
CONTINUED

37 a7
OX,0X,  9X,0X,
independence at the local level, which is illustrated in the following
figure

® The condition Is, in fact, a statement of path

Z(X;,X,) in the
neighborhood 2(X,,X,)

of point P 37
\ A/ 7 + axdeZ
7 i /
7+ ax1dx‘ : D
\OB : o C
I
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ILLUSTRATION OF THE PATH-INDEPENDENCE CONDITION
CONCLUDED

e By following path ABC, the value of %7 at point C is given by

2

o7

0
7+ = 7 a;'dx1 + a?dxz + 7 dx,dx,

0
+ —=dx, |[dx, = +
[7 )& ‘} =7 X, X, IX,0X,

i)
dx, + ax,

1

e By following path ADC, the value of %7 at point C is given by

7 7 7
dx, + dx. + dx.dx
X, 2 9x, ' ox,9x, >

o7
7+ oX

Jd —
dxz + X, X, dX1 - 7 +

2

[7 + dez

e For path independence, it follows that these two expressions must be

equal, hence
0F _ 3F
OX,0X,  OX,0X,
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COMPLEMENTARY STRAIN-ENERGY DENSITY

The symmetry condition Sijkl = Sk"j is obtained by examining the

complementary strain-energy density functional %*

The strain-energy density functional % was obtained by expressing

the stresses in terms of the strains and integrating dZ = o,de; from the
initial stress- and strain- free state to the current strain state

An expression for Z* is obtained by first requiring that a one-to-one
relationship exists between the stresses and strains, and by using the

product rule of differentiation to get d(o;;) = o,de; + £,do;

e Inthe part o,dg, , the strains are taken as the independent variables

e Inthe part ¢do, , the stresses are taken as the independent
variables
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COMPLEMENTARY STRAIN-ENERGY DENSITY
CONTINUED

Next, the expression d(o.¢;) = o,de; + £, do; is integrated from the
initial stress- and strain- free state to the current stress and strain state;

i.e.,
J; ) d(oe;) =J; Oi(&,) de; + J; £4(0pq) doy

In the term fo “d(oe,) , it is presumed that the stresses are known as

functions of the strains

(0}

e This term can also be expressed as fo “d(o,¢;) , where it is

presumed that the strains are known as functions of the stresses

e Both terms yield o, the product of the current values of the
stresses and strains
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COMPLEMENTARY STRAIN-ENERGY DENSITY
CONCLUDED

Using the previous expression and the definition of the strain-energy

density function % gives O;&; = %(Spq) + f ) 8ij(o'pq) doij
0

The complementary (or conjugate) strain-energy density function Z*

is defined as %" = f ) £,(0,) do; such that o,&, = ?%(¢,,) + Z«*(0,,)
0

o Note that d7Z* = eij(o-pCI) doij

e The form 7#*(o,,) =o,&, - %(s,,) is known as the Legendre
transformation

The complementary or conjugate relationship of the strain-energy

density function and the complementary strain-energy density function

are illustrated on the next chart for a one-dimensional case
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ILLUSTRATION OF ENERGY DENSITY FUNCTIONALS
ONE-DIMENSIONAL CASE

— * Single-parameter
o€ %(8) T % (0) loading system
Stress Stress
A A
do
(0] 0]
+ e = ¢(0)
| —
Strain ¢ Strain ¢ Strain  *

Area = o¢ Area = f “o(c) de = %(c) Area= fo ¢(o) do = 7*(o)
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ILLUSTRATION OF ENERGY DENSITY FUNCTIONALS
ONE-DIMENSIONAL CASE - CONCLUDED

The previous figure indicates that because strain-energy density is not
lost in an arbitrary elastic loading process, neither is the
complementary strain-energy density

e Thus, the complementary strain-energy density function is also
path independent and conserved in an elastic loading-unloading
process

e Thus, «* =¢ dZ*=0 and dZ* = (':,Zf* do;

1]

Equating dZ* = ¢(o,,) do;, with dZ* =

e The equations given above indicate that the strain-stress relations
are derivable from a potential function when the deformation
process is elastic (hyperelastic material)
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PROOF THAT S, =S,

The necessary and sufficient conditions for «* = %*(o,,) to be path
SU _ U

independent are for the conditions T o S 0 to be valid
First note that ag?at;k. = ag:zg;; and %= g; give gzzl = gf;.:
Then, ¢,=S,..0.. gives ;;:I = azkl[sii,so,s] =S, 3(0,: = S,:9.04 = Sy«
AN, £,= S0y GIVES 9 = 20 [S,,,00] = Supy 2™ = Sypedpdy = Su

ij ij ij

Jdg;  Og

) 30 = ag. Vields Siyq = S.; , which reduces the number of

independent compliance coefficients to 21

Thus
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STANDARD FORMS FOR GENERALIZED HOOKE’S LAW

® The standard forms of the generalized Hooke’s law are now given by

€4 S1111 S1122 S1133 281123 281113 ZS1112 O,
€ S1122 Szzzz 82233 282223 282213 282212 O,
€33 = S1133 Szzss 83333 283323 283313 283312 O33
2823 281123 232223 233323 482323 482313 432312 O
2813 2S1113 282213 233313 482313 4S1313 4S1312 g13
2¢ 1, I 2S,,,, 282212 ZS3312 432312 4S1312 4S1212_ ”
O, C1111 C1122 C1133 C1123 C1113 C1112 €44
O, C1122 C2222 szss szzs C2213 C2212 €
O33 — C1133 C2233 C3333 C3323 Cs313 C3312 €33
O2 C1123 C2223 C3323 C2323 C2313 C2312 2823
g:z C1113 C2213 C3313 C2313 C1313 C1312 ;813
i C1112 C2212 C3312 C2312 C1312 C1212_ €12
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CLAPEYRON’S FORMULA
For a linear-elastic solid, strain-energy-density increment
dZ = o,(¢,,) de; is combined with o,=C,,e, toget dZ =C,z.dg;

Now consider, % d[cijklg skl = [Cljklds i€ Ci]klsijdgkl]

Because all indices are summation indices, this expression can be
expressed as

%d[cljklsljskl 2 I:Cljklskldg + Cklljskldg ] 2 [Cljkl + Ckll] 8k|d8

By using the path-independence condition C, =C,;, it follows
that

% d[Ciik,Sijskl] = C,.&qde; andthat dZ = ; [Ciik,siisk.]
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CLAPEYRON’S FORMULA - CONCLUDED

Integrating the last expression gives Z = ;Cijk.sijsk. + K where K is a
constant of integration

Noting that Z =0 when the strain field is zero-valued gives K=0

1
Next, using o, =C,.e. gives the desired result, A= 20i&;;

This expression for the strain-energy density of a homogeneous, linear-
elastic, anisotropic solid is attributed to B. P. E. Clapeyron (1799-1864)

.. - 1 —_
A similar procedure can be followed to show that U = 20;€; = /A
for a homogeneous, linear-elastic, anisotropic solid

66



POSITIVE-DEFINITENESS OF THE STRAIN-ENERGY
DENSITY FUNCTION

The strain-energy density of a solid in its stress- and strain-free
state is defined to be zero-valued

As a solid deforms under load, it stores strain energy and develops
the potential to perform work upon removal of the loads

e Thus, it follows that the strain-energy density function is a non-

negative-valued function for all physically admissible elastic strain
states

e Hence, %= fo Oy(¢.) de; =0 for a nonlinear-elastic material

For a linear-elastic material, % = 5C,.&%, =0 must hold, which places

some thermodynamic restrictions on the stiffness coefficients that
must hold for reversible (elastic) loading-unloading processes
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POSITIVE-DEFINITENESS OF THE STRAIN-ENERGY
DENSITY FUNCTION - CONTINUED

® The strain-energy density of a linear-elastic material can be
expressed in matrix form by

€11 T Ci111 Crize Ciaas Crizs Civis Coigz €11

€2 Crizz Cozr Cinas Cros3 Crnys Cin €20

% — 1 €33 C 1133 Cr2s3 Cazas Casos Cigra Caan €33
2\ 2, C 1123 €223 Canzs Cs Cigis Cogy 2¢,,
2¢,, C 1113 Ca21s Caaia Caaiz Czis Crane 2¢,,
2¢,, _C1112 Ca22 Caniz Cosiz Cianz C1212_ 2¢,,

® Positive-definiteness of the sirain-energy density is satisfied by
positive-definiteness of the matrix containing the stiffness coefficients

e Enforcing positive-definiteness defines relationships that the

stiffness coefficients must obey; e.g., all the diagonal elements of
the matrix must be positive-valued
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POSITIVE-DEFINITENESS OF THE STRAIN-ENERGY
DENSITY FUNCTION - CONCLUDED

® Positive-definiteness of the strain-energy density is used in the linear
theory of elasticity to establish:

e Uniqueness of solutions
e The theorem of minimum potential energy
e The theorem of minimum complementary energy

e Some aspects of St. Venant’s principle

69



GENERALIZED
DUHAMEL-NEUMANN LAW
FOR
HOMOGENEOUS,
ANISOTROPIC,
LINEAR-ELASTIC SOLIDS
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THE GENERALIZED DUHAMEL-NEUMANN LAW

In general, when an elastic solid is subjected to heating or cooling, the
equations of elasticity are coupl/ed with the equations of
thermodynamics and heat transfer

e When the heat generated by deformations is negligible, the
equations uncouple and the temperature field can be solved for
independently of the structural deformations

e The temperature field becomes a known quantity (loading) in the
solution of the linear thermoelasticity equations

In general, when an elastic solid is subjected to heating or cooling, the
stress-strain relations depend on the temperature of the body

e The extent of the temperature dependence depends on the extent of
the heating or cooling
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THE GENERALIZED DUHAMEL-NEUMANN LAW
CONTINUED

To obtain a simple working theory that is linear and that includes
thermal effects, a constitutive law was developed with the following
attributes:

e Thermal expansion effects are included

e Variations in the elastic constants and coefficients of thermal
expansion with temperature are neglected

e Inertial effects associated with heating rates are neglected

A relatively simple extension of Hooke’s law that predicted
accurately experimentally observed phenomenon was the desired
result

e The resulting equations are typically referred to as the linear-
thermoelastic constitutive equations
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THE GENERALIZED DUHAMEL-NEUMANN LAW
CONTINUED

The generalized Hooke’s law was extended by J. M. C. Duhamel
(1797- 1872) and F. E. Neumann (1798-1895) to include the first-order,
linear effects of thermal loading

This law states, in part, that the total strain ¢, at a point of a solid,
subjected to thermomechanical loading, consists of stress-induced

mechanical strain € and strain caused by free thermal expansion ¢

e The mechanical strain ¢; is the strain caused by the externally

applied loads and displacements, and the strain caused by
nonuniformity in the temperature field or in the thermal
expansion properties of the material, or both

o ¢,=¢g+¢ where g=S,.0,, &=0o(T-T.), T is the temperature
field, and T, is the temperature field at which the body is stress
and strain free
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THE GENERALIZED DUHAMEL-NEUMANN LAW

CONTINUED

The general form of the Duhamel-Neumann law is given in expanded

form by

111111111
- N ®o® ® ®oO N N = *r
- N o AN = ¥ ™o o
NAOOHOOOHOOOOOW
111111111

(3] m (v [+ (v @ [x¢] (3] (52
(v [x¢] (3] N

DADNDD DD DN

(3] m (v [+ [+ [x¢] [x¢] (3] (%)
(3] N

DOADDDDNOD D

DODNDDDNDNDD

N N N N N N N N N
111111 - - -

DDDNDNDNDONDD

111111 -
- N (v} @ (2} N N ™ -

DDDNDNDNDONDD
DODDNDDNDOND D

[+ [+2] [+ [+ [+2] [+ [+ [+ [+
(3] m (v [+ (v (¢ [+¢] (3] (5]

DDDNDDNDNOND D

SSSSSS&J&J&‘

and in indicial form by €; = Sijk.()'k. + O (T — Tref)

Tref’

that appear in the generalized Hooke’s law and a,; are the coefficients

® Sijk, are the components of the (4th-order) compliance tensor,at T

of linear thermal expansion (with units of temperature™)
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o
Ijk|£k|

CONTINUED

THE GENERALIZED DUHAMEL-NEUMANN LAW

The inverted form of the Duhamel-Neumann law is given in expanded

T 88 Q& 2 &8 5 &
ST 8T TITTT C
| —_—
—
} ..nlu
8 1YY
T8 88 2 Y5 &
cococpcocoeomcococo
f\'\ _
v —
111111111 =
AN AN AN AN AN AN N N
r 8§ 8 8 2 & & 5 3 ®]
ONONONONONONONONS) |
5 & b B B b & b &
- AN ® OO ® o N T r —
AN M AN " - o o 3
ONONONONOINONOINONS W
8 3§ 8 888888 —
r 8§ 8 & 2 &8 8 & & x
ONONONONONONONONS) C
AN N N AN AN N N N
r 3§ b » & N 8 FE T
- &N ® & * = @™ ® W =
ONONONONONOMHOINONS
2 2 2 o 0 o o o o =
T 8§ B R 2 8 8 5 & ©
ONONONONONOHO NGNS
M O O M O M O o o™ y
AN AN AN AN AN N N N N b
- 8§ 8 & 2 &8 & &
ONONONONONOMHOINONS =
Mm ™ ™ ™ ™ M o o o™
M M M M M M O M ™ |
r 88 8¢ 848 5 & )
ONONONONONOHO NGNS Y=
8§ § § § § & § § 9o m
r § 88 2848 55 .=
SRININININIFININS! O
= = = = 5 = 5 = = L®)
r 8 8 & 2 &8 8 ® & Cc
ONONONONONOHO NGNS -
c
—— W _—
©

Tref!

that appear in the generalized Hooke’s law and the column vector on
right-hand side of the matrix equation contains the mechanical strains
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THE GENERALIZED DUHAMEL-NEUMANN LAW

CONTINUED

The inverted form of the Duhamel-Neumann law is also expressed often

in matrix form by

B11
Bzz
633
P2
613 (T - Tref)
612
P
B
Bm

|

€33
€33

€

€2
€13
€12
€32
€3
€21

111111111
N N (3] o (3] N N N N

SRINININININININS)

(3] [+¢] [+ [+ [+2] [x¢] [+¢] (3 (3]
(3] N

SRINININININININE)

(3] m (v [+ (v [x¢] [x¢] (3] [y
(3] N

OO0V UUOUO

iK€ wi + ﬁij (T - T.)

_CCCCCCQQQ_

C

2 2 2 2 2 2 2 2 2
111111 - - -

QOO Il
N M ™M oo oo o o oo o
111111 - -

OO0V OOOO

COOO0OVOLOOO
COOO0OOOVOOO

N N N N N N N N N
N N N (3] (3] N N N N

CCCCCCC30302

B, are called the thermal moduli

and in indicial form by Oij
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THE GENERALIZED DUHAMEL-NEUMANN LAW
CONTINUED

e By noting that the Duhamel-Neumann law becomes the generalized

Hooke’s law when T =T, the following symmetry conditions must
hold

Sijkl = Sjikl Sijkl = Sijlk Sijkl = Sklij
Cijkl = Cjikl Cijkl = Cijlk Cijkl = Cklij

which indicates 21 independent compliance or stiffness coefficients

® Symmetry of the strain tensor also yields «, = o, , and reduces the

number of independent coefficients of linear thermal expansion from
9to 6

® Likewise, symmetry of the stress tensor also yields 8,=8,,and
reduces the number of independent thermal moduli from 9 to 6
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THE GENERALIZED DUHAMEL-NEUMANN LAW

S1111

CONCLUDED

S1122 82222 82233 282223 2S2213 282212
S1133 82233 S3333 283323 283313 283312
ZS1123 282223 283323 482323 452313 482312
2S1113 282213 283313 482313 4'S1313 4S1312

| 2S1112 2S2212 2S3312 4S2312 4S1312 4S1212

C1111 C1122 C1133 C1123 C1113 C1112
C1122 C2222 C2233 C2223 C2213 C2212

— C1133 C2233 C3333 C3323 C3313 C3312
C1123 C2223 C3323 C2323 C2313 C2312
C1113 C2213 C3313 C2313 C1313 C1312

| C1112 C2212 C3312 C2312 C1312 C1212
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S1122 S1133 2S1123 2S1113 2S1112-

ﬁ11
ﬁ22
ﬁ33
P2
613
B

The expanded forms of the Duhamel-Neumann law are now given by

(T - Tref)

(T - Tref)




e The thermal moduli Bij are related to the coefficients of linear thermal

EQUATIONS FORTHE THERMAL MODULI

expansionby B, =

611
BZZ
BSS
ﬁ23
613
612

Note that [3ij have units of stress/ temperature; e.g., Ib/in®>°F

- C,ua,, orby

Similarly, 0;; have units of temperature”
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STRAIN-ENERGY DENSITY FORTHERMAL LOADING

The symmetryrelations C,, = C,; for athermoelastic solid can also be
obtained from first principles by enforcing path independence of the

strain-energy density function %

The strain-energy density % of a generally thermoelastic solid is
defined as the work of the internal stresses done through
mechanical deformations

The strain-energy-density increment d? is given for this case by
dZ = 0,,dcS, + 0,,de3, + 0,.de, + 20,,des, + 20,,deS;, + 20,,deS,

where the stress-induced, mechanical strains are given by &/ =¢, — ¢;
and the stresses depend on the mechanical strains; that is,

— (o) o o (0 (0 (o)
Gij = Gij(811! €203 €335 €235 €439 812)
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STRAIN-ENERGY DENSITY FORTHERMAL LOADING
CONTINUED

It is important to emphasize that the mechanical strains & =¢, - ;

include strains generated by thermal stresses associated with a
nonuniform temperature field or spatial variations in the coefficients of
thermal expansion

The expression
dZ = 0,,dcS, + 0,,de3, + 0,,deS; + 20,,deS;, + 20,,de%;, + 20,,d¢S,

is written compactly in indicial form as

dZ = o,(¢,.) de;
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STRAIN-ENERGY DENSITY FORTHERMAL LOADING
CONTINUED

The strain-energy density 7 is obtained by integrating d? over the

deformation associated with a thermomechanical loading process
that starts at a stress- and strain-free state and ends at a particular
stress and strain state; that is,

% B ﬁ Gii(SPQ) dsii = %(epq)

Because no mechanical work of the internal forces within a body is
lost during a conservative, elastic, thermomechanical loading-

unloading process, it follows that Z = gﬁ O(€5) dj =0 | which

implies

dZ = a% de; and U _ U

o, dg; dg,,  Og, OF;
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STRAIN-ENERGY DENSITY FORTHERMAL LOADING
CONCLUDED

Equating dZ = o,(¢,,) de; and dZ = ‘3—? de; gives ‘3—7{ = 0,(£pq)

ij ij

Then, ag?afz‘;, = 63;76{85 and g—fg=0i,-(8§q) give 3:{: = Z:EI
o,=C,.tn gives 3:;1: = az;[cﬁ,sa:’s] =Cy. 3%% = C,.0,0, = Cyy

0, =C,..&q Oives (Z:i(? = ai:i,[ck,pqsgq] = Cinq (Z% = C1pg0pi0q = Coi
Thus, ggﬁ: = ?9(::‘? yields Cjq = Cy;
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COMPLEMENTARY STRAIN-ENERGY DENSITY FOR
THERMAL LOADING

The symmetry condition S;, =S,; is obtained by examining the
complementary strain-energy density function %*

An expression for Z* is obtained by first requiring that a one-to-one
relationship exists between the stresses and strains, and by expressing

oe; = oye; +oy(T-T,)) or o= o)+ 0o,0(T-T,)
Next, the product rule of differentiation is used to get

d(o,¢;) = o,de; + £;do;, + d[oijaii(T — T,ef)]

e Inthe part o,d¢], the stress-induced, mechanical strains are taken
as the independent variables

e Inthe part €jdo;, the stresses are taken as the independent
variables
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COMPLEMENTARY STRAIN-ENERGY DENSITY FOR
THERMAL LOADING - CONTINUED

Next, the expression d(o,¢;) = o,de; + £;do; + d[o,0,(T - T.))| is
integrated from the initial stress- and strain- free state to the current
stress and strain state; i.e.,

fo d(oyg,) = J; Oyi( &) dejj + j; €;(0pe) doy; + f d| oo (T - T |

0

In the term f “d(o,g;) itis presumed that the stresses are known as
0

functions of the strains

e This term can also be expressed as J; “d(o,e;) , where it is

presumed that the strains are known as functions of the stresses

e Bothterms yield o;¢;, the current values of the stresses and
strains
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COMPLEMENTARY STRAIN-ENERGY DENSITY FOR
THERMAL LOADING - CONCLUDED

Using the previous expression and the definition of the strain-energy

density function % gives o0&, = %(¢,,) +f " £5(Gb) o, + 0,04(T = T,
0

The complementary strain-energy density function %* is defined as

%* f ll pq dO’ + O, i (T - Tref) such that O;€; = 7{( pq) + %*( pq? )

PS Note that dZ* = ei(j’dcii + d[oijaij(T — Tref)]
e Legendre’s transformation takes the form Z*(c,,,T) = o5, — %(z,,)

The complementary relationship of the strain-energy density function
and the complementary strain-energy density function for the
thermoelastic case are illustrated on the next two charts for a one-
dimensional stress and strain state
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ILLUSTRATION OF THERMOELASTIC ENERGY DENSITIES
ONE-DIMENSIONAL CASE

oc=?¢)+ U (o,T)

Stress Stress ) Stress
A A o =ole) A

o ol o | do

G(T - Tref) —>| -«
e’ =¢°(0) :
5 o—Pp
€° €

Total strain Total strain Total strain

Area =0t Area= f o(e”) de” = %(¢") Area = fo g’(o)do + oa(T - T )= %*(0,T)
0 0

Loading process = mechanical loading followed by thermal loading
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ILLUSTRATION OF THERMOELASTIC ENERGY DENSITIES
ONE-DIMENSIONAL CASE - CONTINUED

oc=?c)+ U (o,T)

Stress Stress Stress
A ° A e’ =¢°(0)
o , o
| |
| |
| |
| |
I
| |
| |
N Y [ b_»
a(T-T.) o(T-T.) €
Total strain Mechanical strain Total strain

Area =0t Area= fs o(e’) de” =%(c°) Area= fc e’(o)do + oa(T - T )= %*(0,T)
Loading process = thermal loading followed by mechanical loading
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ILLUSTRATION OF THERMOELASTIC ENERGY DENSITIES
ONE-DIMENSIONAL CASE - CONTINUED

® The previous figures illustrate that path independence of the elastic
loading-unloading process implies path independence of the
complementary strain-energy density function

e If the material were inelastic, the quantity of complementary strain-
energy density function would depend on the loading process

@ Thus, Z*(o,,T)= idﬂ* 0 and d%*—%ff*do+ag*dT

@ dZ*=¢do, +d|o,0(T-T.)| gives dZ* = (g + o(T - T,;) Jdo;; + 0,0, dT

which reducesto  d?* = g,do; + 0,0, dT
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ILLUSTRATION OF THERMOELASTIC ENERGY DENSITIES
ONE-DIMENSIONAL CASE - CONCLUDED

a%*

ij

do, + —— U dT with dZ¢* = ¢;do; + 0,0,dT gives

e Equating dZ* = T

672& o aiz&
3G =& = & + (X.ij(T — Tref) and T — Gijaij

e Now, Z*(o,,T)= gﬁdi{*=0 implies, and is implied by, the conditions

‘U _ I g AU _ U
do,; 90, 90, JO; do; T  oT oo,
2 2 0€.. 0€,,
o U _ 90U g T _; give — =

90, 90, 90, IO, a0, 90, do;
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PROOF THAT S, =S,,, FORTHERMOELASTIC SOLIDS

. 0U _ B U _ SU _ JU
First, oo, =1t o,(T-T) and —5 = Oy satisfy - 30, 9T — 9T 9o,
identically

g; = S,.0.+0,(T-T,) gives

0E;;

60k| - a()_kII:Sursos + O, (T Tref ] S“rs 60 . S“r36 6 - Sljkl
& = Supqcpq + Q; (T - Tref) giveS
0€ Jd 60
a(jk.l. = aoij [Sklpqopq + a; (T Tref)] - Sklpq 6— = Sk.pqﬁp,ﬁ = Sk,Il

1]

Jdg;  O€ . _
, ale = 60: ylelds Sijkl - Sklij

Thus
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CLAPEYRON’S FORMULA FOR THERMOELASTIC SOLIDS

e Clapeyron’s formula A= 50 €] remains the same because the
strain-energy density is based on stress-induced, mechanical work

e Clapeyron’s formula is expressed in terms of the total strains by using
g, =¢&; —oy(T-T,) to get

U = %oijs — 50 (T -T,.)
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STRAIN-ENERGY DENSITY EXPRESSIONS

By definition, Z = *0 i€; for a homogeneous, anisotropic, linear-
thermoelastic SO|Id

Using &;=S,.0.. gives % - 1SI]I’SO iOrs

e Forisotropic materials, Z=_|(1 +v)o,0, - v(o.)’]

2E

e In expanded form,

2 2 2
% = 21_E[(011) + (022) + (033) ] %(011022 + 0,05 + 011033) wr

1+"v 2

[(00)° + (0x)° + (042)°]
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STRAIN-ENERGY DENSITY EXPRESSIONS
CONCLUDED

o USing o, = Cijkls(l:I gives u = ;Ciiklsi(i’szl
[ Further, using g, =g -a,0,0=T-T, and C,;=Cy gives
2
U= %Cijkl(sijskl - 28,040 + 0;;0, O )

e Forisotropic materials,

__E E v o E 20
%= )t 2 2 ey 9O P o — )@ ©
or
2
%= 2(1 + "vﬂ\il(E1 - 2"v)(811 + e+ Eg)

wr 2(%_'_\,)[(811)2 + (822)2 + (833)2 + 2(812)2 + 2(823)2 + 2(813)2]
30°E
i T (e et el gy
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ABRIDGED NOTATION
AND
ELASTIC CONSTANTS
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ABRIDGED NOTATION FOR CONSTITUTIVE EQUATIONS

e The abridged notation presented subsequently is attributed to
Woldemar Voigt (1850-1919), and was developed for expressing the
constitutive equations in the simpler, more intuitive matrix notation

® The components of the stress, strain, thermal expansion, and thermal
moduli tensors are written as co/lumn vectors

e The order of the elements is obtained from cyclic permutations
of the numbers 1, 2, and 3

o, o, €44 £, ( 611 \ ( ﬁ1 \ Ay a,
O, o, €2 g, ) Ezz \ J gz o, a,
O43 O, €33 €, 33 3 L0 2% o,
— — — —_>

gzs 34 2823 24 B 23 [ \ B 4 ( 2(123 24

5 5
O':: O': 2¢,, £, ﬁ13 Bs 20, a,

2¢,, ﬁ12 ﬁs 20,

® The term "tensor," as it is used today, was introduced by Voigt in 1899
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ABRIDGED NOTATION FOR CONSTITUTIVE EQUATIONS
CONTINUED

® The components of the compliance and stiffness tensors are
expressed as

7 S1111 S1122 S1133 ZS1123 2S1113 2$1112 7
S2211 S2222 82233 282223 282213 282212
83311 83322 83333 283323 283313 ZS3312

2S2311 282322 232333 432323 432313 482312
281311 2S1322 2S1333 4S1323 4S1313 4S1312
| 2S1211 2S1222 2S1233 4S1223 4S1213 4S1212 |

[y
-
=y
=y
ey
=y
-
(<2]
.

B
N
N
N

OOOOn OO

2]

N
N
(=]

E-Y
—
=y
Y
(<]

a
—
(3]
[$)] H
W (%) (&) w (2] w
a
[$)]
[3)]
(=]

OOOON OO
DOOOn OO

[<2]
(=2

Y X XXXy
COONOD®

OOONO®

D

(=]

—
=Y

N N N N N N
S

al a al a a a

(=23
[*2]

C1111 C1122 C1133 C1123 C1113 C1112 C11 C12 C13 C14 C15 C16
C2211 C2222 C2233 C2223 C2213 C2212 C21 C22 C23 C24 C25 C26
C3311 C3322 C3333 C3323 C3313 C3312 % C31 C32 C33 C34 C35 C36
C2311 C2322 C2333 C2323 C2313 C2312 C41 C42 C43 C44 C45 C46
C1311 C1322 C1333 C1323 C1313 C1312 C51 C52 CSS C54 CSS C56
C1211 C1222 C1233 C1223 C1213 C1212 CG1 C62 CGS C64 CGS C66

e Materials that can be characterized by the matrices given above when
they are symmetric are said to possess complete Voigt symmetry
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ABRIDGED NOTATION FOR CONSTITUTIVE EQUATIONS
CONTINUED

® The constitutive equations are often expressed in a nontensorial,
indicial form given by

€ = SijGi + o, (T-T.) O; = Ciiﬁi + Bi (T - T

e Similarly, the constitutive equations are often expressed in matrix form
given by

(e} =[S{o} + {a} (T-T.)

and

{o) =[C]{{e)} - {a} (T-T.)}

or

(o) =[Cl{e) + (B} (T- T
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ABRIDGED NOTATION FOR CONSTITUTIVE EQUATIONS

CONTINUED

- - - - = -

e} =[S|{o} + {a)(T-T.)

(T - Tref)

P
B
Bs
B
Bs
Be

+

- N ® ¢ 1 ©
cocooccucoco

SRR IR INS)

~— ~— ~— ~— = -

[Cl{e} + {B)}(T-T.)

o)
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ABRIDGED NOTATION FOR CONSTITUTIVE EQUATIONS

CONTINUED

- -

I I
©
O = -
S — —
u m o «
» - 4 8 & 7 F - &8 8 & 2 ¢
)
= + *
S
t 333333 "ﬂ%%wm
= 55550885 v wd &l
© _ _
o s oH oE e o= s oH B ow o= o
S Lnnnnon SHNNONINS) S
8§ VOO OOO COOOLOO
(e = &5 S 3 S T 33 3 9 ¢
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ABRIDGED NOTATION FOR CONSTITUTIVE EQUATIONS

CONCLUDED

The thermal moduli are given by

- - - - - -

[5¢]
[+] N

S3TZIEI

OO0 OO

- ~— - ~— = et

111111
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CLAPEYRON’S FORMULA IN ABRIDGED NOTATION

e Clapeyron’s formula for the strain-energy density of a linear-

thermoelastic solid was given previously by A= ;Oijﬁi‘i’ or

% — 0 8 - _0 a (T Tref) Where 8;; =&; — aii(T - Tref)

® A convenient matrix form of Clapeyron’s formula is obtained by
using the following notation

{0} = {011 Ogp 033 053 O3 012} {8 } = { €19 E€gp €35 28y3 285, 2812}

{S}T = { €1y €y E33 28y 28, 2812} {G}T = { Qyy Oy Oy 200y 20, 20‘12}

where the superscript T denotes matrix or vector transposition

e First, by inspection, it follows that {¢"} = {¢} - {¢}©® where
O=T-T

ref
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CLAPEYRON’S FORMULA IN ABRIDGED NOTATION
CONTINUED

Next, noting that o;&;; = 0,,&5, + 0,85, + 04853 + 0285, + 0,285, + 0,267, it

follows that o, = {c)} {£°) = {¢°) (o} in matrix notation

Therefore,Clapeyron’s formula for the strain-energy density of a
linear-thermoelastic solid is given in matrix from by

10T, _ 1 T 1 T
%=10)(s) or %=1{c) (e) - }{o) {0)©
An alternate form of Clapeyron’s formula is obtained as follows
First, define {c°} =[C]{a}® suchthat {o} =[C]{¢’} becomes

{o) =[C|{e} - {c7}
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CLAPEYRON’S FORMULA IN ABRIDGED NOTATION
CONTINUED

Then, {¢°} =[C[{a}® gives {a}®=[C] {c°)
Next, {¢") = (¢} - {a)® becomes (&°)={e}-[C] {o°)

Also, (o) (') = () (&) - (o} [C] {o”)

T

Transposition of (o) = [C]{e) - {c°} gives (o) ={e)[C]-{c°} ,
where symmetry of [C] has been used

Using the last expression with {o} (%) = (o) (&) - {o) [C] {c°) gives
(o) {e°) = {o) L&) - {e) [C][C] {o®) +{c®) [C] {o°) which simplifies

to (o) (") = ({0} - {c°}){e) + {c°} [C] (")
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CLAPEYRON’S FORMULA IN ABRIDGED NOTATION
CONCLUDED

Next, using {c°) =[Cl{a}® gives {c°}[C] {c°} = (a})[Cl{a)€’

Using the last equation with (o} {¢") = ({o} - {c°}){¢} + {c°} [C] {c°)
gives {0} (") = ({0}~ {c”}){e} + {a} [Cl{}©’

Therefore, Clapeyron’s formula % =1{c) (") becomes

%= 3({o}) - {d"}){e) + Ya) [Cl{a}e
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PHYSICAL MEANING OF THE ELASTIC CONSTANTS

QOO0

555555

OOV

555555

< < < < ) ©
- N (3] < < <
333333

OOV OOV
QOO QOO

- -~ - -~ - -~ -~ - -~ - - -

555555

111111
111111

111111
111111

The shaded terms shown below correspond to independent interaction

The shaded terms shown below correspond to independent interaction
between pure shearing stresses and strains

. ,

S

S

S

S

S

between pure extensional stresses and strains
S
S
S
S
S
S
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PHYSICAL MEANING OF THE ELASTIC CONSTANTS

CONTINUED
The shaded terms shown below correspond to coupling of interactions

between pure extensional stresses and strains

QOO0
OO0V
OO0V
QOO

-~ - ~— -~ - -

- - - - - -

QOO0

333333

OO0V
QOO

-~ - -~ - - -
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111111
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The shaded terms shown below correspond to coupling of interactions

between pure shearing stresses and strains
S
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S
S
S
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PHYSICAL MEANING OF THE ELASTIC CONSTANTS

CONCLUDED

QOO0
OO0V
OOV
OOV

~— - -~ - = ~—

- - ~— - - -

The shaded terms shown below correspond to coupling or interactions

between extensional and shearing behavior
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TRANSFORMATION
EQUATIONS
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TRANSFORMATION OF [C] AND [S]

Consider a general orthogonal transformation between the Cartesian
coordinates (X, X,, X,] and (x,, X,, X,) at a fixed point P of a body

The orthonormal bases for the two coordinate systems, for an
arbitrary point P of a body, are indicated on the figure below

Because only a fixed point P Anisotropic
is considered, coordinate body, &
translations are excluded

Although two right-handed
coordinate systems are
shown in the figure, there is
no such restriction on the
following development of the
transformation equations
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TRANSFORMATION OF [C] AND [S] - CONTINUED

The general relationship between the two orthonormal bases is given
by the following matrix representations

v a4y 843
=|ay Ay, Ayy
| a3, A, Aj; l

=) mmE) =)
S
|

<

1 a1l1 a2'1 a3l1
= |, Ay, A5,
| A3 Ay; Ays !

=) =) -
N
|

w0

; or, in abridged form, {?’} = [a]{?}
;} or, in abridged form, {?} = [a]“{i‘,}

3:

=) =) =—)

——E) =) =—)

-1 T

Examining these two matrices indicates that [a] =|a]

e Transformations of this type are known as orthogonal
transformations and preserve the lengths of, and the angles

between, vectors

o a

P'q (?p’ ° ?q) = (/i\q ° /i\p') = aqp' and (ap'q = aqp') # (apq, = aq’p)
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TRANSFORMATION OF [C] AND [S] - CONTINUED

The matrix equation {?'} = [a]{?} is expressed in indicial notation by

Likewise, {?} = [a]_1{f’} is expressed in indicial notation by i,=a,,i,

Important relationships between the direction cosines a,,, are obtained

by enforcing the two orthonormality conditions i, * i, =39, and

im ° in — 6mn
e These conditions yield the relationships
A Ay = 6klo and Qg @qp = 6klo
e Each indicial equation possesses six independent relations
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W DD W NN =

TRANSFORMATION OF [C] AND [S] - CONTINUED

2 + (a1’3)2 -

2
(a11)" + (a4,
a8, + @58, +3,,2,,=0
a3,@;4 + Ay8, + @3,8,, =0

‘4 (a2,3)2 =1

(32'1)2 + (a,,)
a3,8y; + 3,85, + 83,8,, =0

(33'1)2 + (33'2)2 + (33'3)2 =1
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The total of twelve independent relations are given in tabular form
below:

A5 @qp = Oy,

2

(a1'1)2 + (a2’1) + (33'1)2 =1

a,,8,, + Ay,8,, + 83,85, =0

a,58;, + @p58,, + 83,85, =0

2

(a1,2)2 + (a2'2) w (as'z)2 =1

a;38;, + @p38,, + 83,8,, =0

2

(815)° + (2y5)° + (B45)° = 1



TRANSFORMATION OF [C] AND [S] - CONTINUED

® By using the abridged notation, matrix forms of the stress and strain
transformation equations can be obtained that are given by

{0'} =[T,[{o} ana (&} =[T.[{¢}

where
Oy44 (O ] €11 g,
O2 O, €22 g,
{0-} - ) 033 \ o/ O3 {8} — €33 | um / &3
O O, 2¢,, €,
O3 Os 2¢., €5
Oi2 Os 2812 €6
Oy O, €14 g,
O O, €22 €,
N — / Oz - | O3 €34 £,
{0 } - TRl {8'} = # d=( ™} and
02r3r 04' 282'3 84'
Oy Os 2¢,, €5
(O PPY Os 2¢c., €6

114



TRANSFORMATION OF [C] AND [S] - CONTINUED

(an)” (aw)” (aw)” 238, 2a,@,;; 2a,,@,,
(ax)” (8z0)" (82)" 288, 28,8, 2a,8;,
_|(an)" (as)” (as)” 2358, 2858y, 285,85,

[To] = | | |
Q1854 A2,83, A3A3; (az'zas's + az’sas'z) (az'1a3'3 + az'3a3'1)§(az'1a3'2 + az’2a3'1)

a1'1as'1%a1'zas'2§a1'3as'3§(a1'zaa'3 + a1'3as'2)§(a1'1as'3 + a1'3as'1)§(a1'1as'z + a1'2a3'1)

a1'1a2'1 %a1'2a2’2%a1'3a2'3% (a1'2a2'3 + a1'3a2'2) (a1'1a2'3 + a1'3a2’1 ) (a1'1a2’2 + a1'2a2’1)

(a)" (Br)" ()’ sy a8, a,a,,
,,,,,,,,,,,,,,,, R0 T T T T e TN O T
(3z21)" (A) (An)” @l i@y A8y

(as1)" (852)° (A3s)° @g8y a.8; 8@y

T ] T 1 O P T T Y
[ € 2a2’1a3’1 §2a2’2a3’2§2a2’3a3’3§ (a2’2a3’3 + a2’3a3’2) (a2’1a3’3 + a2’3a3’1 ) (a2’1a3’2 + a2’2a3’1 )

231,133,1%231,233,2%231,333,3%(31,233,3 + a1'3a3'2)§(a1'1a3'3 + a1'3as'1)%(a1'1as'2 + a1'2as'1)

2a1’1a2’1 %2a1'2a2’2%2a1'3a2’3% (a1’2a2’3 + a1'3a2’2) (a1'1a2’3 + a1’3a2’1 ) (a1’1a2’2 + a1’2a2’1)

a, = ('i' ° 'p)

® Inspection of the matrices shown above indicates that when the off-
diagonal terms vanish, which happens for certain transformations,

the two matrices are identical
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TRANSFORMATION OF [C] AND [S] - CONTINUED

Initial coordinate frame Initial and new
coordinate frame

116



TRANSFORMATION OF [C] AND [S] - CONTINUED

Recall that the thermoelastic constitutive equations are
expressed in symbolic form by

(e} =|S|{0} +{@}® and {0} =|C[{e} +{)©

Where @ =T- Tref

In the {x,, x,, x5} coordinate frame the thermoelastic constitutive
equations are expressed in symbolic form by

(&) =[S'[{0’) + {@'}® and {0} =|C'[{e') + (§'}©

By using the matrix form of the stress and strain transformation
equations,

{0} =[C]{e} + {B}© becomes [T | {0’} =[C][T.] (&'} + {B}©
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TRANSFORMATION OF [C] AND [S] - CONTINUED
Premultiplying by |T,| gives

(0') = [T[C][T.] (&'} + [T, ]{B}©

Comparing this equation with {0’} = [C’]{s’} + {B’}@ it follows
that

[C']=[TI[CI[T.]  aa (B} =[T.I{B)
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TRANSFORMATION OF [C] AND [S] - CONTINUED

Next, by using the matrix form of the stress and strain transformation

equations, {€} = [S]{o} + {a}© becomes
[T.] (&'} = [S][T,] {0} + {a}©

Premultiplying by [T.] gives

(e'} = [T,][S][T,] {0} + [T.{a}©

Comparing this equation with {8’} = [S’ {0’} + {a’}@ it follows
that

[S']=[T.][S][T.]  ana {&)}=[T.{a)
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Thus, [S’]



TRANSFORMATION OF [C] AND [S]
CONCLUDED

® In summary:



TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x,; AXIS

AXs, X5

® The term "dextral” refers to a right-handed rotation
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

The matrix form of the stress-tensor transformation law is given by

cos’0, sing, 0 0 0  2sin0,cos6,
Oy sin’0, cos’®, 0 0 0 - 2sinf,coso,
O,
o | _ 0 0 1 0 0 0
Ozy 0 0 0 cos0, - sing, 0
O,q ;
o,, 0 0 0 sind, coso, 0

. - . 2

- sinf,cos0, sinf,cosf, 0 0 0 cos’0,-sin0,

and is expressed symbolically by

{0} =[T,(6,)]{0)
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x,; AXIS - CONTINUED

e Similarly, the matrix form of the inverse transformation law is given by

cos’0, sin’0, 0 0 0 - 2sinf,coso,
Oy sin’0, cos’0, 0 0 0 2sin@,cosH, || O
oz 0 0 1 0 0 0 e
033 — 03:3:
O 0 0 0 cos0, sin0, 0 Ozy
013 - 01'3'
o, 0 0 0 -sin0O,cos0, 0 G,

. - . 2
sinf,cos0, - sin0,cosO, 0 0 0 cos’6,-sino0,

and is expressed symbolically by

(o) =[T,0.] {0

1

where [To(es)] = [To(‘ 63)]
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x,; AXIS - CONTINUED

By using the second-order, symmetric tensor transformation equations,
the transformation law for the vector of engineering strains is given by

cos’0, sin’0, 0 0 0 sin0,coso,
81'1' . 2 2 - 811
sin'0, cos 0, 0 o0 0 - sinf,coso,

L POY €2
Err | _ 0 0 1 0 0 0 £,
2¢,., 0 0 0 coso, - sino, 0 2¢,,
2¢,; 0 0 0 sind, cose, 0 2813

2¢,., : : : €
Gre - 2sin0,cos0, 2sin0,cosO, 0 0 0 cos’0,-sin’0, 2

which is expressed symbolically by
{e') = [T.0.)]{e}
Note that [Ts(es)] = [Tc,(@s)] —_ [To(‘ 63)]
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

Similarly, the matrix form of the inverse transformation law is given by

cos’0, sin’0, 0 0 0 - sinf,coso,
€ : . €
i sin’0, cos’0, 0 0 0  sin0,coso, 81 1
€, 22
e | _ 0 0 1 0 0 0 -
2¢,, 0 0 0 cosH, sino, 0 2¢,,
2213 0 0 0 - sin@, coso, 0 281'3
£,
- 2sin0,cos0, — 2sinf,cosO, 0 0 0 cos’, -sin’0, "2

and is expressed symbolically by

(e) = [T0J] (&)
where [T8(93)] — [Tg(‘ 63)] - [T(,(es)]
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

The general expression for the transformation of the stiffness
coefficients and thermal moduli are

[C']=[TJ[CI[T.] and (B} =[T,){B)

-1 T

Noting that [T.| =|T,| fora dextral rotation about the x, axis gives

[C'] = [T,][C][T,]

Similarly, the general expression for the inverse transformation of the

stiffness coefficientsis [C] = [TG]_1[C'][T£]

T

-1 T

Noting that [T,| =|T.| for a dextral rotation about the x, axis gives
[C]=I[TIC]T,]
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

The general expression for the transformation of the compliance
coefficients and thermal expansion coefficients are

[S']=[TI[S][T,] and {a'}=[T [{a]

-1

-1 T

Noting that [T,| =|T.| fora dextral rotation about the x, axis gives

T

[S']=[T.I[S][T]

Similarly, the general expression for the inverse transformation of the

-1

compliance coefficientsis [S]=[T.] [S'][T,]

-1 T

Noting that [T.| =|T,| for adextral rotation about the x, axis gives
[S]=[T,] [S']I T,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS ABOUT

[S°]

THE x, AXIS - SUMMARY

128

[TISI[T.] [S]=[T,] [S'][To.
[T][CI[T.] [C] = [T.][C[T..
cos’0, sing, 0 0 0  2sinB,cos0, |
sin 0, cos’®, 0 0 0  -2sin0,coso,
_ 0 0 1 0 0 0
- 0 0 0 cosO, - sino, 0
0 0 0 :sinB, coso, 0
- sin0,cos0, sin6,cosf, 0 0O 0 cos’0, - sin 0,
cos’o, sing, 0 o 0 sin0,cosd, |
sin’0, cos’0, 0o o 0  -sin6,coso,
0 0 1.0 0 0
0 0 0 cosO, -sino, 0
0 0 0 sinB, coso, 0
- 2sinB,cos0, 2sinf.cosd, 0 @ 0 0 cos’®,-sin0,




TRANSFORMATIONS FOR DEXTRAL ROTATIONS ABOUT
THE x; AXIS - SUMMARY

{a'} = [TJ{a) {a) = [T,] {')
(B} =[T.] (B

(B} =T [{B)

2sin0,cos0,

cos’0, sin®, 0 0 0
sin’0, cos®, 0 0 0 -2sin0,cos0,
T _ 0 0 1 0 0 0
[ 0] . 0 0 0 cos0, -sin0, 0
0 0 0 :sinB, coso, 0
- sin0,cos0, sinf,cosf, 0 0 0 cos’®,-sin0,
cos’0, sin’'0, 0o o 0 sin6,cos0, |
sin’0, cos’0, 0o o 0  -sin6,cos0,
T 0 0 1 0 0 0
[ s] - 0 0 0 coso, - sino, 0
0 0 0 sin0, coso, 0
_ 2sinB,cos0, 2sin0.cosf, 0 0 0 cos’0, - sin 0,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

@ Let m=cosO, and n=sinb, for convenience

e Performing the calculations given by [C’] = [TG][C][TO]T yields
C,,=m’C, +2m°n’(C,, + 2C,,) + 4mn(m°C, + n°C,,) + n"C,,
C,,=m'n°(C,, + C, - 4C,) - 2mn(m°- n°)(C,; - C,) + (m" + n’)C,,
C,, =m°C,, + n°C, + 2mnC,,

C,,=m’C,+m"n(2C, - C,;) - mn°(2C,, - C,,) - n°C,,
C,s=m’C,,+m'n(2C,, +C,)+ mn°(2C, + C,;) + n°C,,

C,. =m’(m°- 3n*)C,, - m’n(C,, - C,, - 2C,,)
+mn’(C,, - C,, - 2C,) - n*(n*- 3m’|C,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

C.. =m’C,, + 2m°n’(C,, + 2C,,) - 4mn(m°C, + n°C,;) + n’C,,
C,,=m°C,,+ n"C,, - 2mnC,,

C,,=m’C,,—m'n(2C, + C,;) + mn°(2C,,+ C,,) - n°C,,
C,,=m’C, - m°n(2C, - C,,) - mn*(2C,, - C,;) + n°C,,

C,. =m’(m°-3n°)C,,+ m°n(C,, - C,, - 2C,,)
-mn’(C,, - C,, - 2C,) - n’(n*- 3m’|C,,

C3'3' = Css
C,,=mC; - nC,

C,s =mC,; + nC,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

C.,. = (m*- n*)C,, + mn(C, - C,,)

C,.=m’C,, + n°C.. - 2mnC,,

C,s = (m°-n’)C,+ mn(C,, - C,,)

C,,=mC, -mn(C,+C,-C,)-mn’(C,-C,,+C,)+n’C,
C..=m’C, +n°C,, + 2mnC,,

Cic =m’C,,+ m°n(C,,+C, - C,)-mn’(C,+C,, -C,)-n’C,

2

C.x = m'n*(C,, +C,, - 2C,,) - 2mn(m’°- n®)(C,, - C) + (m" - n*) C,

132



TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

Again, let m=cost; and n=sinf,

Performing the calculations given by [C] = [TS]T[C’][TE] yields
C,,=m‘C,, + 2m°n*(C,, + 2C,,) - 4mn(m°C,, + n°C,,) + n'C,,
C,.,=m"n*(C,, + C,, - 4C,,) + 2mn(m°- n®)(C,, - C,,) + (m* + n*)C,.,
C,.=m°C,, +n°C,, - 2mnC,,
c,.=m’C,, - m°n(2C,, - C,,;) - mn’(2C,, - C,,) + n°C,,

C,=mC,, - m’n(2C,, + C,,) + mn°(2C,, + C,,) - n°C,,

C,.=m’(m’-3n°)C,, + m’n(C,, - C,, - 2C,,)
-mn’(C,, - C,, - 2C,,) - n’(n°- 3m°)C,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

4 2 2 2 2 4
C,.,=mC,,+2mn (C,, +2C,,) + 4mn(m C,.+n C1,6.) +ncC,.,
2 2
C.,=mC,,+nC,, +2mnC,,

3 2 2 3
C.,=mC,,+mn(2C,,+C,;) + mn(2C,,+C,,) +nC,,

&
|

m°C,. + m*n(2C,, - C,,) - mn*(2C,, - C,,) - n°C,,

L
]

m*(m*- 3n°)C,, - m’n(C,, - C,, - 2C,,)
+mn’(C,, - C,, - 2C,,) - n’(n*- 3m°|C,,,

Ciu=Cys C,,=mC,, + nC,, Cis=mC;, - nC,,
2 2
C36 = (m —-n )Cs's' - mn(cz's' - C1'3')

2 2
C.,=mC,,+nC,, +2mnC,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

2 2
Ci= (m —-n )C4'5' - mn(C4,4, - C5'5')
- 3 2 2 3
C46 — m C4'6’ + m n(cslsr + C1r4l - C2r4r) - mn (C4'6' - C1r5: + CZ'S') - n Cslel
- 3 2 2 3
C56 — m C5'6' - m n(C4161 + C2'5' - C1151) - mn (C5'6' + C1r4l - C214r) + n C4'6'

Cs =m'n’(C,, + C,, — 2C,,) + 2mn(m*- n*)(C,, - C,) + (M* - nZ)ZCG,G,

Note that |C'| and [C| can be expressed as

[C'] = [T(6)][CI[T(-6.)] and [C]=[T,(-6.)][C'][T.(6.)]

e Thus, one set of transformed stiffness expressions can be

obtained from the other by simply interchanging the primed and
unprimed indices and replacing n with -n
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

@ Let m=cosH, and n=sino,

T

e Performing the calculations given by [S']| = [T.|[S]|T.| vyields

S, =m'S,, + m’n*(2S,, + S,;) + 2mn(m’S,, + n°S,) + n’S,,
S,»=m’n’(S,; +S,, - Sg) - Mn(mM*- n°)(S,, - S,) + (m" + n’)S,,
S,, =m’S,+n°S,, + mnS,,

S,.,=m’S, + m’n(S,, - S,;) -mn*(S,, - S,,) - n°S,,

S,, =m’S,,+m’°n(S,,+S,,) + mn’(S,,+S,,) +n’S,,

S, =m’‘(m°-3n°)S,, - m’n(2S,, - 2S,, - S,,)
+mn’(2S,, - 2S,, - S,,) - n°(n*- 3m°*)S,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

S,,=m’'S,, + m’n*(2S,, + S,;) - 2mn(m’°S,, + n°S ;) + n’S,,
S,.,=m’S,, + n°S,, - mnS,,

S,,=m’S,, —-m°n(S,, +S,;) + mn’(S,,+S,,) - n’S,,
S,,=m’S,, - m°n(S,, - S,,) - mn*(S,, - S,;) +n’S,,

S,, =m’(m"-3n°)S,, + m°n(2S,, - 2S,, - S,)
-mn’(2S,, - 2S,,-S,) - n°(n°- 3m°)S,,

Ss’s' = Sss
S;» =mMS,;, - NS,

S;5 =MS,; + NS,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

S, = (m°- n*)S,, + 2mn(S, - S,,)

S,,=m°S,, + n°S_, - 2mnS,,

S,s = (m*-n°)S,,+ mn(S,, - S,,)

S, =m’S,, - m°n(S, +2S,, - 2S,,) - mn*(S,, - 2S,, + 2S,.) + n’S,,
S..=m’S, +n°S,, + 2mnS,,

S.. =m’S,, + m’n(S,, + 2S,, - 2S,,) - mn*(S,, +2S,, - 2S,,) - n’S,,

S¢e =4m'n’(S, +S,, - 2S,,) - 4mn(m*- n’)(S,, - S,,) + (m* - n*)’S,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

Let m=cosO, and nh=sino,

Performing the calculations given by [S]=[T,][S'][T,] yields
S,,=m’S,, + m°n°(2S,, + S;,) - 2mn(M’S,, + n°S,,) + n’S,,
S,.,=m'n’(S,, +S,, - Sge) + MN(M°- n°)(S,s - S,s) + (M* + n’)S,,
S,=m’S,, +n’S,, - mnS,,,

S,=m’S,, —m°n(S,, - S,s) - Mn’(S,, - S,,) +Nn’S,,
S,=m’S,, -m°n(S,, +S,,) + mn*(S,, +S,,) - n’S,,

S,,=m’(m°-3n°)S,, + m°n(2S,, - 2S,, - S,
-mn’(2S,, - 2S,, - S;;) -n’(n°- 3M°)S,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

S,,=m’S,, + m’'n’(2S,, + S;) + 2mMn(M’S,, + n°S,.) + n’S,,
S,,=m’S,, +n°S,, + mnS,,
3 2 2 3
S,=mS,,+mn(S,;+S,;) +mn (S, +S,,)+ NS,
- 3 2 2 3
st — m SZ'S' + m n(Ssler - Szr41) - mn (S4'6' - S1'5') - n S1:4r

S,,=m’(m*>-3n°)S,, - m’n(2S,, - 2S,, - S,,)
+mn®(2S,, - 2S,, - S;;) - n°(n°- 3m°)S,

Si=Sss S.,, =mS,, + nS,; S;; = mS;, - nS,,
2 2
836 — (m - n )S3rer - 2mn(82:3: - S-'lsr)

2 2
S,.=mS,,+n’S,, +2mnS,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

S = (m2_ r‘2)84'5' - mn(s4'4' - 85'5')
S, =m’S,, + m°n(S,, +2S,, - 2S,,) - mn’(S,, - 2S,, + 2S,,) - N’S,,
S.,.=m°S,. +n’S,, - 2mnS,..

S,,=m’S,, - m*n(S,, + 2S,, - 2S,,) - mn°(S,, + 2S,, - 2S,,) + n’S,,

2

Se = 4m'n’(S,, + S,, - 2S,,) + 4mn(m*- n’)(S,, - S,¢) + (M* - n’)’ S,

Note that |[S’| and |S| can be expressed as

[S']=[T6.)][S][To(-6.)] and [S]=[T.(-6.)][S']| Ts(6.)]

e Thus, one set of transformed compliance expressions can be
obtained from the other by simply interchanging the primed and
unprimed indices and replacing n with -n
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

@ Let m=cosH, and n=sino,

e Performing the calculations givenby {a'} =T |[{a} vyields

2 2
o, =Ma, +2mna,, + N a,,
_ 2 2 2

Olgg = Olgg
Ayy = MOy; — NOA,
Ay = MOy + N0,

a,, = (m*- n®)a, + mn(a,, - a,)
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x,; AXIS - CONTINUED

@ Let m=cosH, and n=sino,

e Performing the calculations given by {a} = [TG]T{a’} yields

a;; = m2a1,1, — 2mna1.2, =+ n2a2,2, NOte that
Oy = M Ay + 2MNA,, + Ny, [T0(63)] = [Ts(_ 63)]
and hence
Q33 = Agy | - PN
{a} =[T,(-0,){a’}
Qyy = MOy + N5 So, the expressions given here
for @; can be obtained from the
Q= Mo, — NCL,, those previously given for i

by switching the primed and
- unprimed indices and replacing
A, = (m —-n )(1.1,2, - mn(az'z' - a1'1') n with -n
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x; AXIS - CONTINUED

@ Let m=cosH, and n=sino,

e Performing the calculations given by {p’} = [T, |{B} yields

2 2

B,w.=m§p, + 2mnB12 +Nn P,
2 2

B, =m§p,, - 2mn[312 +np,,

Bss =PBas

By =mPB,; — NP,

Biz=mpB,;+ NP,

2

B, = (m - nz)ﬁm + mn(ﬁzz - B11)
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONCLUDED

@ Let m=cosH, and n=sino,

e Performing the calculations given by {f} = [Ta]T{B’, yields

2 2

Bn.=mp,.—2mnp., +nP,,
2 2

B.=mPB,,+2mnP,,. +n P,

B =Pss

Bs=mpB,, + NP,

Bis=mp,; — NP,

ﬁ12 — (m2_ n2)61'2' - mn(ﬁz'z' - 61'1')
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Note that
[T.(00)] = [Tol-0,)]

and hence

(B} =[To(-0) [{B")

So, the expressions given here
for p; can be obtained from the
those previously given for Bi;
by switching the primed and
unprimed indices and replacing
n with -n



TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS

T Planex, =0

The term "dextral” refers to a right-handed rotation
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

The matrix form of the stress-tensor transformation law is given by

1 0 0 0 0 0
Oy 0 cos’0, sin'®,  2sin0,cosd, 0 0
g:: | o sin’0, cos’d, -2sinf,cosd, O 0
Ox [ | 0 -sing,cos0, sind,cose, cos’d, —sin’d, 0 0
o 0 0 0 0 coso, - sind,

0 0 0 0 sinB, coso,

and is expressed symbolically by

{0’} =[T00 {0}
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

e Similarly, the matrix form of the inverse transformation law is given by

1 0 0 0 0 0
O 0 cos’0, sin291 - 2sinf,cos6, 0 0 Oy
0-22 . 2 2 . O'2'2'
o, \ 0 sin 0, cos 0, 2sin0,cos0, 0 0 o,
= . . .2
O 0 sin0,cos0, - sinf,cosh, cos’H, - sin'B, 0 0 O3
O3 . Oy
o, 0 0 0 0 cosO, sino, || 5
0 0 0 0 — sin0, coso,

and is expressed symbolically by

(o) = [T, 0] {0")
where [T0(91)] = [To(‘ 61)]
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

By using the second-order, symmetric tensor transformation equations,
the transformation law for the vector of engineering strains is given by

1 0 0 0 0 0
L 2 . 2 . €41
. 0 cos’0, sin 0, sind,cosf, 0 0 .

22 Ty 5 - 22

€ | _| O sin 0, cos’0, - smﬂpos(—:1 0 0 £,
2¢,, 0 - 2sind,cos0, 2sind,cosO, cos’0, —sin'0, 0 0 2¢,,
28 5 0 0 0 0 cos0, _ sino, | | 2%
281,2, 2812

0 0 0 0 sin0, coso,

which is expressed symbolically by

("} = [T.00 &)

T -

Note that [T8(91)] = [T0(91)] = [To(_ 61)]
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

e Similarly, the matrix form of the inverse transformation law is given by

1 0 0 0 0 0
€4 2 . 2 . €14
e 0 cos 0, sin 0, - sin0,cos0, 0 0 e
22 T 5 - 22
€1 _ 0 sin 0, cos 0, sinf,cos0, 0 0 €1
= - . . 2
2¢,, 0 2sin@,cosH, - 2sind,cosh, cos’d, - sin'B, 0 0 2¢,.,
. 0 0 0 0 cos0, sing, | | 28w
2¢,, ; 2¢,,
0 0 0 0 - sing, cos0,

and is expressed symbolically by

(e} = [T.0.] {&')

where [T8(91)] = [Tg(_ 91)] = [To(61)]
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

The general expression for the transformation of the stiffness
coefficients and thermal moduli are

[C']=[TJ[CI[T.] and {B'}=[T,l{B)

-1 T

Noting that [T.| =|T,| fora dextral rotation about the x, axis gives

[C'] =[T,][C][T,]
Similarly, the general expression for the inverse transformation of the

[T,] [C'][T.]

T

stiffness coefficientsis |[C]

-1 T

Noting that [T,| =|T.| for a dextral rotation about the x, axis gives

[C]=[T.]'[C'][T.]
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

The general expression for the transformation of the compliance
coefficients and thermal expansion coefficients are

[S']=[TISI[T,]  and (o} =[T.a}

-1

-1 T

Noting that [T,| =|T.| fora dextral rotation about the x, axis gives

[S']=[T.I[S][T]

Similarly, the general expression for the inverse transformation of the

T

compliance coefficientsis [S]=[T.] [S'][T,]

-1 T

Noting that [T.| =|T,| for a dextral rotation about the x, axis gives
[S]=[T,] [S'][T,)
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS ABOUT
THE x, AXIS - SUMMARY

[8'] = [T.IISI[T.] [S]=[T] [S'][T.]
[C'] = [TLI[CI[T.] [C] =[T.]J[C][T.]
[ 0 0 0 0 0o
0 cos’0, sin'®,  2sind,cosd, 0 0
[T ] | o sin’o, cos’0, -2sin6.cosO, 0 0
ol = 0 - sind,cos0, sin0,cos0, cos’O, — sinze1 0 0
0 0 0 0 cos0, - sino,
0 0 0 0 sing,  coso,
1 0 0 0 0 0
0 cos’0, sin 0, sin®,coso, 0 0
[T ] | o sin 0, cos’®,  -sinG,cosd, o 0
el ™ | o —2sine,coso, 2sin0,cosh, cos’d, — sin'd, o 0
0 0 0 0 co0s0, - sino,
0 0 0 0 sinod,  coso,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS ABOUT
THE x, AXIS - SUMMARY

{a'} = [TJ{a) {a) = [T,] {')
(B} = [T,l{B) (B} =[T.] (B

1 0 0 0 0 0
0 cos’0, sin‘d,  2sind,cosd, 0 0
T _| o sin’0, cos’0, -2sin0,cosf, 0 0
[ 0] | o - sinB,cos0, sinB,cos0, cos’0, — sinzﬂ1 (] 0
0 0 0 0 cos0, - sino,
0 0 0 0 sin@, coso,
1 0 0 0 0 0
0 cos’0, sin’0, sinO,coso, 0 0
T | o sin’0, cos’®, -sin6,cosf, o 0
[ 8] ~ | o - 2sind,cose, 2sind,cos0, cos’d, — sin'D, 0 0
0 0 0 0 cos0, - sino,
0 0 0 0 sino,  coso,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

® Let m=cosO, and n=sing,

e Performing the calculations given by |C'| = |T,|[C||T,| yields

C,,=C,

C,,=m’C,,+ n°C, + 2mnC,,
C,,=m°C,+n°C,,- 2mnC,,
C,,=(m*-n*)C,,+ mn(C,, - C,,)
C,.=mC,,—- nC,

C.e=mC,+nC,

155



TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

C.. =m’C,, + 2m°n’(C,, + 2C,,) + 4mn(m°C,, + n°C,,) + n"C,,
C,,=m'n°(C,+C, -4C,) - 2mn(m°- n®)(C,, - C,) + (m" + n’)C,,

C,,=m’(m’- 3n%C,, - m’n(C,,- C,, - 2C,,)
+mn’(C,, - C,, - 2C,,) - n’(n*- 3m’)C,,

C,, =m’C, +m°n(2C,, - C,;) - mn*(2C,, - C,;) - n°C,,
C,, =m’C,,+ m'n(2C,, + C,) + mn°(2C,, + C,,) + n°C,,
C,» =m‘C, +2m°n’(C,, + 2C,,) - 4mn(m°C,, + n°C,,) + n"C,,

C,, = m’(m*- 3n°)C,, + m°n(C,, - C,, - 2C,,)
-mn’(C,, - C,, - 2C,,) - n’(n°- 3m°)C,,

156



TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

C,-=m°C, - m°n(2C, + C,,) + mn’(2C,, + C,;) - n°C,,

C,c =m’C,,—m'n(2C, - C,;) - mn°(2C,, - C,;) + n°C,,
C..=m'n’(C,+C,, - 2C,) - 2mn(m°- n®)(C, - C,,) + (m" - n2)2C44
C,s=mC, -mn(C,+C, -C,)-mn°(C,-C,+C,)+n’C,

C4'6’ = m3C46 + m2rl(C45 + Css - Cze) - mnz(c46 + Czs - Css) - I’I3C45

2 2
mC,+nC,-2mnC,,

0O
I

C.. = (m*- n®*)C,, + mn(C,, - C,,)

2 2
Cee =mC,+nC,+2mnC,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

® Let m=cosO, and n=sing,

e Performing the calculations given by [C] = [Ts]T[C’][TE] yields
C, =C,,
C,,=m°C,, +n°C,, - 2mnC,,
C,.,=m’°C,, +n°C,, + 2mnC,,
C,.=(m*-n®C,, -mn(C,, - C,,)
C.,=mC,. +nC,,
C.,=mC,, - nC,,

4 2 2 2 2 4
C..=m‘C,, + 2m°n*(C,, + 2C,,) - 4mn(m°C,, + n°C,,) + n'C,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

C,, = m°n*(C,, + C,, - 4C,,) + 2mn(m*- n®)(C,, - C,,) + (m" + n*)C,,

&
Il

m*(m*- 3n°)C,, + m*n(C,, - C,, - 2C,,)
- mn’(C,, - C,, - 2C,,) - n°(n°- 3m°)C,,

2
|

=m’°C,, - m°n(2C,, - C,,) - mn®(2C,, — C,,) + n°C,,

C,,=m’C,, + 2m°n*(C,, + 2C,,) + 4mn(m°C,, + n°C,,) + n°C,,

C,.=m’(m*-3n’)C,, - m’n(C,, - C,, - 2C,,)
+mn’(C,, - C,, - 2C,,) - n’(n*- 3m°|C,,

3 2 2 3
Cs=mC,,+mn(2C,; +C,,) + mn(2C,, +C,;) + n C,,

C, =m’C,, + m°n(2C,, - C,,) - mn’(2C,, - C,,) - n’C,,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

2

C,,=m’n’(C,, + C,, - 2C,,) + 2mn(m*- n*)(C,, - C,,) + (m* - n’) C,,
C,,=m’C,, +m°n(C,, + C,, - C,,) - mn’(C,,, —- C,o + C,.) - n°C,,
C,=m¢C,,-m”n(C, +C,,-C,,) -mn°(C,e +C,, - C,) + n°C,,,
C..=m°C,, + n°C,, + 2mnC,, C, =(m’-n®)C,, - mn(C,, - C,.)

2 2
CGG — m CG'G' + n C5'51 - 2mn05:6:

Note that |[C’| and |C| can be expressed as
[C'] =[Ts(0)][C][T.(-06,)] and [C]=][T,(-6,)][C"][T.(6,)]
e Thus, one set of transformed stiffness expressions can be

obtained from the other by simply interchanging the primed and
unprimed indices and replacing n with -n
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

® Let m=cosO, and n=sino,

e Performing the calculations given by [S'] = [TJ[S][TE]T yields
S.=8S.
S,,=m’S,,+n°S,, + mnS,,
S,.,=m’S,,+n’S,,- mnS,,
S,,=(m*-n°)S,, +2mn(S,, - S,,)
S, =mS,,—- nS,,
S.e =MS,;+ NS,

S,,=m’'S,, + m’n*(2S,, + S,,) + 2mn(m’S,, + n°S,,) + n’S,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

S, =m'n*(S,, +S,, - S,,) - mn(m*°- n®)(S,, - S,,) + (m" + n’)S,,

S,,=m’(m>-3n°)S,, - m’n(2S,, - 2S,, - S,,)
+ mn3(2833 - 2323 — S44) - n2(n2_ 3m2)834

S2'5' = m3szs + rrlzn(S45 - Sze) - mn2(s46 - Sss) - nssae
S, =m’S,,+ m'n(S,, +S,;) + mn*(S,, +S,;) + n’S,,
S, =m'S,, + m’n*(2S,, + S,,) - 2mn(m’S,, + n°S,,) + n’S,,

S.,,=m’(m°-3n°)S,, + m°n(2S,, - 2S,, - S,,)
-mn’(2S,, - 2S,, - S,,) - n’(n°- 3m’)S,,

S.; =m’S,,—m°n(S,; + S;;) + mMn°(S, + S,,) - n’S,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

S,, =m’S,, - m°n(S,, - S,;) - mn°(S,, - S,;,) +n’S,;

S,,=4m'n’(S,, + S, - 2S,,) - 4mn(m*- n’)(S,, - S,,) + (m* - nz)ZS44
S, =m’S,,—m°n(S, + 2S,, - 2S,,) - mn’(S,, - 2S,, + 2S,,) + n’S,,
S, =m’S, + m°n(S,, + 2S, - 2S,,) - mn*(S,, +2S,, - 2S,,) - n’S,,
S..=m’S. +n’S, - 2mnS.,

S.s = (m*- n®)S,, + mn(S,, - S,,)

2 2
See =M S, + NS, + 2mMnS,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

@ Let m=cosO, and n =sing,
e Performing the calculations given by [S] = [TO]T[S’][TO] yields
S, =S,
S,=m’S,, +n°S,, - mnS,,
S,=m’S,, +n°S,, + mnS,,
S,,=(m*-n®)S,, -2mn(S,, - S,,)
S:;=mS,; +nS,,
Se.=mS,, - nS,.

4 2 2 2 2 4
S,,=m’S,, + m°'n°(2S,, +S,,) - 2mn(m’S,, + n°S,,) + n'S,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

S,, =m’n’(S,, + S., - S,,) + mn(m*- n®)(S,, - S,,) + (m*+n’)S,,

S,,=m’(m°-3n°)S,, + m°n(2S,, - 2S,, - S,,)
- mn’(2S,, - 2S,, - S,,) - n’(n°- 3m°)S,,

3 2 2 3
325 — m Szrsr - m n(S4I5: - SZ'G') - mn (S4'6' - 83'5') + n SerI
- 3 2 2 3
st — m Szrer - m n(S4161 + Szrsr) + mn (S4151 + S3'6') - n S315:
S, =m’S,, + m'n’(2S,, + S,,) + 2mn(m’S,, + n°S,,) + n’S,,

S, =m’(m*>-3n°)S,, - m*n(2S,, - 2S,, - S,,)
+mn’(2S,, - 2S,, - S,,) - n°(n°- 3m°)S,,

3 2 2 3
Si;=mS,,+mn(S,; +S,;;) +mMn (S, +S,;) + NS,

S,,=m’S,, + m'n(S,, — S,;) - Mn*(S,, - S,,) - NS,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

2

S,, = 4m'n’(S,, + S, - 2S,,) + 4mn(m’- n®)(S,, - S,,) + (m* - n®)’s,,
S,=m’S,, + m°n(S,, + 2S,, - 2S,,) - mn’(S,, - 2S,, +2S,,) - NS,
S,,=m’S,, - m°n(S,, + 2S,, - 2S,,) - mn°(S,, + 2S,, - 2S,,) +Nn’S,,
S.=m’S,. + n’S,, + 2mnS,,, S, = (m°- n*)S,, - mn(S,, - S.)

2 2
SGG — m SG'G' + n 35'51 - 2mn35:6:

Note that |S’| and |S| can be expressed as
[S']=[T.(0.)][S][T,(-0,)] and [S]=][T./-6,)][[S][Ts6,)]

e Thus, one set of transformed compliance expressions can be
obtained from the other by simply interchanging the primed and
unprimed indices and replacing n with -n
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

® Let m=cosO, and n=sing,

e Performing the calculations given by {(x.’} = [Te]{a} yields

Qg = Oyy
2 2
Oy = M Ay, + 2MNa,; + N0,
2 2
— 2 2
Ay = May; — NAy,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

® Let m=cosO, and n=sing,

® Performing the calculations given by {Ot} - [TG]T{G'} yields

Oy = Oyy

Note that
” T
Ay = M Ay, — 2MNA, ;5 + nzas's' [T0(61)] = [TS(_ 61)]
, , and hence
Ay = M A,y + 2MNA,, + N A, [ — [ oun
{a} =T/(-6,)]{a'}
@, = (M’ n)o,, - mMn(a,y - @,,)  So, the expressions given here
for @; can be obtained from the
o, = Mo, + N, those previously given for iy

by switching the primed and
unprimed indices and replacing

Oz = MAyy = Ny n with -n
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

® Let m=cosO, and n=sing,
. . - ’ .
® Performing the calculations given by {ﬁ } - [TG]{[S} yields

Biv=PB1

B., = m2622 + 2mn@,, + nzﬁss

Bss = mzﬁss - 2mng,; + n2‘522

Bz's' = (m2_ nz)st + mn(Bss - 522)
Bis=mp,; — NP,

Bi>=mp,+nNnP,,
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

® Let m=cosO, and n=sing,

e Performing the calculations givenby {B} =[T.| {B’'} vyields

Bii=Bi

B, =MP,y — 2MNPB,s + N By

B =MByy + 2MNPB . + NP,

B = (M= n°)Boy - MN(Byo — B2)
Bi:=mMPB ., + NP,

Bi.=mp,, —np,,

170

Note that

[Te0)] =[To(-0,)]
and hence

(B} =[To(-0)[{B")

So, the expressions given here
for B; can be obtained from the
those previously given for Bi;
by switching the primed and
unprimed indices and replacing
n with -n



TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

® The algebra involved in computing
[C'=[T[C]IT|" [S']=[T]IS|[T] {o'}=]T[{c)
[Cl=[T[IC|[T| [S]=[T.[S|[Ts] {a)}=[T|{a’)
{8} =T.|{B} {(B) =[T.]'(B")

is definitely tedious when done by hand

® When the expressions for these matrix operations are known for either
dextral rotations about the x, axis or about the x, axis, a simpler and
much less tedious method for obtaining the transformed stiffnesses,
compliances, thermal moduli, and thermal-expansion coefficients for
dextral rotations about the x, axis is available
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

Consider the case in which the transformation expressions are known
for dextral rotations about the x, axis and one wishes to find similar

expressions for dextral rotations about the x, axis

The desired tranformation equations are found by simply determining
the renumbering of the indices that brings the following figure shown
for dextral rotations about the x, axis into congruence with the following

figure shown for dextral rotations about the x, axis
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

A Plane x, =0
X3, Xy

Plane x, =0

173



TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

Inspection of the figures indicates the following transformation of the
indices: 1 —2,2—-3,and 3 — 1

Next, it must be realized that the exchanging of indices must be used
with the indices of tensors to determine the indices used with the
abridged notation (matrix)

e The following index pairs relate the tensor indices to the matrix

indices
tensor notation 11 22 33 23,32 31,13 12, 21
matrix notation 1 2 3 4 5 6

Using this information along with 1 — 2,2 — 3,and 3 — 1 gives the
relations: 4 —5,5—6,and 6 — 4
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUT THE x, AXIS - CONTINUED

® Likewise, the transformation of index pairs that appear in the abridged
notation are given by

11 — 22

12 — 23 22 — 33

13 - 12 23 — 13 33 — 11

14 — 25 24 — 35 34 — 15 44 — 55

15 — 26 25 — 36 35 — 16 45 — 56 55 — 66

16 — 24 26 — 34 36 — 14 46 — 45 56 — 46 66 — 44
e Consider C,, =m’C, +2m™n?(C,, + 2C,) + 4mn(m*C,, + n’C,;) + n‘C,, ,

where m = cos, and n = sinf,

The transformation of indices gives m =cos0,, n =sin6, , and

C,, =m'C,, + 2m*n?(C,, + 2C,,) + 4mn(m*C,, + n*C,,) + n’Cy
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TRANSFORMATIONS FOR DEXTRAL ROTATIONS
ABOUTTHE x, AXIS - CONCLUDED

Applying the index transformation to the transformed stiffnesses,
compliances, thermal moduli, and thermal-expansion coefficients for
dextral rotations about the x, axis yields exactly the same expressions

given herein previously for dextral rotations about the x, axis
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MATERIAL SYMMETRIES
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MATERIAL SYMMETRIES

The next logical step in the development of linear thermoelastic
constitutive equations is the search for analytical conditions for which
dilatation and distortion uncouple

e For example, experience with common metals indicates that there
are classes of materials for which dilatation and distortion
uncouple

Also, from a practical viewpoint, there is a need to find ways to
minimize the number of laboratory experiments needed to fully
characterize a given material

Together, these considerations suggest a need for a systematic way to
reduce the number of independent elastic constants and the number of
independent thermal-expansion coefficients

Previously, it was shown herein that there exists 21 independent elastic
constants for an elastic anisotropic material - a finding that is
substantiated by experimental evidence
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MATERIAL SYMMETRIES - CONCLUDED

However, the number of independent constants needed to fully
characterize an anisotropic material was the subject of a lengthy
controversy

e In the early to mid 19th century, A. L. Cauchy (1789-1857) and
S. D. Poisson (1781-1840) formulated specialized mathematical
models of the molecular interaction in solids, and argued that the
number of independent constants could not exceed 15

Investigations have indicated that when a solid exhibits a geometry
symmetry, the elastic properties are identical in certain directions

However, experience has shown that geometric symmetry is not
equivalent to elastic symmetry; that is, it is possible to have elastic
symmetry in directions that do not exhibit geometric symmetry

Just as concepts of symmetry are used to reduce complexity of

geometric objects, they are also used to reduce the complexity of
material properties
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MATHEMATICAL CHARACTERIZATION OF SYMMETRY

The commonplace notion of symmetry is usually concerned with
geometric objects

For example, a two-dimensional geometric object may possess a shape
that can be rotated about a central point by a finite angle with no
appearent change in shape

;og

72 deg. 144 deg. 216 deg. 288 deg. 360 deg.

Five-fold
symmetry

Original
position
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MATHEMATICAL CHARACTERIZATION OF SYMMETRY
CONTINUED

For the object shown in the previous figure, it can be rotated
incrementally by 72 degrees into the identical shape

° w = 9 and the shape is said to possess five-fold symmetry
A situation of particular interest herein

is the case when a geometric object A
possesses only two-fold symmetry '

For this object, the line B-B is described
as a line of reflective symmetry
(or mirror symmetry)

For each of the geometric objects, A 1/
undergoing the given rotations, a

transformation occurs in which the objects appears unchanged; it is
said to remain invariant under the transformation
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MATHEMATICAL CHARACTERIZATION OF SYMMETRY

CONTINUED

For any geometric object in three-dimensional Euclidean space, the
object can be represented by a set of points, whose position in space
can be determined by a coordinate frame and a coordinate domain

Ly-axis

for the set of points

For the figure, a generic point P of the
region 2 has the coordinates (x,y), with
respect to the coordinate frame shown

The coordinate domain is given by

1 1 1 1
— oW =X=5W and —Ehsysih,
where w and h are the width and height

of the rectangle, respectively

For other geometries, curvilinear
coordinates may be more suitable
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Coordinates

P (x,y) of point P

—B----124----B— x-axis

A

“——Region 2



MATHEMATICAL CHARACTERIZATION OF SYMMETRY
CONTINUED

For the purpose of investigating symmetry, it is convenient to place the
origin at the central point of the rectangle

Now consider a second set of

: . .e. Yy-axis
coordinates (¢,¢), for which ,0"‘\6 Y Coor dinates
—;Wszs-lw and —;hs¢s;h Y P (x,g)ofpoth
\\\‘\\ 0*‘\6

e This domain also describes the A W

same rectangle with respect to 6 \4)

a rotated coordinate frame, as ~ X-axis

shown in the figure

g © % | —Region 2

For values of the angle ¢ equal to
180 and 360 deg, the rectangle is S
brought into coincidence with the

initial configuration
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MATHEMATICAL CHARACTERIZATION OF SYMMETRY
CONTINUED

For ¢ = 180 deg and ¢ = 360 deg, the geometric shape is invariant, and

the transformation of coordinates given symbolically by = = z(x,y) and

¢ = ¢(x;¥) is called a symmetry transformation for the rectangle

Obviously, this process of characterizing symmetry is easily extended
to three dimensions

Moreover, the functional characterization of symmetry in geometric
shapes can be extended intuitively to symmetry in functions

e A transformation of coordinates that leaves the structural form of
the rule that defines a given function unchanged (invariant) is
defined as a symmetry transformation for that function

The use of algebraic structure and sets of transformations for
quantifying symmetry in (real and abstract) objects is part of a branch
of mathematics known as group theory
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MATHEMATICAL CHARACTERIZATION OF SYMMETRY
CONCLUDED

Consider the function F(x,y) =x"+y" and the transformation of

coordinates givenby Xx=-z and y=-¢

Applying the transformation of coordinates gives

2

F(x,y) = (-2) +(-¢) =2"+4 =Pz, 9) =F(-x, - y)

2

e The structural rules given by F(X,¥y)=x"+y" and Z(z.¢)=2"+¢

are identical; thus, x=-2 and Yy =-¢ define a symmetry
transformation for the function

e The more common, and more succinct, way of describing the
symmetry is given by writing F(x,y) =F(-x, - y)
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SOME TYPES OF SYMMETRY IN TWO DIMENSIONS
GRAPHS OF FUNCTIONS

1 f(x) 1 f(x) f(X) = ax®
f(x)=ax*+b

/N
/ \

Line of reflective symmetry Line of reflective antisymmetry
f(-x) = f(x) f(-x) = -f(x)
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SOME TYPES OF SYMMETRY IN THREE DIMENSIONS
PLANE OF REFLECTIVE SYMMETRY

Tapered beam \

Symmetry plane
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SOME TYPES OF SYMMETRY IN THREE DIMENSIONS
PLANE OF REFLECTIVE SYMMETRY

F(-x,y)=F(x,y)

Contour plot of F(x, y) y-axis

F(x,y)=y cos(%)sin(%) —1=x=1 O=<y=2
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SOME TYPES OF SYMMETRY IN THREE DIMENSIONS
PLANE OF REFLECTIVE ANTISYMMETRY

F(-%,y)=-F(x,y)

Contour plot of F(x, y) ) y-axis

F(-x,y)

F(x,y)=y sin(:n:x)sin(
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SOME TYPES OF SYMMETRY IN THREE DIMENSIONS
CENTRAL POINT OF INVERSION SYMMETRY (POLAR SYMMETRY)

F(-x, -y)=F(x,y)

y-axis

Contour plot of F(x, y)
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SOME TYPES OF SYMMETRY IN THREE DIMENSIONS
CENTRAL POINT OF INVERSION ANTISYMMETRY

F(-x,-y)=-F(x,y)

Contour plot of F(x, y)
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CRITERIA FOR MATERIAL SYMMETRY

To define the conditions on the stiffness or compliance coefficients for
a given type of symmetry to exist, one must first realize that the
stresses, strains, and stiffness or compliance coefficients are functions
of position within a given material body

e Let the coordinates (x., x.; x,) and the corresponding coordinate
frame be a coordinate system for a material body and its properties

e The point P of the material body
shown in the figure has

coordinates (x,, X., X,)

e The stresses, strains, stiffness
and compliance matrices, thermal
moduli, and thermal-expansion
coefficients for this coordinate
system are o, g;, [C], [S], B, and
oy, respectively

192



CRITERIA FOR MATERIAL SYMMETRY - CONTINUED

Recall that the abridged forms of the thermoelastic constitutive
equations for the material in the (x., x., x.) coordinates are given by

{o) =[C{g} + {B} (T-T) or {g} =[S[{o} + {a} (T-T.)

Now, consider a general orthogonal transformation between the

rectangular Cartesian coordinates (X X, x.) and (x., X., X;) , that
define a generic point P of the material body

e There is no need to place the restriction that (x., x., x.) be the
coordinates of a right-handed (dextral) coordinate system

e The siresses, strains, stiffness and compliance matrices, thermal
moduli, and thermal-expansion coefficients for this coordinate

system are o,;, &, [C'], [S'], B,;» and o, , respectively

193



CRITERIA FOR MATERIAL SYMMETRY - CONTINUED

® The abridged forms of the thermoelastic constitutive equations for the
material in the (x., x., X,) coordinate system are given by

0} =[C' e} +{B'}(T-Te) or (&} =[S'[{0") + {a'}(T-T.)

® Moreover, it was shown previously that, for the given arbitrary
transformation (rotation) of coordinates,

[C'] = [T,][C][T.]” (B} =[T,){B)

[S'] = [T.][S][T,] (o'} = [T.{a)

® When the mathematical description of the material properties are
identical for two different coordinate systems (reference frames), a
certain type of symmetry exists, whose character depends on the type
of transformation between the two coordinates systems
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CRITERIA FOR MATERIAL SYMMETRY - CONCLUDED

Now, for X, = X,(X,, X,, X,) to define a symmetry transformation, such
that a predetermined state of symmetry exist at a point P of the body,

the structural form (rule) of the constitutive equations must remain
invariant; specifically:
e The matrix [C’'] must be invariant under the transformation given

by [C']=[T,][CI[T.] " ;thatis, [C]=[T,][CI[T.]” must hold

e Similarly, [S]=[T.J[SI[T,] ', ()} =[T.J{«} ,and (B} =[T.]{B) must
hold

Collectively, these invariance conditions are the criteria for a state of
material symmetry to exist, and are sufficient conditions because

X, = xk(x1,, X,, x3,) is presumed to be a symmetry transformation
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CLASSES OF MATERIAL SYMMETRY

Presently, there exists eight distinct classes of elastic-material
symmetry

e Many of these classes were discovered while studying the
composition of various crystals

e The classes are distinguished by the number of, and orientation of,
planes of elastic symmetry

A plane of elastic symmetry, at a point of an elastic material body, is
defined as a plane for which the material exhibits reflective symmetry

A plane of isotropy, at a point of an elastic material body, is defined
as a plane for which there exists an infinite number of perpendicular
planes of elastic symmetry (also called axisymmetry)
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CLASSES OF MATERIAL SYMMETRY
CONTINUED

The eight distinct classes of elastic-material symmetry are given by:
e Triclinic materials - no inherent symmetry (fully anisotropic)

e Monoclinic materials - one plane of symmetry

o Orthotropic materials - three perpendicular planes of symmetry

e Trigonal materials - three aligned planes of symmetry that are
spaced 60 degrees apart

e Tetragonal materials - four aligned planes of symmetry that are
spaced 45 degrees apart and that are all perpendicular to one
additional symmetry plane

e Transversely isotropic materials - one plane of isotropy that is
perpendicular to two other mutually perpendicular symmetry
planes
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CLASSES OF MATERIAL SYMMETRY
CONTINUED

e Cubic materials - three mutually perpendicular planes of symmetry
and six additional symmetry planes, in which two of the six are
aligned with one of the perpendicular planes and intersect it at 45
degrees

e Completely isotropic materials - an infinite number of planes of

isotropy exist

® There are four classes of elastic materials that are of great practical
importance in engineering

e These classes of materials are monoclinic, orthotropic,
transversely isotropic, and isotropic materials

198



CLASSES OF MATERIAL SYMMETRY
PICTORIAL REPRESENTATIONS

[ g

Orthotropic

Triclinic Monoclinic Trigonal
A . 45 deg
d
45 deg
Tetragonal Transversely Cubic Isotropic
isotropic

The blue lines represent the edge of a symmetry plane
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MATERIALS
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, =0

First, consider the case in which the material exhibits elastic symmetry
about the plane x, =0

a; = (?- ° ?1)

The coordinate transformation for
this symmetry is shown in the A X3, X3

figure and is given by x,=-Xx,, Plane x, =0

Xy =X, , and X; =X, /

The corresponding matrix of 5,1y A i, /
direction cosines is given by

a;;a;,a, -10 0
a,, a,, a,, 0O 1 0
] a,;, a;, A,, ) 0O 0 1

Plane x; =0

201



MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

For this special case, the general transformation matrix

2 2 2

(a1’1) (a1’2) (a1’3) 2a1’2a1’3 2a1’1a1’3 2a1’1a1’2
2 2 2
(a2’1 ) (a2’2) (a2’3) 2a2’2a2’3 2a2’1a2’3 2a2’1a2’2
2 2 2
[ T ] — (a3’1 ) (a3’2) (a3'3) 2a3’2a3’3 2a3’1a3’3 2a3’1a3’2
o —

2232

33 (az'zaa's + az’sas'z)

(a2'1as'3 + a,,a;, )

(az'1as'2 + a,.a;, )

(a1'2a3'3 + a1'3as'2)

(a1'1a3'3 + a1'3a3'1)

(a1'1as'2 + a1'2a3'1)

a,,a,,id,,d;, d,a
a,,8;,a,,8;, A583;
a,.a,,id;,d,,a,;;a

12%%22

2'3 (a1’2a2'3 + a1’3a2’2)

(a1'1a2'3 + a,,a,, )

(a1'1a2'2 + a,.a,, )

the diagonal matrix [To] =

(1 0 0 0 0 O
010000
001 00 O
000 100
0 00 0-10
0 00 0 O -1
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

Moreover, because [TG] is a diagonal matrix, it follows that \TJ — \TJ

It is worthwhile to mention that [To] can be deduced directly, and

quickly, by a direction comparison of the positive-valued stresses that
act on a differential volume element

First, sketch the positive-valued stresses that act on a differential
volume element when described by the (x:; x., X,) coordinates

0 x

oo, . 4.,}

012

011

Normal stresses Shearing stresses
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

® Then, sketch the positive-valued stresses that act on a differential
volume element when described by the (x., x., Xx.) coordinates

xs' Oy O,
X1l #
X, O,
Normal stresses Shearing stresses

® Direct comparison of the stresses yields the relationships

01'1’=011 0"=0

02'3' = 023 O3 -0 O,, -0,
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

® Expressing the relationships in matrix form gives
|

1

0

0

0

0

-
-

Y
N

)
5]

0
0
0

-t
o

ceoggea

-1

.0 O O

2
N

0O 0O O O O

0O O O O =

0O O O = O

O O = O O

e Thus, {0') =[T,]{o) gives [To]=
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N
w
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N

O O O O

0O O O O O

O O O O O =

0O 0O O O = O

0O 0O O = O O

OO0 = O O O
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

Now, for a state of reflective symmetry about the plane x, =0 to exist at
a point P of the body, it was shown herein that the matrix |C’'| must be

-1

invariant under the transformation given by [C'] = [T,][C][T.]

-1

e Thatis, [C']=[T,[[C][T.] mustbecome [C]

I TICIT]

A more convenient form of this invariance condition is obtained for this
particular transformation as follows

First, postmultiplying the last expression by |T,| gives |C||T | = |T,|[C]
as the (sufficient) condition for symmetry

Next, noting that |T,| = |T,| for this particular symmetry transformation,

it follows that |C||T.|=|T,|[C| becomes |C|T,|=|T,|/C]
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

Also, because [TG] = [TG]T for this particular symmetry transformation

and [C|=|C|’, it follows that ([C][To])T =|T,|'[c]| = |T,|C]

Thus, the sufficient condition for symmetry, |C||T,| = |T,||C|, becomes

|CHTJ = (lCHTGUT ; that is, C|| T,| must be a symmetric matrix

Computing [C||T,| gives

C.,C.C,C,C, C16- 100 0 00 C. C. C13 C. - C15 - C16
C.C.,C,C,C,C,|0 1 00 0 0 C. C, C, C, -C,-C,

[C][T ] - C.C,C,C,C,;C, 00100 0 - C, C; C; C, -C,-C,
° c.c.,C,C,C,C,f0 00100 ¢c. C, C, C, -C,-C,
C;C;C;C:sCysCys| 0 0% 9-101 1 ¢, €, C, C, -C,-C,

CisC2 Css Cis Css Css- S Cs C: Cis C, -C,-C,
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

Enforcing |C||T,| ([C][TG])T yields the following requirements on the

stiffnesses in order to exhibit a state of elastic reflective symmetry
about the plane x, =0:

¢.,=0,C,=0,C,=0,C,=0,C,.=0,C,.,=0,C,.=0,and C,=0

Thus, the stiffness matrix for a monoclinic material, which exhibits
elastic reflective symmetry about the plane x, =0, has the form

_AO |
[

N

O
O

N

O
o

W

O
O

Y

o O

o O

O
O

B

O
o

B

0

(2]

O

B

o O

O

B

oogo
oI @)

o O O O

[(3)]
(3]

0 0

o O O O

o

»

which has 13 independent stiffnesses
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

Similarly, for a state of el/astic reflective symmetry about the plane x, =0
to exist at a point P of the body, the matrix |S’| must be invariant

-1

under the transformation given by [S’] = [T.][S][T,]

e Thatis, [S|=[T.I[SIT,] mustbecome [S]=][T.|[SI][T,]

Postmultiplying the last expressing by [TG] gives [S][To] = [TE][S] as the
(sufficient) condition for symmetry

Next, noting that |T,| = |T,| for this particular transformation, it follows

that [S||T,|=|T.||S| becomes [S||T,|=|T,|S|
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

e Like before, because |T,| = [TG]T for this particular transformation and

S| =[S, it follows that ([S||T,|)" = |T,|'|S|" = |T,][S]

e Thus, the sufficient condition for symmetry, |S||T | =|T,||S|, becomes

[SHTJ = ([SHTOUT ; that is, | S|| T,| must be a symmetric matrix

e Like for the stiffness matrix, computing [S][TG] and enforcing

[S]|T,| = ([SHTG])T yields the following requirements on the

compliances in order to exhibit a state of e/astic reflective symmetry
about the plane x, =0:

$.=0,S$,=0,5,=0,S5,,=0,S5,,=0,S,,=0,S,,=0,and S,,=0
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

® Thus, the compliance matrix for a monoclinic material that a state of
elastic reflective symmetry about the plane x, =0 has the form

which has 13 independent compliances

g
©CoO0Oo0Oo
o oO0OoOOo

e Comparison of the compliance and stiffness matrices for this case
indicates that they have the same form
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

The requirements on the coefficients of thermal expansion and the
thermal moduli for a state of reflective symmetry about the plane x, =0

to exist are simpler than those for the stiffnesses and compliances

The requirements on the coefficients of thermal expansion are given by
the requirement that the vector {a’} must be invariant under the

transformation given by |T ]

e Thatis, {o') =|T,|{a} mustbecome {a}=|T |{a)

Similarly, {B’} must be invariant under the transformation given by
=|T,|{B} ; thatis, {p'} = |T,|(B} must become (B} =|T,|{B)
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

e Computing {a} =|T,[{a} gives

i ] )
Ay, DR (0 P o
01 0 0 0. 0 aqy 11
A a,, o o
Qyz — 0O 01 0 0 O sy . azz .
2a,, [~ |0 0 0 1 0 0 || 2a, [ Whichreduces to o2 )= 2;3
23
2a13 0 0 0. O -10 2(113 2a13 ) 2;3
13
2(112 - 0 00001 2a12 20, - 20«12

® Thus, enforcing {a} =|T,|{a} requires a,, = a,, =0 in order for a state
of reflective symmetry about the plane x, =0 to exist

e Similarly, enforcing {B} = [TG]{[S} requires B,,=PB,, =0 in order for a
state of reflective symmetry about the plane x, =0 to exist
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MONOCLINIC MATERIALS

REFLECTIVE SYMMETRY ABOUT THE PLANE x, =0 (CONTINUED)

® Applying all the simplifications, the linear thermoelastic
constitutive equations become

214

611
622
633
623

(T-T.)

(T - T.)



MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONCLUDED)

Finally, the nonzero thermal moduli are given in terms of the
coefficients of thermal expansion by

[311 - C11 C12 c13 C14 (0P
B | _ _ C.C, Czs C.. Ao
B s Cc,C,C.,.C, Qg
Bas c.C,C,C, | 2025

The constitutive equations show that the normal stresses, or a
temperature change, produce shearing deformations only in the plane
x,=0

e Extension and shearing are totally uncoupled in the planes x, =0
and x;=0
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, =0

Next, consider the case in which the material exhibits elastic symmetry
about the plane x,=0

The coordinate transformation for A X3, Xq
this symmetry is shown in the a. = (f_ . f_)
= (i, I,

figure and is given by x. =X, ,

X, =—-X,,and X; = X; -
i3, 15
The corresponding matrix of " i { X
direction cosines is given by 2 il 2
-a1’1 a1'2 a1’3- 1 0 0
Ay Ayp Ay [ = 0 -10
Az, A3, A3, O 0 1 Plane X, = 0
' - ' / X, X,
Plane x, =0
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

For this special case, the general transformation matrix

[T, =

the diagonal matrix [To] =

2

(@;.)

2a1'2a1'3

2a1'1a1'3

2a1'1a1'2

2

(az,)

2a2’2a 23

2a2'1a2'3

2a2'1a2'2

2

(as,)

2a 328373

2a3'1as'3

2a,.a,,

1 a 2’2a 32

(az'zas's + az'sas'z)

(az'1a3'3 + a,,a;, )

(a2'1a3'z + az’2a3'1)

1 a 1 ’2a 32

(arzaa'a + a1'3a3'2)

(a1'1as'3 + a,.a;, )

(a1'1a3'2 + a1'2as'1)

a1'1a2'1

a 1 ’2a 22

(a1'2a2'3 + a1'3a2'2)

(a1'1a2'3 + a1'3a2'1)

(a1'1a2'2 + a1'2az'1)

O O O O O

O O O O O =

O O O O = O
O O O = O O
O = 0O O O O

217

reduces to



MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

e Also, because [T(,] is a diagonal matrix, it follows that \TJ

Like before, the sufficient conditions for a state of e/astic reflective

symmetry about the plane x, =0 to exist are found from

e Computing [C||T,| gives

666666
111111

555555
555555

444444
444444

333333
333333

222222
222222

111111
111111

1
666666
111111

555555
555555

444444
444444

333333
333333

222222
222222

111111
111111
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

Enforcing |C||T,| = ([C][TO])T yields the following requirements on the
stiffnesses:
¢c,=0,C.,=0,C,=0,C,=0,C,=0,C,,=0,C,,=0,and C =0

Thus, the stiffness matrix for a monoclinic material that a state of
elastic reflective symmetry about the plane x, =0 has the form

which also has 13 independent stiffnesses

©c0 o000
©cP o0 OO
wQ
o O oo o
O o O
ohoooo
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

® Likewise, the compliance matrix for a monoclinic material that a state of
elastic reflective symmetry about the plane x, =0 has the form

which also has 13 independent compliances
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

e Next, computing {a} =|T |{a} gives

20,,,
20,
20,

e Thus, enforcing {a}

(1. 00 0 0 0|
(1'11
01000 0|,
00100 0| q
0 00-10 0|20,
0 0 0 0 1 0|20,
0 000 0-1|\2a,

Ay, Rl
[0 P9 Qs
i Qs Qs
which reduces to =
200,, — 2(1,23
20, 20,
20, 20,

=|T,|{a} requires a,, = a,, =0 in order for a state

of elastic reflective symmetry about the plane x, =0 to exist

e Similarly, enforcing {B} = [TO]{[S} requires B,,=B,, =0
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MONOCLINIC MATERIALS

REFLECTIVE SYMMETRY ABOUT THE PLANE x, =0 (CONTINUED)

® Applying all the simplifications, the linear thermoelastic
constitutive equations become

22 S23 0 825
23 S33 0 S35
S

12

» o

(D(D

5

4 6

o oo

0 0
5 S35 SSS

5

000

—y
W N

oY o
o,S”c

0
0S,0

r

C.,
c.
C.,

-
-
-
-
W

(3]

000
cpooc

N

000

4

w
w
ocfDooco

0
C55
s 0

o0 o
[3)]
o0 o
(3,
o0 o
a
(@]
Y

222

-S11 529, 0 S5 0 -

6_

o

B11
622
633

613

(T - Tref)

(T - Tref)



MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONCLUDED)

The nonzero thermal moduli are given in terms of the coefficients of
thermal expansion by

611 C11 C12 C13 C15- aqy
B2 - _ C.C,C,C, A,
B C.,C,C,C. Qs
Bs Ci:sCxC;Cy, | 2013

The constitutive equations show that the normal stresses, or a
temperature change, produce shearing deformations only in the plane
X, =0

e Extension and shearing are totally uncoupled in the planes x, =0
and x;=0
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, =0

Now, consider the case in which the
material exhibits symmetry about the Plane x. =0 A%s
NS

plane x;=0 A a
\ ai'iE(ii" ii)

The coordinate transformation for this
symmetry is shown in the figure and is

given by X, =X, X, =X,,and X, = - X, Al

The corresponding matrix of
direction cosines is given by

a;;a;, gy 100 ~Plane X; = 0
Ay, Ay, Ay | = 0 1 0
_ ;4 A3, A3, ) 0O 0 -1 X, : X, X,
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

For this special case, the general transformation matrix

 (a,,)

2

(@)

2a1'za1'3

2a1'1a1'3

2a1'1a1'z

(a1)

2

(@y0)°

2a 22853

2a2’1az'3

2az'1az'2

(8s4)

2

(ag,)’

2a 328373

2a3'1as'3

2a3'1as'2

[To] -

2'1%° 3

-

a 2’2a 32

" (a2'2a3'3 + a2’3a3'2)

(a2'1aa'3 + a,;a;, )

(az'1aa'z + a,.a;, )

(2]
-

a1’2a3'2

' (arzas's + a1'3aa'2)

(a1'1as'3 + a1'3as'1)

(a1'1aa'2 + a1'2as'1)

a,a
a,a,
|a,.a

11%%2"

the diagonal matrix [To] =

-

a1’2a2'2

" (a1’2a2'3 + a1’3a2’2)

(a1'1az'3 + a1'3a2'1)

(a1'1a2'2 + a1'2a2'1) ]

1 00 0 0 O]
010000
00100 0
0 00-100
0 00 0-10
0 00 0 0 1
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

e Also, because [TG] is a diagonal matrix, it follows that \TJ = \TJ

Like before, the sufficient conditions for a state of e/astic reflective

symmetry about the plane x, =0 to exist are found from

(IC]|Ts])" IS][T|

[C| T,

Computing [C||T,| gives

666666
111111

555555
555555

444444
444444

333333
333333

222222
222222

111111
111111

1
666666
111111

555555
555555

444444
444444

333333
333333

222222
222222

111111
111111
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

Enforcing |C||T,| = ([C][TO])T yields the following requirements on the

stiffnesses:

¢c,=0,C,=0,C,=0,C,.=0,C,=0,C,,=0,C,=0,and C =0

25 =

Thus, the stiffness matrix for a monoclinic material that a state of
elastic reflective symmetry about the plane x, =0 has the form

O
O

C12
Css

Co
C36

22 23

0
330
C

O
O

23

O o o

B

4

Cs
0

5

0
0

© o
© o
0O

0
0
C

55

0O
)
o

36

—

6 26

7C11 C12 C13 0 0 C167

C66

which also has 13 independent stiffnesses

227



MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

® Likewise, the compliance matrix for a monoclinic material that a state of
elastic reflective symmetry about the plane x, =0 has the form

'S,S,S5, 0 08,

which also has 13 independent compliances
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

e Next, computing {a} =|T |{a} gives

20,,,
20,
20,

(1.0 0 0 0 0|
0100 0 0
001000
0 00-100
0 00 0-10
0 00 0 0 1

20,
20,
20,

which reduces to

Ay

Qs

Ay
200,,
20,
20,

- 20,
- 20,

20,

® Thus, enforcing {a} =|T,|{a} requires a,, = a,, =0 in order for a state

of elastic reflective symmetry about the plane x, =0 to exist

e Similarly, enforcing {8} =|T,|{B} requires §,,=p,,=0
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONTINUED)

® Applying all the simplifications, the linear thermoelastic
constitutive equations become
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MONOCLINIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANE x, = 0 (CONCLUDED)

The nonzero thermal moduli are given in terms of the coefficients of
thermal expansion by

611 C11 C12 C13 C16- aqy
B2 - _ C.C,C,C, A,
B C.,C,.,C,C, Qs
B C.sCux Cy Cge | 20,

The constitutive equations show that the normal stresses, or a
temperature change, produce shearing deformations only in the plane
X, =0

e Extension and shearing are totally uncoupled in the planes x, =0
and x,=0
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MATERIALS
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ORTHOTROPIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0 AND x,=0

Now, consider the case in which a monoclinic material, which exhibits
symmetry about the plane x, =0, also exhibits symmetry about the
plane X, =0, which is perpendicular to the plane x,=0

For this monoclinic material, it was shown previously that the material
properties are given by

o, | C11 C12 C13 C14 0 0 - €4 '311
O,, c.C,C,;C, 0 0 €, B
O \ _ C,C,;C;C, 0 O €33 B T-T
o3[ |C,,CuC,C, 0 O 2¢ * B2 ( g
s 0 00 0C,C,| |2 0
O12 2¢,, 0

000 0C.C,

and
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ORTHOTROPIC MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0 AND x,=0

811 S11 S12 S13 S14 0 0 o a11
€, S12 Szz Sz3 Sz4 00 0';; a,,
€33 - S13 st Sss S34 00 O3 Qg3
2en [ =[5.5.5.8. 0 0|0l 20, (T~ T«
2e, 0 00 0S,S,]||% 0
28, 0 00 0S,S,| ' *“ 0

To determine the effects of the second symmetry plane, x, = 0, the

coordinate transformation given by x,. =X,, X, =- X, ,and X, =X, is
applied to the material properties of the monoclinic material

e This process is the same as applying the transformation for
symmetry about the plane x, =0 in succession to applying the
transformation for symmetry about the plane x, =0 to the initial
anisotropic-material properties
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ORTHOTROPIC MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0 AND x,=0

The effect of the second transformation, for symmetry about the plane
X, = 0, is obtained directly from the results given previously for a

monoclinic material that exhibits symmetry about the plane x,=0

e Thatis, the second coordinate (i -1) X5, Xy
transformation was given by A = ® ’

Xy =X, X2S5¥a, and X, =X, Plane x, = 0

e And, the corresponding matrix \ ~ =
of direction cosines were ~ Plane x; =0, "35 Iy
shown to be given by

x2, <

A,y a4, Q43 100
Ay Ay Ay 0 -10
! Az Ay Ay, | O 0 1
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ORTHOTROPIC MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0 AND x,=0

1 0 0 0 0 O
0O 1.0 0 0O
O 01 0 O0 O
e For this case, [Ts] = [To] = 0 0 0-10 0
O 00 0 1 O
O 0 0 0 O0-1

e It was also shown that, for symmetry about the plane x, =0,
¢c,=0,C,=0,C,=0,C,=0,C,=0,C,.=0,C,,=0,C,.=0,
$,=0,$,=0,S5,,=0,S,=0,S,,=0,S,,=0,S5,=0,S,,=0,
a,=0,0,=0,p,,=0,and B, =0
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ORTHOTROPIC MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0 AND x,=0

The net effects of applying the two symmetry transformations
successively is obtained by applying the conditions given on the
previous page to the constitutive equations for the monoclinic material
that exhibits symmetry about the plane x, =0

This process yields

o, - C11 C12 C13 0 0O - € ﬁﬂ
O3 C12 sz C23 0 00 €2 B2,
Oy | _[C13CsCsq 0 0 0 €33 Bas _
o[ | 0O 0 O C.0 0 2¢,, + 0 (T Tref) and
O1 0O 00 0C,;0 2¢ 0
Oy, 2¢ 0
0 0 0 0 0C,| |20
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ORTHOTROPIC MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0 AND x,=0

€, - S11 S12 S13 0O 0O - o, o,
822 S12 822 SZS 0 0 0 0’22 (],22
€33 - S13 Sza Ssa 0 0O O3, (o I
2%, (|0 0 0S,0 0| \on[T) O (T-Ta)
2¢,, 0 00 0S,0]|% 0
2¢ O, 0
2/ |0 0 0 0 0S,

It is worth pointing out at this
point in the development, that the
single coordinate transformation

givenby x,=-Xx,, X, =-X,,and

X, =X, does not produce the

same result as the two successive
symmetry transformations
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ORTHOTROPIC MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0 AND x,=0

@ In particular, the corresponding matrix of direction cosines is given

by
Ay 84,843 -10 0
@y, @,,8,,(=| 0 -1 0
| @54 @5 @53 O 0 1

® The corresponding stress and strain transformation matrices are

0 00 0 O]

[Te]=1T.]l=

O O O 0O O —
O O O O =
O O O = O
I
-t
-0 0 00
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ORTHOTROPIC MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0 AND x,=0

Next, the condition [C] =[T,][C][T.]”" for a state of symmetry to exist at
a point P of the body is applied

e Using that |T,|=|T,| for this particular transformation, it was

shown that the condition [C] = [T,J[C][T.] " simplifies to the
condition that |C||T,| must be a symmetric matrix

Computing |C||T,| gives

C11 C12 C13 c14 C15 c16 1 0 0 0 0O C" C12 C13 B C”_ C15 C16

C12 sz C23 C24 C25 C26 0 VVVVVVV 1000 7777777 0 C12 CZZ C23 _C24_C25 CZG

[C|[T.] = C,C;C;C,CyCyl001000|_|Cy C C; -C,-C; C,
¢ C14 C24 C34 C44 C45 C4s 0 ,,,,,,, 0 0_1 ,,,,,, 0 ,,,,,,, 0 C14 C24 Cs4 _C44_C45 C46
C:;C;C;C,C,C.| 2 00°9-19" ¢, ¢, C, -C,-C, C,
CsCssCsChCyCp|l® 00 0 01 c. C, C, -C.-C, C.
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ORTHOTROPIC MATERIALS - CONCLUDED
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0 AND x,=0

Enforcing |C||T,| = ([C][TG])T yields the following requirements on the
stiffnesses:
C14=0,C15=0, Cz4=05 025=0,Cs4=0,c35=0, C46=Osand C56=0

Inspection of the conditions and comparison with the previous result
for the two successive transformations shows that the results are

different
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ORTHOTROPIC MATERIALS
REFLECTIVE SYMMETRY ABOUT THE PLANES x, =0, x,=0, AND x,=0

® The next step in the analysis of an orthotropic material is to consider
the effects of yet a third, successive transformation

e That is, a transformation for which the material exhibits symmetry
about the perpendicular plane x, =0, in addition to symmetry

about the perpendicular planes x, =0 and x,=0

® The effect of this third symmetry transformation is obtained directly by
applying the conditions obtained for a monoclinic that exhibits
symmetry about the plane x, =0 to the constitutive equations that were

obtained previously for the two successive symmetry transformations

e The conditions for symmetry about the plane x,=0are C,,=0,
C15=0!Cz4=0! C25=0! C34=0’ C35=O!C46=0, CSG=0! S14=07
S15=0!SZ4=05 325=05834=05335=Oss46=05856=05a13=0a
‘123=0,ﬁ13=0,and 623=0
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ORTHOTROPIC MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT THE PLANES x,=0,x,=0, AND x,=0

Examination of these conditions indicates that the third successive
transformation yields no new conditions on the constitutive equations
that are not obtained from the first two successive transformations

e Therefore, two perpendiular planes of material symmetry imply the
existence of a third mutually perpendicular plane

An orthotropic material (that is, an orthogonally anisotropic
material) is defined as a material that has three mutually perpendicular
planes of elastic symmetry

An orthotropic material has 9 independent stiffnesses, 9
independent compliances, 3 independent coefficients of
thermal expansion, and 3 independent thermal moduli
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CONSTITUTIVE EQUATIONS

® The constitutive equations for a linear, thermoelastic, orthotropic
material are given by

011 C11 C12 C13 0 0 0 | 811 ﬁ"

Oy, C12 C22 C23 0 00 €2 B 2

Oz \ _ C13 Czs Css 0 0O €33 Bas

o[ | 0O 0 O C.0 O 2¢,, + 0 (T_Tref) and

O1; 0 00 0C, 0 ||2s 0

Oy, 2¢ 0
0000 O0C, 1

.| |S1S2S:0 0 0 .. ..

€, S12 Szz st 0 0O O,, ,,

€33 — S13 S23 S33 0 0 0 O3 Qg3

2, (|0 0 05,0 0| ou/*) 0 ((T-Tu

2¢ 0 00 0S,,0 gw g

2¢,, 0000 O0S,| ™"
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CONSTITUTIVE EQUATIONS - cONCLUDED

The thermal moduli are given in terms of the coefficients of thermal
expansion by

611 C11 C12 C13 (0 P

B, ) =—[Ci, Cp C23 {azz}

Bss Ci3Cp Cyp [\ %0

The constitutive equations show that extension and shearing are totally
uncoupled in the planes x, =0,x,=0, and x;=0

When using orthotropic materials with various directional orientations
in a structure, the structural coordinate system must be distinguished
from the coordinate systems of the orthotropic materials

e The structural coordinate system is typically picked to facilitate the
geometric representation of the structure

For convenience, the coordinate system of an orthotropic material with
the previously derived constitutive equations is defined as the
principal material coordinate system and the material is referred
to as a specially orthotropic material
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SPECIALLY ORTHOTROPIC MATERIALS

e Any material that is fully characterized by the following constitutive
equations is defined as a specially orthotropic material

0.11 - C11 C12 C13 0 0 o | 811 B"

022 C12 C22 C23 0 0 0 822 ﬁ22

Oz \ _ C:;C;C; 0 0 O €3, B,

ox[ [0 O O C, 0 O 2¢,, + 0 (T_Tref) and

O 0 00 0C_, 0|2 0
10 0 0 0 0 C,| \2 0

811 S11 S12 S13 0 o 0 - 011 (111

822 S12 822 SZS 0 0 0 0-22 a22

€33 - S13 Sza Sss 0 0O O3, (o I

2%, (|0 0 0S,0 0| \on[T) O (T-Ta)

2¢,, 0 0 0 0S,0 || g

262/ |0 0 0 0 0S| ' "

® The corresponding coordinate system used to describe this material is
defined as the principal material coordinate system
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GENERALLY ORTHOTROPIC MATERIALS

For an arbitrary coordinate transformation, from a principal {x,,x,,X;}
coordinate frame to a {x,,X,,X,} coordinate frame, the transformation

matrices | T.| and |T;| are fully populated

Thus, when the elastic stiffness coefficients of a specially orthotropic
solid are transformed from the {x,,x,,x,} coordinate frame to the

{x,,X,,X;} coordinate frame, the matrices of transformed elastic
constants are also fully populated

e To an observer, without prior knowledge of the material, the solid
appears to be anisotropic

When a coordinate frame exists for a solid in which it is specially
orthotropic, the material is referred to generally orthotropic, to
distinguish it from an anisotropic material
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GENERALLY ORTHOTROPIC MATERIALS
CONTINUED

e For a dextral rotation about the x, - axis, with m =cos6, and

n = sinf, , the transformed elastic constants are given by

C,.,=m'C,, +2m°n°(C,, + 2C,) + n‘C,,
C,»=m’n°(C,, + C,, — 4C) + (m* + n’)C,,
C,,=m’C,+nC,, C,,=0 C,.=0

C,, = mn|m’ - n*|(C,, + 2C,) + mn(n°C,, - m*C,,)

C,, =m'C,, + 2m°n°(C,, + 2C,,) + n‘C,,

0O
N
X

i

m’C,+n’C,, C,,=0 C,.=0

C., = mn[n®* - m?*|(C,, + 2C,) + mn(m°C,, - n°C,,)
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GENERALLY ORTHOTROPIC MATERIALS
CONTINUED

c3'3' = C33 C3'4' =0 c3'5' =0 C3'6’ — mn(C23 - c13)
Civ= rrlzc44 + r‘2055 Cis= mn(C44 - Css) C.e=0 C,;=0

2

Css = mzcss + nZC44 Cs’e' = mznz(Cn + sz - 2012) + (m2 — n2) Cse

The population of the matrix of transformed elastic stiffnesses is given
by

CiCi2Ciy 0 0 C1’6’
Ci2C2Cpy 0 0 Cye
C1'3' C2'3' C3'3' 0 0 C3’6’
0o 0 0C,C, 0O
0 0 0C,C, O
C.e C2s Cue Ces

For the {X,,X,,X;} coordinate frame, the specially orthotropic material
appears to have the properties of a monoclinic material
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GENERALLY ORTHOTROPIC MATERIALS
CONTINUED

e Similarly,
S,.,=m'S,,+m’n’(2S,,+S,) +n’S,,
S,»=m’n’(S,, +S,, - Sg) + (Mm* + n*)S,,
S,,=mS,+n°’S,, S,,=0 S,.=0
S,e = mn|m* - n*[(2S,, + S.;)+ 2mn(n”S,, - m’S,,)
S,,=m’'S,,+ m’n’(2S,,+S,) +n’S,, S,,=m’S,,+n’°S,,
S,,=0 S,,=0 S,,=S,, S,,=0 S,.=0
S,. = mn[n° - m*[(2S,, + S, )+ 2mn(m°S,, - n°S,,)

Sie = 2mn(823 - S13)
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GENERALLY ORTHOTROPIC MATERIALS
CONTINUED

Siv = mZS44 + n2855 S.s = mn(S44 - Sss) S,e=0

2 2
Ss's' =m Sss +n S44 SS’G’ =0

2

S.e =4m'n’(S, +S,, - 2S,,) + (m’ - n°)’S,,

The population of the matrix of transformed elastic compliances is
given by

S Sz S1'3' 0 0 S1'6’
S1 2 Sz'z' Sz's' 0 0 Sz's'
S1'3' Sz's' Ss's' 0 0 Ss'e'
0 0 0S,S,.0
0 0 0S,.S,.,0
S16 Sz's' Ss's' Sss

For the {X,,X,,X;} coordinate frame, the specially orthotropic material,
again, appears to have the properties of a monoclinic material
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GENERALLY ORTHOTROPIC MATERIALS
CONTINUED

For a dextral rotation about the x; - axis, the transformed thermal-
expansion coefficients are given by

— 2 2 — 2 2 —
a1’1' =m a11 +n (x'22 (x'2’2’ =m a22 +n a11 a3'3' - a33

azrsr — 0 0.1:3: — o a1r21 — mn(azz - 0.11)

Similarly, the transformed thermal moduli are given by
B,y = mzﬁn + nzﬁzz B, = mzf’zz + nzﬁn Baz =P

B, =0 B.s=0 ﬁ1’2’=mn(ﬁzz— Bn)
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GENERALLY ORTHOTROPIC MATERIALS

CONCLUDED

e Thus, for a dextral rotation about the x, - axis, the transformed
constitutive equations for a specially orthotropic material are given by
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A

A

2

S11 Sz S1'3' 0 0 S1'6'
S,2S;, Sz's' 0 0 Sz'e'
S 13 Sz3 83'3 0 0 Ss'e'
0 0 S,.S.. 0
0 0 0S,S.,. 0
L S1’6' sz'e' Ss's' Ss's' |
C.tCi2Cyp 0 0 C,
C.»C,, Cz'a' 0 0 C,
C.wCxCyy 0 0 C,
o 0 0C,C,. O
0o 0 0C,C.. 0O
C.e Coe Cys C,

B
ﬁ 2'2'
ﬁ 33’

B2

(T - Tref)

(T - Tref)
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MATERIALS
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TRIGONAL MATERIALS
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

To determine the conditions on the constitutive equations for trigonal
materials, it is necessary to consider a plane of elastic symmetry that
is oriented arbitrarily, with respect to two of the coordinate axes

In particular, consider a plane of A a; = (ia' ° i,.)
elastic symmetry whose normal h Xs,Xs
lies in the plane x, =0 and makes an - X,
angle 0, with the x, axis, as shown in i A .
the figure 'W

z |
The angle 6, is defined to be in the ' X,
range - g <0, =< g , because 0, = - g
and 6,=7 define the same plane

X, L .

In addition, let the (X., Xz, X;) be the Plane of elastic

coordinates used to define the symmetry

material symmetry

255



TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

Specifically, for a plane of elastic symmetry given by x, =0, the
symmetry transformation is shown in the figure and is given by

X ==Xy, X, =X, , and X, = X,

The corresponding matrix of
direction cosines is given by

a1”1’ a1”2’ a1”3’ - 1 0 0
a2"1’ a2"2' a2”3' = 0 1 0
| a3”1' a3"2’ a3"3' | 0 0 1

For the (x,, X,, X,) coordinate

system, the general constitutive
equations are expressed as
follows
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TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

111111

- . ® ® W
- N o™
WA

r N @

N ™ -

C'l{e) + (B}

|S'|{o'} + {’'}©® and {0’}

&)

=T-T,.

where ©
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TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

For the (x,, X,, X;.) coordinate system, the constitutive equations are
identical in form and are obtained by replacing the index pair ']’ with

g

i"']
e In the abridged notation,
{8”} — [Su]{o_u} + {(1,”}("') and
(0"} = [C”]{S"} + {B"}©, where ©=T-T,

For the transformation of coordinates defined by the symmetry
transformation (a reflection about the plane x,, =0),

(0"} = |T:,"]{0’} and {€"} = |T:"]{8’} where
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TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

O O O O

][]

O O OO O

OO0 = OO O

OO0 O = O O

OO0 O O O =
OO0 0O O —=iO

® Likewise,

-1

st =[] s =T s
cr1=[rolienrl en=[r] e

(") = [T {a") 8"y = T8
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TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

The conditions for invariance under the symmetry transformation
are given by

5 =

s1=Tls] er=[ieT]

o

() =T [} ) =108

Rather than calculating the outcome of the invariance conditions, the
outcome can be found by direct comparison with the results given
previously for a material that is monoclinic with respect to the plane

X,=0

e Direct comparison reveals that the material is monoclinic with
respect to the plane x,, =0
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REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

e Thatis, direct comparison yields

81’1 r
82'2'

8313!

2¢ .,
28,
2¢,.,

Sy Sy Sya Sy
Si2 Sy Sya Sy
Sy Sy Syy Sy
S, S,u Saw Suw
O 0 0 O
0 0 0 O
CiyCizy Cyy Cyy
C.2 Cuy Cpy Cypy
C.3 Cuy Cyy Cyy
C.wCuy Cyy Cppy
O 0 0 O
O 0 0 O

OO0

O O OO

Gy

o oO0o0o a

G

o)

00

g

2

g
.
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B2
ﬁ 3'3’
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TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

Next, the compliances, stiffnesses, thermal-expansion coefficients, and
thermal moduli, expressed in (X,, X,, X;) coordinates, are referred back

to the original (X,, X,, X;) coordinates

The transformation corresponds to a; = (?i' ° ?j)
the dextral rotation about the x, axis, X3, Xz A
shown in the figure, and is given by

X, = X,C0S80, + X,Sino0, ,

with _%<935%

The corresponding matrix of
direction cosines is given by

a.a,a,| | cose, sing, 0 | X, i
i Plane of elastic
a,, a,,a,,|=|-sinb, coso, 0
symmetry
Az Ay, Ay 0 0 1
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TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

® The corresponding stress and strain transformation matrices were
shown previously to be given by

cos’0, sing, 0o o 0  2sinf.coso, |
sin’'0, cos®, o o 0 -2sin6,coso,
0 0 1 0 0 0
[TG(Gs)] - 0 0 0 coso,-sing, 0 and
0 0 0 sin0, coso, 0
- sin0,co0s0, sinB,cos0O, 0 0 0 cos’o,- sinze3
cos’0, sin’0, 0o o 0 sin0,coso,
sin'0, cos’0, 0o 0 0  -sin6,coso,
0 0 1 0 0 0
[Tg(63)] = .
0 0 0 cos0, -sinog, 0
0 0 0 sin0, coso, 0
- 2sin0,cos0, 2sinB,cos6, 0 0 0 cos’0, - sin 0,
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TRIGONAL MATERIALS - CONTINUED

REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x; AXIS

The transformation laws for the compliances, stiffnesses, thermal-
expansion coefficients, and thermal moduli have been given as

[C'] = [TICIT.]" [S']=[T.ISI[T,]"
(8') = [T,1{B) () =[T.{a)

These laws transform the previously obtained invariance conditions on
|IC'|,|S'|, {«'} ,and {B’} into invariance conditions on |C|, |S]|, {a},

and (B}

Specific expressions for these transformation laws (dextral rotation
about the x, axis) were given previously for a fully anisotropic material

(triclinic)
e Note that the matrices [C| and [S| are fully populated

e Also, the vectors {a} and {B} are fully populated
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TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

e Because of the invariance condltlons the matrices |[C’'| and |S’| have

C11C12 CwCyw 0 O S11S12 SiwSuw 0 0
Ci»CyyCyy Cppy 0 0 Si28,2 8,38,y 0 0
C,.C,y CsiCypy 0 O S$,58,3 8,28, 0 0
thefOrm 13 2’3 33 34 and 13 23 33 34

CiwCyyCyyCyppy 0 0 Siw Sy Sy Syy 0 0

0 0 0 0C,,C,, 0 0 0 0S,,S..

0O 0 0 0C,,C,. 0O 0 0 0S,,S,,

(aw) (B
a22 62'2

r r Ay \ } 63’3’ K

e Also, the vectors {a'} and {f'} have the form\ 2a,, and\ B (
0 0

e The corresponding forms of |C|, [S], {a},and {B} are obtained from
the transformation laws once a value for the angle 6, is specified
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REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x; AXIS
For example, specifying 0, =0 yields

¢.,=0,C.,=0,C,.=0,C,=0,C,.=0,C,=0,C,=0,and C,=0

Enforcing the invariance conditions on [C'| gives



TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

Likewise, enforcing the invariance conditions on |S’| gives

$.,=0,5$,=0,S5,=0,S,=0,S,,=0,S,,=0,S,,=0,and S, =0

Enforcing the invariance conditions on {a'} and {p'} gives

(112=(l13=0 and B12= B13=0

These conditions are identical to the conditions previously obtained for
a material that is monoclinic with respect to the plane x, =0

Similarly, specifying 0; = 72‘ and enforcing the invariance conditions on

|IC'|,|S'|, {a'} ,and {p'} vyields the conditions previously obtained for
a material that is monoclinic with respect to the plane x,=0
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TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

e Now consider an arbitrary value for the angle 6, such that - 3 <0,=<3

® The previous example for 0, =0 shows that the invariance conditions
on |C|,|S]|, {a},and {B} were obtained by the terms of |C’|, |S'|,
{a'} ,and {B’'} that were zero valued

e Using the transformation equations for a dextral rotation about the x,

axis that were given previously for a (triclinic) fully anisotropic, elastic
material gives the following results for the invariance conditions on

€]

C.s=0: m’C,,+mn(2C,+C,,)+mn’(2C,+C,)+n’C,, =0

C1,6, =0: mz(mz— 3n2)c16 - m3n(c11 - C12 - 2C66)
+mn’(C,, - C,, - 2C,) - n*(n*- 3m°)C,, = 0
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TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

C,,=0: m’C,,- m°’n(2C,,-C,,) - mn°(2C,,-C,) +n°C,,=0

C,. =0: m’(m*-3n°)C,,+ m’n(C,, - C,, - 2C,,)
-mn’(C,, - C,,-2C,) -n’(n°-3m°)C,; =0

C.,.=0: mC,,+nC,, =0

C,e=0: (Mm°’-n°)C,,+mn(C,,-C,)=0

C,s=0: (m°-n’)C,+mn(C,-C,)=0

C,,=0: mC,-m°’n(C,+C,, -C,)-mn°(C,,—-C,+C,)+n’C,=0
with m=cosf, and nh=sinof,

® These conditions give 8 equations and 20 unknowns
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REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

e The invariance conditions on |S’| are given by

S,,=0: m’S,,+m°n(S,;+S,,)+mn*S,,+S,)+n’S,, =0

S, =0: m°(m°-3n°)S,,-m’n(2S,, - 2S,, - S,,)
+mn®(2S,, - 2S,, - S,;) -n’(n°-3m°)S,, =0

S,,=0: m’S,,-m°n(S,,-S,,) -mn*S,,-S,;)+n’S,,=0

S, =0: m’(m’-3n°)S,,+ m°n(2S,, - 2S,, - S,,)
-mn’(2S,, - 2S,, - S;) - n’(n*- 3m®)S,; =0

S,.=0: mS,,+nS,, =0 S.e=0: (m*-n®S, +2mn(S,,-S,;)=0
S,s=0: (m°-n®)S,+mn(S,-S,)=0

S,.=0: m’S,,—m°n(S, +2S,,-2S,,)-mn’(S,,-2S,,+2S,,) +n’S,,=0
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e The invariance conditions on {a'} and {p'} yield

A =0: Mmo,;+no,, =0 A, = 0: (mz— nz)oz.12 + mn(ot.22 — a11) =0

B1’3’=0: mﬁ13+ nBz:s:o B1’2’=0: (m2_ nz)ﬁ12+mn(ﬁzz_ 611) 0
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® In determining the restrictions on the compliances, stiffnesses,
thermal-expansion coefficients, and thermal moduli for materials that
possess more than one plane of elastic symmetry, all of which contain

the x, axis, it is convenient to select the first plane to be given by 6, =0

e Thus, the material is monoclinic with respect to the plane x, =0
and, as a result, the following conditions hold

C15=0 C16=0 (.:25=0 C26=0 (.:35=0 C36=0 C45=0 C46=0
s15=0 S16=0 SZS=0 SZG=0 S35=0 S36=0 S45=0 S46=0
a,=0 a,=0 B,,=0 B,,=0

e These relations, and the fact that n = sinf, = 0 for nonzero values

of -3 <6,=<7,are used to simplify the previously given invariance
conditions into the following three uncoupled groups
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Group 1

C,s=0:
C,,=0:

C.,.=0:

Group 2

C,,=0:
C,s =0:

C,, =0:

Group 3

C.,e =0:

m*(2C,+C,)+n’C,, =0 m=cos0, n=sino,
-m*(2C,-C,,)+nC,,=0

nzcse - mz(css +C,, - C24) =0

C.,,=0

m(Czs - C13) 0

m(C,,-C,)=0

mnz(czz - C12 - 2C66) - m3(c11 - C12 - 2C66) =0

C,,=0: m’(C,, - C,, - 2C,,) - mn*(C,, - C,, - 2C,,) =0
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® The first group can be written as

C,s=0: -C, =m°(2C,,+C,,-C,,) m =cosO, n =sino,
C,,=0: C,=m’°(2C,,+C,,-C,,)

C,e=0: Cyi= m2(2C56 +C,, - C24)

® Because the right-hand side of the equations are identical, it follows
that the left-hand sides are equal; thatis, C.,=-C,,=C,,=T

Each equation can be expressed as I = 4T'cos’0, , which is satisfied

by I'=0 and by cos®0, =}
r=0 implies C;,=-C,,=C,,=0 and - 3<0,=<7

cos’0, = 1 implies 6,=+3, C;,=C,,, and C,,=-C,,
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® The third group of equations is simplified by first adding the two
equations together and then by subtracting the two equations

e Addinggives C,,+C,,=0: (C,-C,)cos6,=0,

which is satisfied for all - 3<6,=<% if C,,=C,,, or for all
C,=C,, if0,= g

e Subtracting gives

C,e —C,e=0: (2C,,+4C,-C,, - C,,)c0s0,c0520,=0,

which is satisfied forall -5<6,<3 if 2C,,+4C,-C,,-C,=0,

orforall 2C,,+4C,-C,,-C,, =0 if 63=¢%org
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e Group4
S,,=0: m(S,,+S,)+n’S,, =0 m =cosO, n =sino,

S,,=0: -m*S,-S,,)+n’S,,=0

S,e=0: —m°(S;;+2S,,-2S,,)+n’S,, =0

S,,=0: S,,=0

S, =0: m(st - S13)

0

S,,=0: m(S, -S,)=0

® Groupb6
S,,=0: mn°(2S,,-2S,-S,)-m’2S,,-2S,,-S,)=0

S,,=0: m’(2S,,-2S,,-S,)-mn’(2S,-2S,,-S,)=0
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® Like for the stiffnesses, the fourth group can also be written as

S,,=0: -S,,=m°(S;;+S,,-S,,) m =cosO, n =sino,
S,,=0: S, = m2(356 +S,, - S24)
S,e=0: %Sse = m2(856 +S, - 824)

® Because the right-hand side of the equations are identical, it follows
that the left-hand sides are equal; that is, 3S,=-S,,=S,,= A

e Each equation can be expressed as A = 4Acos?’0, , which is satisfied

by A=0 and by coszf)3=‘1I
¢ A=0 implies S;=S,=S,=0 and -5<0,<3

e cosf, =) implies0,==%, S,,=2S,,, and S.,,=-S,
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® The sixth group of equations is also simplified by first adding the two
equations together and then by subtracting the two equations

e Addinggives S, +S,;,=0: (S,,-S,)cos6,=0,

which is satisfied for all -
S,=S, if 0,= g

<0,=<35 if S,=8S,,,orforall

(VE

e Subtracting gives

S, —S.e=0: (S,,+S,,—-2S,, - S,)co0s0,c0s20,=0,

which is satisfied forall -3<0,<7 if 25,,+S,-5,,-S,=0,

orforall 2S,,+S,,-S,,-S,, =0 if 03=i%0r%
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The symmetry properties for trigonal materials arise from the
solution for the invariance conditions that are given by cos®0, = 1

For this solution, the p/anes of
_ Symmetry X
elastic symmetry are all parallel to piane for 2

the x, axis and are given by 6,=0 x

0,=0 and = %
Symmetry
plane for ) /

n LAY 0,=+3
For0,=+=7% m=cos(¢ =1.0 1 =+3
3’ 3 — X
andn—sm(+"’)—+*@¢0 )
- —3)]T 7 2
. . : Symmetry
T.he stlffn_ess (?quatlons in group 2 piane for .=
yield the invariance conditions o.o_m ’
3T 3

C.,=0,C,=C,;,and C,;=C,, .
Plan view of symmetry planes
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Likewise, the stiffness equations in group 1 yield the invariance
conditions C,,=C,, and C,,=-C,,

Furthermore, the stiffness equations in group 3 yield the invariance
conditions sz - C11 and Ces = ;(Cﬂ - C12)

The compliance equations in group 5 yield the invariance conditions
$,4=0,S8,=S,;,and S;;=S,,

The compliance equations in group 4 yield the invariance conditions
S..=2S,, and S..=-S.,

The compliance equations in group 6 yield the invariance conditions
322 = S11 and S, = 2(S11 - S12)
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The invariance conditions ao,;,=0: ma,;+ho,,=0 and

a,, =0: (m°-n°)a,+mn(a,-a,)=0 yield
Oy =0, =0, =0 and o, =a,

The invariance conditions f,,=0: mg,+np,,=0 and
Biz=0: (m-n°)B,+mn(p,-B,)=0 yield

Brs=Pis=p,=0 and B =B

Together, the invariance conditions yield the following constitutive
equations for a trigonal material

281



TRIGONAL MATERIALS - CONCLUDED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

- .

Oy " w Cu C. 0 0 €44 B

Oy, C.. C, C. -C, 0 0 €2 B

O3;3 C. C, C, 0 0 0 €33 B s

= + T-T

Oy C. -C, 0 C., O 0 2¢,, 0 ( )

Ois o o o o0 c, C, 2¢,, 0

(0

“ o oo o c, S Ce 21, 0
€44 S11 S12 S13 S14 0 0 O, a,,
€5 S12 S11 S13 - S14 0 0 O,, (o0 9
€33 Sis S Sa 0 0 0 O3;3 Ols;
= + (T -T )

2823 S14 - S14 0 S44 0 0 023 0 ret
2¢,, 0 0 0 0 S. 2S., O3 0
2¢,, 0 0 0 0 28, 2(S,-S,| '\ 0

Therefore, a trigonal material has six independent elastic constants
and two independent thermal-expansion or thermal-compliance
parameters
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To determine the conditions on the constitutive equations for trigonal
materials, it is necessary to consider a plane of elastic symmetry that
is oriented arbitrarily, with respect to two of the coordinate axes

In particular, consider a plane of X, X, a,; = (i, i)
elastic symmetry whose normal n 4
lies in the plane x, =0 and makes an o X,
anglt_e 0, with the x, axis, as shown in i, i, A 3
the figure E3 A0, _
The angle 0, is defined to be in the | I Xs
range - 5<6,=<7 ,because 6,=-3 \izyﬁ
and 0, = g define the same plane X,

5 . 7 |
In addition, let the (X,, X,, X;) be the Plane of elastic

symmetry

coordinates used to define the
material symmetry
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Specifically, for a plane of elastic symmetry given by X, =0, the
symmetry transformation is shown in the figure and is given by

X1H - X1l ) X2n - — XZI ) and X3Il — X3I

The corresponding matrix of I RSERSE a,; = (?i' ° ?;)
direction cosines is given by

-a1"1’ a1”2’ a1”3’- 1 0 0
Ay Qyp Ay | = 0-10
_ Ay Agy Agy | 0O 0 1
. |
For the (x,, X,, X,) coordinate X5, X,

system, the constitutive
equations are expressed as
follows
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111111

- . ® ® W
- N o™
WA

r N @

N ™ -

C'l{e) + (B}

|S'|{o'} + {’'}©® and {0’}

&)

=T-T,.

where ©
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For the (x,, X,, X;.) coordinate system, the constitutive equations are
identical in form and are obtained by replacing the index pair ']’ with

g

i"']
e In the abridged notation,
{8”} — [Su]{o_u} + {(1,”}("') and
(0"} = [C”]{S"} + {B"}©, where ©=T-T,

For the transformation of coordinates defined by the symmetry
transformation (a reflection about the plane x, =0),

(0"} = |T(r,2']{0'} and {€"} = |T:2']{8’} where
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][]

o
O = O O 0O O
O O OO O

OO0 O =i O O
I
-t

O 0O O O O =
OO0 0O O =i O

® Likewise,

cr=[telienl] ren=[Te] ety

{a") = [T [{a'} (") =T [{B)
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® The conditions for invariance under the symmetry transformation
are given by

s1=[m sl [en=[renlr ]
{o') =T [{a’) (8"} =[Ts]{B)

e Rather than calculating the outcome of the invariance conditions, the
outcome can be found by direct comparison with the results given
previously for a material that is monoclinic with respect to the plane

X, =0

e Direct comparison reveals that the material is monoclinic with
respect to the plane x, =0
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e Thatis, direct comparison yields

81 1’
82'2'
€4y
2¢,,
2¢,.,
2¢,.,

Sy S Sy 0
Si2 S, Sy 0
Si3Syy S3y 0
Sua
Si5 Sys Sys 0
0 0 0 S,
CinCixCyy O
Ci2CprCyy O
CiyCpyCyy O
C.u

4'
C1’5' C2'5' C3'5’ 0

S,y 0 |
S,y 0
S,y 0
Sue
S,y 0
0 86'6’_
C,o 0 |
C,, 0
C,. O
C.o
C.. 0

' 0 0 0 C, 0 Cg
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Next, the compliances, stiffnesses, thermal-expansion coefficients, and
thermal moduli, expressed in (X,, X,, X;) coordinates, are expressed in

the original (x,, X,, X;) coordinates

The transformation corresponds to Xy, X, a, = (i, i)
the dextral rotation about the x, axis, A
shown in the figure, and is given by
= x ’
X, =X, , X, = X,€080, + X,8in0, , and T 3
191 H
X, = — X,S8in0, + x,c0s0, , with Iy /4 0,
11 T F" -
. . T~ .
The corresponding matrix of I, N
direction cosines is given by
X,
A, Ay, Ayg 1 0 0 x2 i
a,, a,,a,,|= 0 cos0, ‘c.;inﬂ1 Plane Of elastic
a;, Ay, Ay, 0 - sin0, coso, symmetry
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shown previously to be given by

1 0 0 0 0 0
0 cos’0, sin‘0, = 2sind,cosf, 0 0
T 0 sin’0, cos’d, -2sin0,cosf, O 0
[ 0(61)] - 0 - sinf,cos0, sinB,cos0, cos’0, - sinzﬂ1 0 0
0 0 0 0 cos0, - sing,
0 0 0 0 sinf, coso,
1 0 0 0 0 0
0 cos’0, sin’o, sind,coso, 0 0
T 0 sin’o, cos’d, -sino,cosd, O 0
[ (61)] | o - 2sin0,cos0, 2sind,cos0, cos’0, - sin'9, 0 0
0 0 0 0 cos0, - sino,
0 0 0 0 sinf, coso,
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The transformation laws for the compliances, stiffnesses, thermal-
expansion coefficients, and thermal moduli have been given as

[C'] = [TICIT.]" [S']=[T.ISI[T,]"

{B'} =[Tol{B} (o) =|T[{a)

These laws transform the invariance conditions on |C'|, |S'|, {a'} , and
{B'} into invariance conditions on |C]|, |S], {a},and {B}

Specific expressions for these transformation laws (dextral rotation
about the x, axis) were given previously for a fully anisotropic material
(triclinic)

e Note that the matrices |C| and |S|, and the vectors {a} and (B},
are fully populated
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e Because of the invariance conditions, the matrices [C’| and |S’| have

C1'1' C1'2' C1'3' 0 C1'5' 0 S1'1' S1'2' S1'3' 0 S1'5' 0
C1'2' CZ'Z' C2'3 0 02'5' 0 S1'2' SZ'Z' S2'3' 0 82'5 0
C,.C,y Cyee 0 C,e O S,58,3S8, 0 S, 0
the form 13 2’3 33 35 and 13 2’3 33 35
C4’4’ 0 C4'6’ 0 S4'4' S4’6’
C1'5' C2'5' C3'5' 0 C5'5' 0 S1'5' 32'5' SS'S' 0 85'5' 0
C.. 0 C,. 0 0 0S,, 0S,,
( Qyyr \ (61'1'\
a2'2' 62'2'
’ ’ J Oy K } Bs's' K
® Also, the vectors {a'} and {f’} have the form | o and | "5 (
2a1'3' 61'3'

| 0 ) Y

e The corresponding forms of |C|, [S], {a},and {B} are obtained from
the transformation laws once a value for the angle 0, is specified
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For example, specifying 0, =0 yields

333333
111111

666666
111111

555555
555555

444444

333333
333333

222222

111111
111111

COUO0UO0

111111

666666
111111

444444

444444

333333

222222

222222

- - - - - -

coco,fo ¢
o0
° 8 B _ B
000 o
s @
coco, ,fo,;
o &

Coo®0®
S

- N (3

LWl e

o000

won°on°
wnn°wn°

Enforcing the invariance conditions on [C'| gives

¢c,=0,C.,=0,C,=0,C,=0,C,=0,C,=0,C,.=0,and C,=0
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Enforcing the invariance conditions on |S’| gives

s$,=0,$,=0,S,,=0,S,,=0,S5,,=0,S,.,=0,S,,=0,and S;;=0
Enforcing the invariance conditions on {a'} and {p'} gives
a,=0,;=0 and B,,=P;=0

The conditions are identical to the conditions previously obtained for a
material that is monoclinic with respect to the plane x,=0

Similarly, specifying 0, = ’2‘ and enforcing the invariance conditions on

|IC'|,|S'|, {a'} ,and {p'} vyields the conditions previously obtained for
a material that is monoclinic with respect to the plane x,=0
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MJE

e Now consider an arbitrary value for the angle 6, such that - 5 <6, <

® The previous example for 0, =0 showed that the invariance conditions
on |C|,|S]|, {a},and {B} were obtained by the terms of |C’|, |S'|,
{a'} ,and {B’'} that were zero valued

e Using the transformation equations for a dextral rotation about the x,

axis that were given previously for a (triclinic) fully anisotropic, elastic
material gives the following results for the invariance conditions on

|C']
C,,=0: (m°-n°)C,,+mn(C,,-C,)=0

C,e=0: mC,,+nC, =0
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C,,=0: m’(m*-3n°)C,, -m’n(C,,- C, - 2C,,)
+mn’(C,, - C,, - 2C,,) - n*(n*- 3m°)C,, = 0
C,,=0: m’C, +m°n(2C, +C,)+mn°(2C,,+C,)+n’C,, =0

C,.=0: m’(m*-3n°)C, +m’n(C,-C,-2C,,)
-mn’(C,, - C,,-2C,,) -n’(n°-3m°)C,,=0

C,, =0: m’C,-m"n(2C, -C,)-mn*(2C,,-C,)+n’C,=0
C,,=0: mC,-m°n(C,+C, -C,)-mn°(C,,-C, +C,)+n’C,,=0
C.e=0: (m’-n°)C,+mn(C,-C,)=0

with m=co0s0, and n =sino,

® These conditions give 8 equations and 20 unknowns
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e The invariance conditions on |S’'| are given by

S,,=0:
Sz'4' =0
S, =0
83'4' =0
S;=0
S,»=0
S;. =0

(m*- n*)S,,+2mn(S,,-S,,)=0 S,.=0: mS,+nS,,=0

m’(m*-3n%)S,, - m°n(2S,, - 2S,, - S,,)
+mn’(2S,, - 2S,,- S,,) - n°(n°-3m°)S,, = 0

m’S,, + m°n(S,, + S,;) + mn°(S,; + S,;) + n°S,, =0

m*(m® - 3n°)S,, + m°n(2S,, - 2S,,- S,,)
-mn’(2S,,- 2S,,-S,,) - n(n°- 3m°)S,, = 0

m’S,, - m°n(S,, - S,;) - mn*(S,; - S,,) +n’S,, =0
m’S,, - m°n(S,, + 2S,, - 2S,,) - mn°(S,; - 2S,, +2S,,) +n’S,, =0

(m*- n®)S,, + mn(S,, - S,,) =0
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e The invariance conditions on {a'} and {p'} yield

a,,=0: mao,+no,;=0 a,, = 0: (mz— nz)ot23 + mn(or.33 — (1.22) =0

0

Bi»=0: mMmB,,+nB,;=0 B,s = 0: (mz_ nz)ﬁzs'l' mn(ﬁss_ 622)
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® In determining the restrictions on the compliances, stiffnesses,
thermal-expansion coefficients, and thermal moduli for materials that
possess more than one plane of elastic symmetry, all of which contain

the x, axis, it is convenient to select the first plane to be given by 6, =0

e Thus, the material is monoclinic with respect to the plane x,=0
and, as a result, the following conditions hold

C14=0 C16=0 C24=0 C26=0 C34=0 C36=0 C45=0 C56=0
S,=0 S§,=0 S,=0 S,,=0 S,,=0 S,=0 S,=0 S,,=0
a,=0 a,y,=0 B,=0 B,=0

e These relations, and the fact that n = sin0, = 0 for nonzero values

of -3 <60,=7,areused to simplify the previously given invariance
conditions into the following three uncoupled groups
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Group 1
C,, =0:

C,s=0:
C.,,=0:

Group 2
C,,=0:

C,e =0:

C..=0:
Group 3

C,, =

C,,=0:

m*(2C,, +C,) +n’C,,=0 m =cos0, n =sino,
-m*(2C, -C,)+n°C,, =0

-m*(C,+C,,—C,)+n°C,=0

m(c13 - C12) =0
Cs=0

m(css - Cse) =0

-m’(C,,-C,, -2C,,)+mn°(C,,-C,,-2C,,) =0

ma(c33 - C23 - 2C44) - mnz(czz - Czs - 2C44) =0
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® The first group can be written as

C,,=0: -C,=m’(2C, +C, - C,) m =cos0, n=sinod,
C,s=0: C,=m’(2C, +C, - C,)

C4.5: — 0: C46 — m2(2045 + Czs - C35)

® Because the right-hand side of the equations are identical, it follows
that the left-hand sides are equal; thatis, C,,=-C,,=C,, =T

Each equation can be expressed as I' = 4T'cos?0, , which is satisfied
by T'=0 and by cos?0, =}
I'=0 implies C,;=-C;;=C,;x=0 and -5<6,<7

cos®0, = 1 implies 0, =+

w(a
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® The third group of equations is simplified by first adding the two
equations together and then by subtracting the two equations

e Addinggives C,,+C,,=0: (C,,-C,)cos6,=0,

which is satisfied for all -
Ciu=Cy if 0,= %

<0,=<35 if C;=C,,orforall

(VE

e Subtracting gives
c,.-C,,=0: (2C,+4C,-C,, - C,)cos0,cos20,=0,
which is satisfied forall -5<6,<3 if 2C,,+4C,,-C,,-C; =0,

orforall 2C,,+4C,,-C,,-C,, =0 if 01=:%org
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Group 4

S,, =0:

S,s =0:

Group 6

Sy4 =

S,,=0:

m*(S,, +S,;) +Nn°S,,=0 m =cos0, n =sino,
-m*(S,,—S;)+n’S,,=0

-m*(S, +2S,,-2S,)+n°S,,=0

-m°(2S,,-2S,,-S,,)+mn’(2S,,-2S,,-S,,)=0

m°(2S,, - 2S,,- S,,) - mn°(2S,,-2S,,-S,,) =0
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® Like for the stiffnesses, the fourth group can also be written as

S,e=0: —-S,;=m"(S,+ S, - S) m =cos0, n=sinod,
Ss's' = 0: st = mZ(S46 + st - Sas)
S,s=0: %846 = mz(s46 + S, - S35)

® Because the right-hand side of the equations are identical, it follows
that the left-hand sides are equal; that is, 3S,=- S, =S, = A

e Each equation can be expressed as A = 4Acos’®0, , which is satisfied

by A=0 and by cos?0, =]
Py A=0 lmplles S46=Sss=szs=0 and _%<01S%

e COS’0,= 1 implies 0, == %, $,=2S,, and S;=-S,
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® The sixth group of equations is also simplified by first adding the two
equations together and then by subtracting the two equations

e Addinggives S.,,+S;,=0: (S;;-S,)cos0,=0,

which is satisfied for all -
Sy =S, if 0,= g

<0,=<35 if S;3=S,,orforall

ME]

e Subtracting gives
S,, —S;,=0: (2S,,+S,, - S., - S;;)c0s0,c0s20, =0,
which is satisfied forall -5<0,<3 if 25,+S5,,-S,,-S,=0,

orforall 25,,+S,,-S,,-S.,,=0 if 01=:%org

306



TRIGONAL MATERIALS - CONTINUED
REFLECTIVE SYMMETRY ABOUT PLANES THAT CONTAIN THE x, AXIS

The symmetry properties for trigonal materials arise from the

solution for the invariance conditions that is given by cos?®0, = i

4
For this solution, the p/anes of
_ Symmetry X
elastic symmetry are all parallel to plane for 3
the x, axis and are given by HEL x 4+
3

0,=0 and 'l_'%

Symmetry
plane for
n n 1 0,=+3
For61=:3,m=cos(i3 =_-=0 3 X,
_ ) =, V3 :e =0
andn_sm(a_rs)_i2 =0 1
: - : Symmetry
T.he stlffn_ess (?quatlons |r_| _group 2 piane for i
yield the invariance conditions 0. =_X ! 3

Cs=0,C;=C,,,and C,,=C,; .
Plan view of symmetry planes
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Likewise, the stiffness equations in group 1 yield the invariance
COnditionS C46 - C25 and C35 = - c25

Furthermore, the stiffness equations in group 3 yield the invariance
conditions C;,=C,, and C,=3(C. - Cy)

The compliance equations in group 5 yield the invariance conditions
S:=0,S5,;=S5,,,and S, =S,;

The compliance equations in group 4 yield the invariance conditions
S46 = 2825 and S;;=-S,,

The compliance equations in group 6 yield the invariance conditions
S33 = Szz and S, = 2(822 - st)
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The invariance conditions o,,=0: mao,,+ na,; =0 and

Ay =0:  (M*-n®)o,, + mn(ay, — ay,) =0 vyield
Ay =0, ;=a,=0 and Olzz = Oy,

The invariance conditions $.,.=0: mg,+np,,=0 and

Bre=0: (M’-n°)B,,+ mn(B,, - B.) =0 yield

Bs=PBis=p:.=0 and Ba = B2

Together, the invariance conditions yield the following constitutive
equations for a trigonal material
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c,C, C, O o o /. 6
(O PP C12 sz C23 0 Czs 0 11 B11
%| 1c,Ch C, 0 -CL,0]|] .~ i
O, _ 12 V23 22 - Ly €43 + B (T—T )
Oy, 0 0 0 C22_Cz3 0 czs 2823 0 ret
O3 2 2813 0
(0] 0 C25_C25 0 Css 0
12 2¢,, 0
0 0 0 C.s 0 C.
en )| [SuSw S 0O 0 0 | -
€ S12 Szz st 0 st 0 O, (0 29
£55 — S.Sx S, 0 _st 0 O3 + Oy (T_Tref)
2¢,, 0 0 0 2(S,,-S,) 0 2S, |\ Oz 0
2¢55 0 S-S, 0 Sss 0 g13 g
22/ |0 0 0 2S,, 0 S, =

Again, the trigonal material has six independent elastic constants
and two independent thermal-expansion or thermal-compliance
parameters

310
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The previous derivation of the constitutive equations for a trigonal
material that has reflective symmetry planes that contain the x, axis is

quite tedious

These constitutive equations can be derived in alternate manner by
using the corresponding equations given first for a trigonal material
that has reflective symmetry planes that contain the x, axis, along with
a juxtaposition of indices

That is, the desired constitutive equations are found by simply
determining the renumbering of the indices that brings the figure
shown below for symmetry planes that contain the x; axis into
congruence with the adjacent figure shown below for symmetry planes
that contain the x, axis
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X Plane
Plane 3
93 = -1/3 7T / 93 = +1t/3
i /'. i . = X,
/l {Plane
; 6,=0
.

Symmetry planes that
contain the x, axis

Plane X, Plane
91 = _J.r/3ﬁT , 01 = +1/3
R I X,
{Plane
0,=0
X

2

Symmetry planes that
contain the x, axis
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Inspection of the figures indicates the following transformation of the
indices:1 —-2,2—-3,and 3 — 1

Next, it must be realized that the exchanging of indices must be used
with the indices of tensors to determine the indices used with the
abridged notation (matrix)

e The following index pairs relate the tensor indices to the matrix

indices
tensor notation 11 22 33 23,32 31,13 12, 21
matrix notation 1 2 3 4 5 6

Using this information along with 1 — 2,2 — 3,and 3 — 1 gives the
relations: 4 — 5,5 —=6,and 6 — 4
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Likewise, the transformation of index pairs that appear in the abridged
notation are given by

11 — 22

12 — 23 22 — 33

13 — 12 23 - 13 33 — 11

14 — 25 24 — 35 34 — 15 44 — 55

15 — 26 25 — 36 35 — 16 45 — 56 55 — 66

16 — 24 26 — 34 36 — 14 46 — 45 56 — 46 66 — 44

Consider the following constitutive equations for a trigonal material that
has reflective symmetry planes that contain the x, axis

C11

c12 C13 C14 0 0 8 ﬁ
011 11 11
O,, C12 C" C13 - C14 0 0 €, B11
033 — C13 C13 C33 0 0 0 833 ﬁ33 _
O2s - C14 - Yy 0 C44 0 0 2823 * 0 (T Tref)
gw 0o 0 0O 0 C, C., 2¢,, 0
. 0 0 0 0 C, }cC,-C,)| \2 0
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® Applying the index transformation to these constitutive equations gives

® Reordering these equations into the standard form yields

c, C,C, C, O 0

Czs sz C12 _Czs 0 0
!¢, C,C, 0 O 0
- Czs ] 0 Css 0 0

O 0 0 o0 Cg C..

0 0 0 0 C, %(czz - C,,)

Cc.,C, C, 0 0 0
C12 sz C23 0 Czs 0
_ C12 Czs sz 0 _Czs 0
| o 0 2(C.-C,) 0 C,
0 C,-C, 0 C, O
0 0 O C.,. 0 C.

€41

822

€33
2¢,,

2¢
2¢,,

€2

833

811
2¢,,
2¢,,

2¢

B11
BZZ

B2
0

0
0

622
622

B11
0

0
0

(T-T.)

(T-T.)

which are identical to the corresponding equations previously given
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These constitutive equations are derived by using the corresponding
equations given first for a trigonal material that has reflective symmetry
planes that contain the x; axis, along with a juxtaposition of indices

That is, the desired constitutive equations are found by simply
determining the renumbering of the indices that brings the figure
shown below for symmetry planes that contain the x; axis into
congruence with the adjacent figure shown below for symmetry planes
that contain the x, axis
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X Plane
Plane 3
93 = -1/3 7T / 93 = +1t/3
i /'. i . = X,
/l {Plane
; 6,=0
.

Symmetry planes that
contain the x, axis

Plane X, Plane
92 = -1/3 7T , 02 = +1t/3
R I =X,
{Plane
0,=0
x3

Symmetry planes that
contain the x, axis

317
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Inspection of the figures indicates the following transformation of the
indices:1 —-3,2—1,and 3 - 2

Next, it must be realized that the exchanging of indices must be used
with the indices of tensors to determine the indices used with the
abridged notation (matrix)

e The following index pairs relate the tensor indices to the matrix

indices
tensor notation 11 22 33 23,32 31,13 12, 21
matrix notation 1 2 3 4 5 6

Using this information along with 1 — 3,2 — 1, and 3 — 2 gives the
relations: 4 — 6,5 —=4,and 6 — 5
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Likewise, the transformation of index pairs that appear in the abridged
notation are given by

11 — 33

12 - 13 22 — 11

13 — 23 23 —> 12 33 — 22

14 — 36 24 — 16 34 — 26 44 — 66

15 — 34 25— 14 35 — 24 45 — 46 55— 44

16 — 35 26 — 15 36 — 25 46 — 56 56 — 45 66 — 55

Consider the following constitutive equations for a trigonal material that
has reflective symmetry planes that contain the x, axis

c11 C12 C13 C14 0 0 - € B
Oy, 11 11
Oy C12 C” C13 C14 0 0 €2 Bﬂ
O3 \ C13 C13 Css 0 0 0 €3 Bss _
O2s - C14 14 0 C44 0 0 2823 * 0 (T Tref)
gw 0o 0 0O 0 C, C., 2¢,, 0
. 0 0 0 0 C, }cC,-C,)| \2& 0
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® Applying the index transformation to these constitutive equations gives

O33 Co Gy Cu Gy 0 0 €33 Bas
Oy Cis C33 Co - C36 0 0 €41 B
O, — Czs Czs C22 0 0 0 €2 + Bzz (T _ Tref)
Oz C36 — Ugg 0 Cee 0 0 2812 0
Oz 0 0 0 0 C, C.. 2¢,, 0
O1a 1 2¢, 0
0 0 0 0 C, 4(Cy-Cy

® Reordering these equations into the standard form yields

O14 Cs € G 0 0 - Cs €41 B s
O3 Cy CCy O 0 0 €2 B 2
Oj; — C13 C23 C33 0 0 Css €33 + B (T _ Tref)
O23 0 0 0 ces C36 0 2823 0
o 2¢ 0
o 0 0 0Cy; 3(Cu-Cy) O B 0
- Cas 0 C36 0 0 Cse
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® Applying the same procedure to the inverse equations yields

Sss st S13 0 0 . Sse_
S$S,,S,S,, 0 0 0
S13 st Sss 0 0 Sse
0 0 0 S, 2S.. 0
0 0 02S, 2S,-S,) O
-S% 0 S O 0 See
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TETRAGONAL MATERIALS

Previously, it was shown that for a single plane of elastic symmetry
containing the x, axis, special invariance conditions arise for values of

3 = +z,ln additionto 6,=0

Likewise, it was shown that for a single plane of elastic symmetry
containing the x, axis, special invariance conditions arise for values of

0, = +Z’ in additionto 6, =0

Furthermore, for a single plane of elastic symmetry containing the x,
axis, special invariance conditions also arise for values of 0,==* Z’ in
additionto 0,=0

Three particular cases of interest arise from these invariance conditions
in which there exists five planes of elastic symmetry, four of which
are perpendicular to the fifth plane
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Specifically, consider a material with three planes of elastic symmetry

given by 0;=0 and i%

Plane T X, Plane
By taking 0, = +% as an additional 0,=-n/4 | 8, =+
plane of elastic symmetry, the fact that o
| | Flane

the planes 6,=0 and 8, =+ are | 0, = +1/2
perpendicular implies the existence of /,* AT X,
a fifth symmetry plane given by 6, = 0 /
e This fact was shown previously for {ePla_ng

specially orthotropic materials; 7 $T

that is, two perpendicular planes X, Plane 6, =0

of elastic symmetry imply a third
perpendicular plane of elastic symmetry

Thus, there exists five planes of elastic symmetry, four of which

T

are perpendicular to plane 6, =+2
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Next, consider a material with three planes of elastic symmetry given by

6,=0 and =7

A X3
T Plane 6,=0
By taking 6, = 0 as an additional
plane of elastic symmetry, the fact ,
- — | _Plane
that the Planes. 0, _.O and 9? =0 are : 16, = 42
perpendicular implies the existence oS- - X,
of a fifth symmetry plane given by Plane /
0. =40 0, = -/4 {
1= T Plane
[
¥ / Plane
) & 0, = +n/4

Thus, there exists five planes of
elastic symmetry, four of which

are perpendicular to plane 0,=0
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Finally, consider a material with three planes of elastic symmetry given
by 6,=0 and =7

A X5
Plane 6,=0 r Plane 6, = +/2

By taking 0; =+ % as an additional X
plane of elastic symmetry, the fact 5

=4+ 2 — PI |
that the planes 6;=+2 and 6,=0 e;“g_ N4 X,
are perpendicular implies the
existence of a fifth symmetry plane e
givenby 6,=0 8, = -/4

¥ Plane
X, 0, = +/4

Thus, there exists five planes of

elastic symmetry, four of which are perpendicular to plane 0;= +§
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When there exists five planes of elastic symmetry, in which four
planes are perpendicular to a fifth plane, the material is classified as a
tetragonal material

Three specific cases are defined as follows:

e Planes of elastic symmetry given by 6;=0 and i% and 0, = +%

e Planes of elastic symmetry given by 6, =0 and i% and 6;=0

e Planes of elastic symmetry given by 6,=0 and :% and 0, = +%

For each of these three arrangements of symmetry planes, the
corresponding constitutive equations can be derived directly from
those for a specially orthotropic material by enforcing the

0,=xZ% or 6,=x2

. . ags T
invariance conditions for 0, =%x— =T, 2

4’
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Consider a tetragonal material with planes of reflective symmetry

defined by 6,=0 and :% and by 6, =+

1

For a specially orthotropic material, it was shown previously that the

constitutive equations are given by

O, C.C,C;0 0O €11
0,5, C12 sz c23 0 0O €2
Oz \ C:CxC; 0 0 O €33
Oy, 0O 00C,O00 0 2¢,,
O3 0O 0 0O C55 0 2813
O1z |0 0 0 0 O Ces_ 2¢,,
en | [SnSuSkx 0 0 0] (5
€2 $,5,S,0 0 0 O,
€aa | $:355S, 0 0 0 O3
2¢,, 0 00S,00 Oy
2¢,, 0 00 0S.,,0 O3
2¢,, 0 0 0 0 O See_ O1z
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For this case, the additional conditions on the constitutive equations

1

are obtained by enforcing symmetry planes given by 6; = =

N w) = V2 — sin(+ ®) = + Y2
° For93—=4,m_cos(i )_2¢0 andn_sm(:4)_¢2¢o

With 6, == %, the first group of stiffness equations previously given

herein for an arbitrary plane of symmetry, defined by constant values of

6, requires I'=0

e Recallthat '=0 implies C,,=-C,,=C,, =0 for arbitrary values of
the angle - 3 <0,=<3

Similarly, the second group of stiffness equations for an arbitrary plane
of symmetry, defined by constant values of 6,, requires C,, =0,

Cy;=Cyand C; =C,,
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Furthermore, the stiffness equations in group 3 yield the invariance
condition C,,=C,,

Likewise, the compliance equations in group 5 yield the invariance
conditions S$,,=0,S,,=S,,,and S..=S,,

The compliance equations in group 4 yield the invariance conditions
Ss6 =S, =S1,=0

The compliance equations in group 6 yield the invariance condition
S,=S;
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The invariance conditions ao,;,=0: ma,;+ho,,=0 and

a,, =0: (m°-n°)a,+mn(a,-a,)=0 yield
Oy =0, =0, =0 and o, =a,

The invariance conditions f,,=0: mg,+np,,=0 and
Biz=0: (m-n°)B,+mn(p,-B,)=0 yield

Brs=Pis=p,=0 and B =B

Together, the invariance conditions yield the following constitutive
equations for a tetragonal material
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011 C11 C12 C13 0 0 0 - 811 611

O2 C1 C11 C13 0O 0O E,5 B”

O33 — C1 C13 C33 0O 0O €4, 633 _
o,[=|000cCc,0 0\2,/F) o (T-Te)
O3 0 0 0O C44 0 2513 0

O, 0 0 O 0 0 CGS 2812 0

€11 - S11 S12 S13 0 0 0 | o, a,,

€ S12 S11 S13 0 0 0 O, o,

€33 - S13 S13 S33 0 0O O, oLy, _
2823 - O 0O S44 0 O Oy + 0 (T Tref)
2¢ O 00 0S,,0 O3 0

2¢,, 0000 0S,| \% 0

® Therefore, a tetragonal material has six independent elastic
constants and two independent thermal-expansion or thermal-
compliance parameters
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Next, consider a tetragonal material with planes of reflective

symmetry defined by 6,=0 and i% and by 6,=0

e For6,=xZ m=cos(¢"’)=@¢o andn:sin(i

V2
_4! 4 2 2#0

)= =

The first group of stiffness equations previously given herein for an
arbitrary plane of symmetry, defined by constant values of 6., yields the

invariance conditions C,,=C,,=C,,=0

The second group of stiffness equations for an arbitrary plane of
symmetry, defined by constant values of 6,, requires C,, =0, C,;=C,,,

and C,,=C,

The stiffness equations in group 3 yield the invariance condition
Cy=C,,
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® The invariance conditions f,,=0: mp,+np,,=0 and
Bre=0: (M’ -n°)B,+mn(B,, - B.,)=0 yield

Brx=PBis=Pp,=0 and Pp,; =P,

® The resulting constitutive equation, obtained by simplifying the
constitutive equation for a specialy orthotropic material, is given by

Oy C11 C12 C12 0 0O - €41 B”

(o P C,C,Cxs 0 0 O €2 B2

Oy | _[CCyxCpr 0 0 0 €33 P2 5
0w (=0 00¢C,0 0|2, (%) 0 [(T-T«
O 0 00 0C,0|]|2e, 0

O12 0 0 0 0 0 C,| \2¢, 0
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® Applying the same process to the equations for the compliances and
coefficients of thermal expansion yields

€11 _S11 S12 S12 0 0 0 | o, a,,

€5 S12 822 323 0O 0O O, o,

€33 — S12 st 822 0 0 0 O, o, _
2823 - 0O 0O S44 0 O Oy + 0 (T Tref)
2¢,, O 00 0S,,0 O3 0

2¢,, 0 0 00 0S| \%: 0
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Finally, consider a tetragonal material with planes of reflective
symmetry defined by 6,=0 and =7 and by 6;=+7

The constitutive equations are derived by using the corresponding
equations given previously for a tetragonal material that has four
reflective-symmetry planes that contain the x; axis, along with a

juxtaposition of indices

In particular, the desired constitutive equations are found by simply
determining the renumbering of the indices that brings the figure
shown below with four symmetry planes that contain the x, axis into
congruence with the adjacent figure shown below with four symmetry
planes that contain the x, axis

338
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X Plane X Plane
Plane 3 Plane 2
93 = _"/3ﬁT 93 = +1/3 92 — M3ﬁT 02 = +1/3
____Plane , ____Plane
. 0, = +n/2 : 0, = +n/2
s--r-Af—T—* X, /l--- -A—1—>X,
/ {Plane {Plane
0,=0 0,=0
';( Plane )/ Plane
1 03 = +JT/2 X3 62 - +J'd2
Four symmetry planes Four symmetry planes

that contain the x, axis that contain the x, axis
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Inspection of the figures indicates the following transformation of the
indices:1 —-3,2—1,and 3 - 2

Next, it must be realized that the exchanging of indices must be used
with the indices of tensors to determine the indices used with the
abridged notation (matrix)

e The following index pairs relate the tensor indices to the matrix

indices
tensor notation 11 22 33 23,32 31,13 12, 21
matrix notation 1 2 3 4 5 6

Using this information along with 1 — 3,2 — 1, and 3 — 2 gives the
relations: 4 — 6,5 —=4,and 6 — 5
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® Likewise, the transformation of index pairs that appear in the abridged
notation are given by

11 — 33

12 - 13 22 — 11

13 — 23 23 —> 12 33 — 22

14 — 36 24 — 16 34 — 26 44 — 66

15 — 34 25— 14 35 — 24 45 — 46 55— 44

16 — 35 26 — 15 36 — 25 46 — 56 56 — 45 66 — 55

® Consider the following constitutive equations for a tetragonal material
that has reflective symmetry planes that contain the x, axis

O, -C11 C.C;0 0 O - €44 B

O, C12 C11 C13 0 0O €2 B11

Oy | _|CiCi3Cy 0 0 O €33 B as _

on (=00 0cC,0 0|\20. /% 0 ((T~Tel
O3 0O 00 0C,,O0 2¢, 0

O1z |0 0 0 0 0 Gy |\ 2¢, 0
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® Applying the index transformation to these constitutive equations gives

Cis
C.

33

OO

M

0 0
0O 0
0 0

2

OO

N

- C33 C13 CZ3

3

2

0
0
0
C

0
0

0 0
00
00
00
C. 0
ocss

833 B33

€41 B

822 622
2¢,, + 0
2¢,, 0
2¢,, 0
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® Reordering these equations into the standard form yields
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TETRAGONAL MATERIALS - CONCLUDED
REFLECTIVE SYMMETRY PLANES THAT CONTAIN THE x, AXIS

® Applying the same procedure to the inverse equations yields

€44 -333823813 0 00O - Oy Qg3

€, S$:5.5S,0 0 0 O L)

€33 _S:S5S; 0 0 0 O33 Ol33 _
2e. [=|0 0 05,0 0|\on/T) 0 (T«
2¢ 0 00 0S_,.0 O3 0

2:,/ |0 0 0 0 0 S, \On 0
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SUMMARY OF TETRAGONAL MATERIALS - CONTINUED
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SUMMARY OF TETRAGONAL MATERIALS
CONCLUDED

® Inspection of the equations shows that a tetragonal material is a
specially orthotropic material in which the properties associated with
two of the coordinate directions are identical
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MATERIALS
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x,=0

Now, consider the case in which a specially orthotropic material, which

exhibits symmetry about the perpendicular principal-coordinate planes,
also exhibits isotropy in the plane x;=0

For the specially orthotropic material, it was shown previously that the
material properties are given by

o, -c11 C12(:13 0 0O - €44 611

O,, C1zczzczs 0 0O €, Bzz

O3, - C13C23C33 0 0O €3 ﬁaa _
o /=lo00o0c,00]|\2.(/% 0 (T-T) and
Ois 0 000O0C,O0||2e, 0

Otz |0 0 0 0 0C, 2¢,, 0

£, ($,S.:8,0 0 0] /o a,

€ S12 Szz st 0 00O O,, Ay,

€33 - $:$,5,0 0 0 O3 Oss _
2. (5|00 08,00 | \on(*) 0 (T T
2¢,, 0 00 0S,,0 O3 0

2,/ [0 00 O0O0S,| \O 0
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

For this type of symmetry to exist, there must be an infinite number of
elastic symmetry planes that are perpendicular to the plane x, =0

e Equivalently, the constitutive matrices and vectors must invariant
with respect to dextral rotations about the x, axis

The coordinate transformation for this X3, Xz A a,=(i,*i)

symmetry is shown in the figure and

. : X,

is given by X, = X,c0s0, + X,sin0, , i, 1,4 ;

) =

X, = — X,Sin0; + x,c0s80; , and X, = X,, '%'
- > >

with 0 =< 03 <2n i2 X,

i,
The corresponding matrix of 1
direction cosines is given by

I1
] : Xy L Plane of isotropy
a,,a,,a,, cosO; sino, 0 X,

a211 a2'2 a2'3 — - Sin63 coses 0
a3'1 a3'2 a3'3 0 0 1
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

The corresponding stress and strain transformation matrices were
shown previously to be given by

[To(6s) ]

350

cos’o, sing, o o o  2sin6,cos6, |
sin’0, cos®, 0 0 0  -2sind,coso,
0 0 0 0 0
0 0 0 cos0,-sin0, 0
0 0 0 :sin0, coso, 0
- sin0,co0s0, sinB.,cosO, 0 0 0 cos’o,- sin293
cos’0, sin’0, 0o 0 0 sin0,coso,
sin’0, cos®, o o 0 -sind,coso,
0 0 0 0 0
0 0 0 cos0,-sin0, 0
0 0 sinB, coso, 0
- 2sin0,cos0, 2sinf,coso, 0 0 cos’0,-sino,

and



TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

Specific expressions that result from the transformation

-1

[C'] =[T,I[CI[T.] were given previously for an anisotropic material

For a specially orthotropic material, [C’] = [T,|[C][T.]" yields the
expressions given previously for a generally orthotropic material;
that is,

C,,=m’C,, +2m°n’(C,, + 2C,) + n°C,,
C,,=m’n’(C,, + C,, - 4C,) + (m* + n*)C,,
C,,=mC,+nC,, C,,=0 C,.=0

C,, = mn|m’ - n’|(C,, + 2C,) + mn(n°C,, - m*C,,)

C,,=m'C,, + 2m"n°(C,, + 2C,,) + n’C,,
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

C,,=mC,+nC,, C,,=0 C,.=0

C., = mn[n° - m*|(C,, + 2C,,) + mn(m°C,, - n°C,,)

Cyw=C,; C,,=0 C,=0 C,,=mn(C,-C,,)
c,,=m¢C,+nC, C,,=mnlC,-C,) C,=0 C,=0

Cys=mC,+nC, C,,=m’n’(C,+C,-2C,)+(m’- nz)zcee

with m=cos6; and h=sino,

-1

Next, the invariance condition [C]=[T,|[C][T.] is enforced, which
implies the conditions C,.=C,,,wherer,s €{1,2,3,4,5,6)}
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

Enforcing C,, = C,, gives C,, = m‘C,, + 2m°n*(C,, + 2C,,) + n°C,, , which
can only be satisfied in a general sense (arbitrary values for 0,) if
C,=C,, and C,.,+2C,=C,,

Similarly, enforcing C,, =C,, gives C,;=m?’C,, + n’C,,, which yields
C23 — C13

Likewise, enforcing C,, =C,, gives C,,=m°C,, + n’C,,, which yields
Css =C,

Finally, by substituting C,,=C,,, C,,+2C,,=C,,, C,,=C,,, and
C., = C,, into the remaining expressions for C,. and enforcing

C..=C,.,itis found the remaining expressions are identically satisfied
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

Thus, the stiffness matrix for a transversely isotropic material that is
isotropic in the plane x, =0 has the form

C,
C12
C.,

O

12 c13
11 C13
3 C33

o0 0O

which has 5 independent stiffnesses

© O O O

4

O O O O O

Ca
0 %(Cﬁ - C12) |

=y

o o © o o o

0
0
0

o O O

0
0
0

Following the same procedure for the compliance coefficients by using
the transformed-compliance expressions previously given for a
generally orthotropic material and enforcing the invariance

condition [S]=[T.[[SI[T.]" orS,.=S, yields similar results
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

® Thus, the compliance matrix for a transversely isotropic material that is
isotropic in the plane x, =0 has the form

'S.S,S, 0
S,S,S, 0
S,S,.S, 0
00 0S,
0 0 0
0 0 0

which has 5 independent compliances

© O O O
O O O O O

0 S44
0

(S11 - S12)

N|=—
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

For a specially orthotropic material, {a'} = |T.|{a} yields the
expressions for the transformed thermal-expansion coefficients, given
previously for a generally orthotropic material; that is,

— 2 2 — 2 2 —
a1’1’ =m a11 +n a22 a2’2’ =m a22 +n a11 a3'3’ - a33

Ay, =0 a3 =0 Ay = mn(azz - (1-11)

Enforcing the invariance condition {a} = |T8]{a} or a,, = a,, yields
the requirements that a,,=a,, and a,,=0
Following the same procedure for the thermal moduli by using the

transformed-thermal-moduli expressions previously given for a
generally orthotropic material and enforcing the invariance

condition {B} =|T |{B} or B, =B, yields similar results; that is,

B.=B. and B,,=0
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

® Applying all these simplifications, the linear thermoelastic constitutive
equations become

© O O

o .

O
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O

O
O
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONCLUDED)

sy

Thus, the transversely isotropic material considered has 5
independent stiffness coefficients, 5 independent compliance
coefficients, 2 independent thermal-expansion coefficients, and 2
independent thermal-moduli coefficients

(C11 + C12) C13

H H 611
Likewise { } = -
2C .. C..

633

It is interesting to point out that hexagonal materials, defined by
planes of reflective symmetry given by 6, =0, =& , have the same

number of independent elastic constants and thermal parameters as
the transversely isotropic material
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, =0

Now, consider the case in which a specially orthotropic material,
which exhibits symmetry about the perpendicular principal-coordinate
planes, also exhibits isotropy in the plane x, =0

For the specially orthotropic material, it was shown previously that the
material properties are given by

o, -c11 C12(:13 0 0O - €44 611

O,, C1zczzczs 0 0O €, Bzz

O3, - C13C23C33 0 0O €3 ﬁaa _
o /=lo00o0c,00]|\2.(/% 0 (T-T) and
Ois 0 000O0C,O0||2e, 0

Otz |0 0 0 0 0C, 2¢,, 0

£, ($,S.:8,0 0 0] /o a,

€ S12 Szz st 0 00O O,, Ay,

€33 - $:$,5,0 0 0 O3 Oss _
2. (5|00 08,00 | \on(*) 0 (T T
2¢,, 0 00 0S,,0 O3 0

2,/ [0 00 O0O0S,| \O 0
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

For this type of symmetry to exist, there must be an infinite number of
elastic symmetry planes that are perpendicular to the plane x, =0

e Equivalently, the constitutive matrices and vectors must invariant
with respect to dextral rotations about the x, axis

_ _ _ X Plane of
The coordinate transformation for this X3 A" Tisotropy

symmetry is shown in the figure and is
given by X, =X, , X, = X,€0S0, + X,Sin0, ,

and Xx; = - x,sin0, + x,cos0, , with

0<0,<2n

The corresponding matrix of direction
cosines is given by

a1’1 a1'2 a1'3 1 0 0
a,, a,,a,,|= 0 cos0O, sin0,
;4 Azp Ay, 0 - sin0@, coso,
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

The corresponding stress and strain transformation matrices were
shown previously to be given by

[T.]=

1 0 0 0 0 0

0 cos’0, sin'd, | 2sin0,cosd, o 0

0 sin’0, cos’0, -2sin0,cosO, o 0

0 - sin0,coso, sind,cosO, cos’d, — sin'G, o 0

0 0 0 0 cos0, - sino,

0 0 0 0 sin0@, coso,

1 0 0 0 0 0

0 cos’0, sin’0, sin®,coso, 0 0

0 sin’0, cos’®, = -sinB,cosO, © 0

0 - 2sin0,cos0, 2sin0,cosO, cos’d, — sinG, o 0

0 0 0 0 cos0, - sino,
0 0 0 0 sino,  coso,
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

Specific expressions that result from the transformation

-1

[C'] =[T,I[CI[T.] were given previously for an anisotropic material

For a specially orthotropic material, [C’] = [T,|[C][T.]" yields the
expressions for a generally orthotropic material; that is,

C,..=C,, C,,=m’C,+n’C,, C,.=m’C,,+n’C,,
C..,=mn(C,,-C,,) C,.=0 C,..=0

C,, =m‘C, + 2m°n*(C, + 2C,,) + n*C,,
C.,,=m’n’(C,+C, -4C,,) + (m’+n’)C,,

C2,4, = mns(C33 — C23 — 2044) - m3n(C22 - C23 - 2(:44)
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

C,,=0 C, =0 C,,=m‘C,+2m*n*C,+2C,)+n‘C,

O
I

msn(csa - Cyp - 2C44) - mns(c22 - Cy - 2C44)

C,=0 C,=0 cC,,=mn°(C,+C,-2C,)+(m°-n°)C,
C,s=0 C,=0 Cyu=m"Cy;+n°Cy

C..=mn(C,-C,) C,.,=m?C,+n’C,

with m=cos0, and n=sin0,

Next, the invariance condition [C]=[T,][C][T.]” is enforced, which
implies the conditions C,.=C,,,wherer,s €{1,2,3,4,5,6)}
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

Enforcing C,, = C,, gives C,,=m‘C,, + 2m*n*(C,, + 2C,,) + n°C,, , which
can only be satisfied in a general sense (arbitrary values for 0,) if
C.=C,, and C,,+2C,, =C,,

Similarly, enforcing C,, =C,, gives C,;=m?’C,, + n’C,,, which yields
C12 — C13

Likewise, enforcing C., =C,, gives C;; = m°C, + n’C,, which yields
Ces = Css

Finally, by substituting C,;,=C,,, C,+2C,,=C,,, C,=C,,and
C. = C; into the remaining expressions for C,. and enforcing

C..=C,.,itis found the remaining expressions are identically satisfied
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

Thus, the stiffness matrix for a transversely isotropic material that is
isotropic in the plane x, =0 has the form

c,Cc,C, 0 0 0
C.C,C, 0 0 O
C.. Cx Co 0 00 which has 5 independent stiffnesses
0 0 0 }C,-C,) 0 0
0 0O 0 Cs; 0
0 0 0 0 0 C,

Following the same procedure for the compliance coefficients by using
the transformed-compliance expressions previously given for a
generally orthotropic material and enforcing the invariance

condition [S]=[T.[[SI[T.]" orS,.=S, yields similar results
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

® Thus, the compliance matrix for a transversely isotropic material that is
isotropic in the plane x, =0 has the form

S,,S,S, O 0 0|
S,,S,, S, 0 00
S12 S S 0 0 0 which has 5 independent compliances
0 0 0 3(S.-S,) 0 0
0 00 0 Ss 0
0 00O 0 0 S..
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

For a specially orthotropic material, {a'} = |T.|{a} yields the
expressions for the transformed thermal-expansion coefficients for a
generally orthotropic material; that is,

_ —m? 2 — m?2 2
Oy = Oy Ayy = M0y, + N0, Qyz = M0y, + N0,

Ayy = mn(a33 - azz) oy =0 a,, =0

Enforcing the invariance condition {a} = [Ts]{a} or o, = a,, yields
the requirements that a,;=a,, and a,;,=0
Following the same procedure for the thermal moduli by using the

transformed-thermal-moduli expressions previously given for a
generally orthotropic material and enforcing the invariance

condition (B} =T |{B} or B, =B. yields similar results; that is,

Bss=PB, and B,;=0
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONTINUED)

® Applying all these simplifications, the linear thermoelastic constitutive
equations become

c,C.C, 0 0
C,C..C., 0 0
C,C..C, 0 0
0 0 0}C,-C,) 0
0 00 0 C,
0 00 0 0
(S, S., S, 0 0
S,S,S, O 0
S,S.S, O 0
0 0 0 }S.-S.) 0
0 00 0 S,
0 00 0 0
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TRANSVERSELY ISOTROPIC MATERIALS
ISOTROPY PLANE x, = 0 (CONCLUDED)

L

Thus, the transversely isotropic material considered has 5 independent
stiffness coefficients, 5 independent compliance coefficients, 2
independent thermal-expansion coefficients, and 2 independent
thermal-moduli coefficients

C11 2C12

S Bl o _
Likewise { } C. (Cp+C,)

622

It is interesting to point out that hexagonal materials, defined by
planes of reflective symmetry given by 6, =0, =& , have the same

number of independent elastic constants and thermal parameters as
the transversely isotropic material
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MATERIALS
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CUBIC MATERIALS

A cubic material arises from the invariance conditions that are obtained
for a single plane of elastic reflective symmetry that contains a
coordinate axis

X
Precisely, a cubic material is obtained by T ’
enforcing the invariance conditions for a
tetragonal material, for each of the three V

coordinate axes

That is, there are nine planes of elastic St X

symmetry that are glven by 0,=0, = 4 ,
0,=0, + oy T and0,=0, = _4
Expressions for the constitutive '/

equations are obtained directly by -

enforcing the three sets of invariance conditions for the previously
given cases for tetragonal materials sequentially
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CUBIC MATERIALS - CONCLUDED

The resulting constitutive equations are given by

Oy -C11 C12 C12 0 0O - €44 ﬁﬁ

O, C12 C11 C1z O 0 O €, [311

033 — C12 C12 C11 0 0 0 833 611 _
ox( |0 O O C,00O0 2¢,, T 0 (T Tref)
O3 0 0 0 O C44 0 2813 0

O, _ O 00 0 O0C, 2¢., 0

€11 S11 S12 312 0 0 0 - o, a,,

€2 S12 S11 S12 0O 0O O, o,

€33 - S12 S12 S11 0 00 O, a,, _
2823 - 0O 0O S44 0 0 Oy, + 0 (T Tref)
2¢ 4 0 00 0S,0]|0x 0

28, 0 0 00 0S,| \% 0

® Therefore, a cubic material has three independent elastic constants

and one independent thermal-expansion or thermal-compliance
parameter
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COMPLETELY ISOTROPIC
MATERIALS
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COMPLETELY ISOTROPIC MATERIALS

e First, consider the case in which both the planes x, =0 and x,=0 are

planes of isotropy

e Applying the results of both of the corresponding symmetry
transformations successively yields the following constitutive

equations

C11 C12 C12 0 0
011
0 C12 C11 C12 0 0
22
Og; - C12 c12 c11 0 0
os( |0 0 0 }Cc,-C,) O
O13 000 0o lc,-
(0
12 0 0O 0 0

C12)

%(C" -

o O ©O © o

c12)

811

822

833
2¢,,
2¢ .,
2¢,,

611
611
611

(T-Te)

e These equations possess two independent elastic stiffnesses and
one independent thermal moduli; the same as a completely

isotropic material

374



COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

e Similarly,

. S,S,S, O 0 0 . .
€33 — 12 =i =l O33 Q4
2¢,, [ |0 0 0 1(S,-S.,) 0 0 o [T\ 0 (T =Tl
2¢,, 000 0 1S,-S. O O 0
2512 0 0O 0 0 %(S11 S12) Oz 0

B=- (C11 + 2C12)(111

® Now consider a general transformation of the stiffness matrix
previously obtained for a material with two perpendicular planes of
isotropy
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COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

[T, =

[Tl =

 (a,)]

(@)

2a1'2a1'3

The general transformation law is given by [C’] = [T,][C][T.]

2a1'1a1'3

2a1'1a1'2

1
, Where

(@)’

(Ay)

2a2’2az'3

2a2’1az'3

2a2’1az'2

(@)’

(Ags)’

2a3'2aa'3

233'1a3'3

2a3'1a3'2

a,,a;,

[ a2’3a3’3

(az'2a3'3 + az’aas'z)

(a,,a,, + a:2,)

(a,,a,, + a,,a,)

and

a1’1a3'1

a1'3a3'3

(a1'2a3'3 + a1'3a3'2)

(a1'1a3'3 + a1'3a3'1)

(a1'1a3’2 + a1'2a3'1)

a1’1a2'1

| (a,,)’

a,,8y;

2 2

(@)

(a1'2a2'3 + a1'3a2'2)

a,,2,5

(a1'1a2'3 + a1'3a2'1)

a1,

(a1'1a2'2 + a1'2a2'1) |

a1’1a1'2

(@)

2 2

(@)

a2’2a 23

a 21 a2'3

a2’1 a2’2

(@)

2 2

(Ays)

a3'2a 33

a 31 a3'3

a;,ay,

2a2'1aa'1

i 2a2’3a 33

(a2’2a3’3 + a2’3a3’2)

(a2’1a3’3 + a2’3a3’1)

(a2'1a3'2 + a,.a;, )

2a1'1a3'1

k 2a 1 ’3a 33

(a1'2a3'3 + a1'3as'2)

(a1'1a3'3 + a,.a;, )

(a1'1as'z + a1'2a3'1)

2a1'1a2'1

228,48,

(228, + @,585,)
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COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

® In addition, the direction cosines that appear in the transformation
matrices satisfy the following conditions, that are given in expanded,
tabular form:

—h

W W NN WD

Ay Byq = Oy
(a1)" + (a1,)" + (@15) = 1
@48y, + 85,8, + A,,8,, =0
a;,8,, +a;3,8;, +a;,8,, =0

"+ (a2,3)2 =1

(32'1)2 + (a,)
@348 + A3,8,, + A348,, =0

(Agq)" + (835)° + (@) = 1

377

=

W W NN WD

Agy gy, = Oy
(a,4)" + (a,)° + (a;,)° =1
a;,8,, + A8, + 83,85, =0
a;58;; + @p38y, + 3,85, =0

>+ (a3,2)2 =1

(a1'2)2 + (a,,)
@;38, + A8y, + 83,8,, =0

(Ay5)" + (855)° + (A35) =1



COMPLETELY ISOTROPIC MATERIALS

(CONTINUED)

For the general transformation to be a symmetry transformation,

[C'] = [TIICIIT.]" becomes [C]=[T,|[C][T.]
e ltis convenient to rewrite this expression as [C][T.| - [T,][C]

where C,, =

[C]IT.| =

[ TollC] =

-1

;(Cﬂ - C12) ’

C.,C.C.0 0 0 (an)® (ar)® (ars)®  apay  awman ayd@y;
C.C,C,0 0 0 ,,,,(,?‘,2,1),,,,,(?,’,",?,,),,,,,,(,?,a,'a,) ,,,,,,,,,,,,,,,, aydrs aydys aydz
C.C.C, 0 0 0| (asn)® (as2)® (ass)® agdys agrdgs agidsy
0 0 0 C,, 0 O ||2a2133128,5852 2825855 (322833 + 825852) (321833 + 82585+ ) (321852 + 825854
0 0 0 O C, 0 | 281185123128522815855 (a12853 + 813832 (11853 + 315831 (1182 + 312851)
O 0 0 0 0 C44 2311321231232223133235(31'232'3+31'332'2)(311323+a13321)(311a22+a12a21)
2 2 2 7,

(a11)” (a42)” (a4s) 2a,,a,;, = 2a,a, 2a,.a,, C.C.C. 0
(a """ ul (5 """ )(a """ )é """"""" 2a,.a,. - 2a,a,. 2a,a,, TR AT

,,,,,,,, SN U ol B TN O . < S c.C.,C,0
(821)" (aa)” (82a)” 28585  28g@y 2a;@y, Cc.C.C, 0
?,?15‘,,31???i‘,,ﬁ?????se,(??,%,"‘é?f,i‘,e??s,2,,),,,(?,?,1,“‘,,331,5‘,3??31,),,,(??,@32+322a31) 0 00C,
?‘,115‘,,31?1?,?‘,‘,3?,5‘,,1?5‘,‘,33,(,?,13?,33,?,,?‘,‘,1??3%),,(,?11??3,T""13331)(a“a“*a‘za“) g 8 8 g

Q14821 815857 815850 (15820 + 815852) (814850 + B14851) (214820 + 8102 ) |

378

=

0],

and

oo oo

o




COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

® Performing the calculations for each element of the matrix equation
[CIIT.] - [T,I[C] =[0] gives

11: C12:(az'1) + (a3'1) o (a1'2) o (a1'3) =0
12: C12:(az'2) + (as'z) — (a1'2) — (a1'3) =0

2 2 2 27

13: C12_(az'3) + (a3'3) - (a1'1) = (a1'2) i =0

14: C,;|a,,a,, + @538,, + @3585,[ =0

15: C,;|a,,a,4 + @558, + @3585, [ =0

16: C,,|a,,a,, + @,,a,, + @;3,8;,[ =0

2 2 2

21: C12:(a1'1) + (a3'1) _ (az'z) — (az's)z] =0
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COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

2 2 2

22: C12:(a1'2) + (as'z) - (32'1) = (32'3)2] =0

23: C12:(a1'3) + (as's) - (32'1) - (32'2)2] =0

24: C,, A138, + Ap@5, + 23,85, =0

25: C,, A58y + Ap38,, + 23,25, =0

26: C,,|a,.,a,, +a,,a,, + a;,a;,|=0

2 2 2 27

31: C12:(a1'1) + (a2'1) - (as'z) = (as's) 1= 0

2 2 2 27

32: C12:(a1'2) + (az'z) - (33'1) - (as's) 1= 0

2 2 2 27

33: C12:(a1'3) + (az's) - (33'1) = (as'z) 1= 0
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COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

34: C1za1'3a1'2 + A,,@,, + 3585, | = 0
35: C,,|a,,a,, +a,;a,, +a,;a,,[=0
36: C1za1'2a1'1 +a,,A8,, + a;,83| = 0
41: C,la,,a,, + a,,a,, + A,,a,,( =0
42: C1zas'1az'1 + A3,a,, + Q35855 | = 0
43: C,,la;.a,, + a;,a,, + a,,a,,( =0
o1: C1zas'1a1'1 + Q5,8 + 83,845 = 0

92! C127a3'1a1'1 +az,a,, + as'sa1'3i =0

93: C12733'131'1 +a3,a,, + as'sa1'3i =0
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COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

61: C,,|a,a,, +a,,a,, + a,;a,5| =0

62: C,|a,a,, +a,,a,,+ a,;a,5| =0

63: C12 a,a,, +a,,a,, + a,;a,5| =0

The elements of the matrix equation [C][T.| - [T,][C] =[0] that are not
listed above are satisfied identically

2 2

NOWJ ConSider 11: C12[(a2'1)2 + (a3'1) - (a1'2) = (a1'3)2] =0

The condition (a,.)" + (a,,)" + (a;5) =1 given in the previous table

2

Vie|d$ (a1'2)2 + (a1'3) =1- (a1’1)2 ’ hence,

2 2

11: C,[(a.) +(3,) + (a,) - 1] =0
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COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

Next, using the condition (a,,)’ + (a,,)" + (a,,)° =1, given in the

2

previous table, shows that 11: C,,[(a,,)" + (a,,) + (a,:) - 1] =0 is

identically satisfied

By following a similar procedure or by using direct substitution of the
conditions a,,a,, =9,, and a_,,a,, =9,, given in the previous table, it can
be shown that the invariance condition [C][T.] - [T,][C] =[0] is
identically satisfied

Therefore, two orthogonal planes of isotropy imply that every plane is a
plane of isotropy because a symmetry transformation for any plane can
be obtained from the general transformation

e Anisotropic material has two independent stiffnesses and is the
simplest known material, with no dependence on direction
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COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

Now consider a general transformation of the thermal moduli
previously obtained for a material with two perpendicular plane of
isotropy

e The transformation law is given by ('} = [T,|{B}

For the general transformation to be a symmetry transformation,
(") =[T,l{B} becomes {B} - [T,[{B} ={0}

e The expanded form is given by

ﬁﬂ (311) (312) (313) 2a,,a,3 2a,4a,3 2a,4a,, B11
B11 | | | : : 611
ﬁ11 _ 611 — 0
0 0
0 0
0 | @112 a12322 a13323(312323"'313322) (a11323+a13321) (311322"'312321)_ 0
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COMPLETELY ISOTROPIC MATERIALS
(CONTINUED)

By using direct substitution of the conditions a,.a,, = 6,, and
a,da,, = 9, given in the previous table, it can be shown that the

invariance condition {B} - [T,|{B} = {0} is identically satisfied

e Therefore, an isotropic material has one independent thermal
moduli

For general transformations of the compliance matrix and the
thermal-expansion coefficents previously obtained for a material
with two perpendicular plane of isotropy, the transformation laws are

given by [S']=[T.][SI[T,] and (&) =[T.]{a}, respectively

For the general transformations to be symmetry transformations,
[S'] = [T.IISI[T.]" becomes [T.|[S]-[S][T,]=[0] and

{a'}) =T [{a} becomes {a}-[T.]{a}={0)}
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COMPLETELY ISOTROPIC MATERIALS
(CONCLUDED)

By performing the calculations for each element of the matrix equation
[T.I[S] - [S][T,] =[0] , and using the conditions a,.a,, = d,, and

a,a., = 0,, given in the previous table, it can be shown that the
invariance condition is satisfied identically

Similarly, the invariance condition {a} - [T.[{a} = {0} is also satisfied
identically

Therefore, an isotropic material has two independent compliances
and one coefficient of thermal expansion
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CLASSES OF MATERIAL SYMMETRY
SUMMARY OF INDEPENDENT MATERIAL CONSTANTS

The eight distinct classes of elastic-material symmetry are classified
by the number of independent material constants as follows:

e Triclinic materials - 21 elastic, 6 thermal

e Monoclinic materials - 13 elastic, 4 thermal

e Orthotropic materials - 9 elastic, 3 thermal

e Trigonal materials - 6 elastic, 2 thermal

e Tetragonal materials - 6 elastic, 2 thermal

e Transversely isotropic materials - 5 elastic, 2 thermal
e Cubic materials - 3 elastic, 1 thermal

e Completely isotropic materials - 2 elastic, 1 thermal
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ENGINEERING CONSTANTS
FOR ELASTIC MATERIALS
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CONSTITUTIVE EQUATIONS IN TERMS OF

ENGINEERING CONSTANTS

The compliances of a homogeneous, elastic, anisotropic solid are
usually expressed in terms of engineering constants when practical

applications are under consideration

e These constants are determined from experiments

e 2l independent elastic constants imply 21 separate experiments

To determine expressions for the compliances in terms of engineering
constants, it is useful to examine the meaning of each term in the
general, unsymmetric compliance matrix given below

€11

€2

€33
2¢,,
2¢,,
2¢,,
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

It is important to remember, that stresses cannot be measured in a
laboratory experiment; only strains

The terms S,,, S,,, and S, relate the normal strain to the corresponding
normal stress

e The engineering constants used to represent these relationships
are called elastic moduli or moduli of elasticity

e In particular, the symbol E; is used herein to denote the elastic
modulus in the x; - coordinate direction

_ normal stress o;
' normal strain ¢; caused by o;

e Ingeneral, E
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

e Theterms S, S, and S, relate the shearing strain in each coordinate
plane to the corresponding shearing stress

The engineering constants used to represent these relationships
are called shear moduli or moduli of rigidity

In particular, the symbol G; is used herein to denote the shear
modulus in the Xx; - x; coordinate plane

shearing stress o;

In general, G, = shearing strain 2¢, caused by o,
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Theterms S,,, S,,, S,;, S;1; S,5; and S, relate the lateral contraction or

expansion to the expansion or contraction of the solid, in the direction
of a given normal stress

e The engineering constants used to represent these relationships
are called Poisson’s ratios

e In particular, the symbol v; is used herein to denote the lateral
contraction or expansion in the x; - coordinate direction caused by
a normal stress applied in the x; - coordinate direction

normal strain ¢; caused by normal stress o;
normal strain ¢; caused by o;

e Ingeneral, v;=-
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

e Theterms S, ,,S.,, S, S,, S, S, S,, Sis, and S, relate normal strains
to shearing stresses

The engineering constants used to represent these relationships
are generalizations of Poisson’s ratios and are called coefficients
of interaction (or mutual influence) of the first kind, and are
attributed to A. L. Rabinovich

In particular, the symbol 7, ; is used herein to relate the
contraction or expansion in the x, - coordinate direction induced by
a shearing stress applied in the x; - x; coordinate plane

normal strain ¢, caused by shearing stress o;
shearing strain 2¢; caused by shearing stress o;

Thatis, n ;=
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

e Theterms S,,,S,,, S,; S, S, Se3, Sg5 S¢,y and S, relate shearing
strains to normal stresses

e The engineering constants used to represent these relationships
are also generalizations of Poisson’s ratios and are called
coefficients of interaction (or mutual influence) of the
second kind, and are also attributed to A. L. Rabinovich (circa
1946)

e In particular, the symbol n;, is used herein to relate the shearing
strain in the x; - x; coordinate plane induced by the action of a
normal stress applied in the x, - coordinate direction

shearing strain 2¢; caused by normal stress o,
normal strain ¢, caused by o,

o That iS, nij,k -
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

e Theterms S,,S,, S, S, Ss,, and S, relate shearing strains to
noncorresponding shearing stresses

The engineering constants used to represent these relationships
are called Chentsov’s coefficients, and are attributed to N. G.
Chentsov

In particular, the symbol u;,, is used herein to relate the shearing
strain in the x; - x; coordinate plane induced by a shearing stress
applied in the x, - x, coordinate plane

shearing 2¢; caused by shearing stress o,
shearing strain 2¢,, caused by shearing stress o,

That iS, Mii, k=

Note that W« = 1w = W = Wy« because of symmetry of 28“ and o,
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Now, consider a parallelopiped of homogeneous /
material that is subjected to only a constant value of Oy
o,, and no thermal loading, like a stress state that

might be exist in an experiment like a tensile test

e For this case, O
( €, \ | S$,15,,5,5S, S5 S167 (011 \
€ Sz1 Szz Sza S24 st Sze 0
€33 \ — S31 Ssz 833 834 Sss Sss } 0
2¢,, ( S4154:,545 54 Sus S \ 0
2e,, Ss1 Ssz Sss Ss4 Sss Sss 0
\ 28‘2} 7861 Ssz Sss Ss4 Ses Sssf \ 0 )

e This equation indicates that, in general, the parallelopiped will
extend in the x, - coordinate direction, expand or contract in the x, -

and x; - coordinate directions, and shear in each face for this very
simple state of uniaxial stress
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Oq4

From the definition of the elastic moduli, it follows that E, = o

e Noting that the previous matrix equation gives &, =S,,0,, for this

1

simple state of stress, it also follows that S;; = E.

Next, from the definition for the Poisson’s ratios, it follows that

v,=--2 and v,=- -2 for this simple state of stress

e Noting that the previous matrix equation also gives &,=S,0,, and
£ = S50, for this simple state of stress, and using &, =S,,04, , it

S S
also follows that v,=- -2 and Vvi;=-
S11 S11
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

‘V V
e Using S, = El gives the results S, =- E12 and S, =- E13
1 1 X

Next, from the definition for the coefficients of interaction of the second

o 2 2 2 |
kind, it follows that Mz =52, M =52, and N =52 for this

simple state of stress

e Noting that the previous matrix equation also gives 2¢,=S,0,,,
2¢,,=S5,,0,,,and 2¢,=S,0,, forthis simple state of stress, and
using &, =S,0,, italso follows that

S S

MNas 1 = S—41 s Tz 1= 3—51 , and My = S—61

11 11 11
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

e Using S”=El gives the results
1

S, = nE23,1 , S, = M3, 1 and S. = LI PR
1

Now, consider a parallelopiped of homogeneous
material that is subjected to only a constant value of
0,, and no thermal loading o, O

e For this case,

(e )

822
833
2¢,,
2¢,,

\ 2¢,, )

N~
——
|
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

e This equation indicates that, in general, the parallelopiped will
extend in the x, - coordinate direction, expand or contract in the x, -

and x, - coordinate directions, and shear in each face for this very
simple state of uniaxial stress

Oy,

From the definition of the elastic moduli, it follows that E, = Tay

e Noting that the previous matrix equation gives £, =S,0,, for this

simple state of stress, it also follows that S.. = El

Next, from the definition for the Poisson’s ratios, it follows that

Vi =— " and v, =- 2 forthis simple state of stress

€2 €25
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Noting that the previous matrix equation also gives &.,=95,,0,, and
€5 = 93,0 for this simple state of stress, and using € = S,,0, , it

S S
also follows that v,,=- -2 and Vx=- ~>
S22 Szz

vV
Using S..= El gives the results S, =- g and S,=- =

Next, from the definition for the coefficients of interaction of the second

. 2
klnd, |t fO"OWS that n23,2 = 8—22 ’ TI13,2 = ?13 y and n12,2 — 8—22

2¢,, 2¢ €10

for this

2

simple state of stress
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Noting that the previous matrix equation also gives 2&,=S,,0,,
2¢,,=S,,0, , and 2¢,,=S,,0, for this simple state of stress, and
using &, =S,,0, it also follows that

S S
MNas 2 = 3—42 y Mz 2 = 3—52 , and My, = S—62

22 22 22

Using S.. = El gives the results
2
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Now, consider a parallelopiped of homogeneous material O
that is subjected to only a constant value of o,; and no

thermal loading

e For this case, *0
33
( €14 \ S11 S12 S13 S14 S15 S167 ( 0 \
€, Sz1 Szz Sza Sz4 st st 0
) €33 \ - Ss1 Ssz Sss 834 Sss Sae } O3 \
\ 2¢,, f - S41 S42 S43 S44 S45 S46 \ 0 (
2¢; Ss1 Ssz Sss Ss4 Sss Sse 0
\ 2¢,, ) Ss1 Sez Sss Se4 Sss Sssf \ 0 ]

e This equation indicates that, in general, the parallelopiped will
extend in the x, - coordinate direction, expand or contract in the x, -

and x, - coordinate directions, and shear in each face for this very
simple state of uniaxial stress
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

O33

From the definition of the elastic moduli, it follows that Es =%

e Noting that the previous matrix equation gives £ =Sx:0s for this

simple state of stress, it also follows that S, = El

3

Next, from the definition for the Poisson’s ratios, it follows that

va=—-" and v,=-_2 for this simple state of stress

€33 €33

e Noting that the previous matrix equation also gives &1 = S 1303

and €2=Sx03 for this simple state of stress, and using

— S . - S13 - Sza
€33 = 933033 , it also follows that Vi = - S and Vi, =- S
33 33
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

‘V vV
e Using S;= El gives the results S,;=- E‘“ and S,.=- E32
3 3

3

Next, from the definition for the coefficients of interaction of the second

€23 - 2¢;

kind, it follows that Mz, = 5 , N3 =

33 €33

2¢,, .
, and M3 = - for this

33

simple state of stress

e Noting that the previous matrix equation also gives 2&x = S0 |
2., = S5:05 , and 2¢.=Ss0s  for this simple state of stress, and

using €1 =Sx0s , it also follows that

7]23,3:3—43 , 7]13,3=S—53 , and 7112,3=S—63

33 33 33
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

1

e Using Si;=_ gives the results
3
Mo, Nas, _ My,

Now, consider a parallelopiped of homogeneous
material that is subjected to only a constant value of o,
o,; and no thermal loading r

e For this case,

()
822
833 >
2¢,,
2¢,

e N —
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

e This equation also indicates that, in general, the parallelopiped will
expand or contract along all three coordinate directions, and shear
in each face for this very simple state of pure shearing stress

O3

From the definition of the shear moduli, it follows that G = 2¢,,

e Noting that the previous matrix equation gives 2¢x=3S.02 for this

simple state of stress, it also follows that S.. = GL

23

Next, from the definition for the coefficients of interaction of the first

€14 — &2

€
kind, it follows that Mi.s= 5., Mau=5. , and Msz=75.  for this

simple state of stress
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Noting that the previous matrix equation also gives &1 = S0z ,
€2= 5,02 ,and £s=Sx0x for this simple state of stress, and

using 2¢,,= 5,02 , it also follows that

=< , and Non=a

44 44

gives the results

2]

USlng S44 -

23
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Next, from the definition for the Chentsov’s coefficients, it follows that

€43 2¢,,

Wiz 23 = 2¢,, and Wiz 2= 2¢,, for this simple state of stress

¢ Noting that the previous matrix equation also gives 2&:s= S0z

and 2¢..=S.0: for this simple state of stress, and using

—_ 64
and Wiz 2 S

44

S
2¢,, = S44023 , it also follows that W13 23 = S—54

44

o USing Su= GL

23

gives the results

Wq3, 23 Wq2, 23
S == Se=—~—
““a, M ST,
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Now, consider a parallelopiped of homogeneous
material that is subjected to only a constant value of
o,; and no thermal loading

e For this case,

£, \ S$:151,5:55,,5:5 S ( 0 \
€, S21 S5 S5 S5 Sis S 0

€3 \ _ Sa1 S5, S35 S50 Sis S < 0 >
2e,, [ S41154:,54554 S5 S 0
2e,, S5 S5, Ses Sss Sss S O3
2¢, ) Ss1 Sez Sss Ss4 Sss See \ 0 )

e This equation also indicates that, in general, the parallelopiped will
expand or contract along all three coordinate directions, and shear

13

y

1

in each face for this very simple state of pure shearing stress
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Oy3

From the definition of the shear moduli, it follows that G = 5.

e Noting that the previous matrix equation gives 2¢s =350 for this

simple state of stress, it also follows that S = Gi

13

Next, from the definition for the coefficients of interaction of the first

€11

€ €
kind, it follows that Mi1s= 5.~ , Ma=5; , and Ms1w= 5, for this

simple state of stress
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Noting that the previous matrix equation also gives &1 = S.013

€2=5501 ,and €s=Sx01; for this simple state of stress, and

using 2t¢,,=S,0,, it also follows that

S
7]1,13=S—15 . 7]2,13=S—25 , and Non=a

55 55 55

Using Ss = gives the results

1
G,
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o USlng Sss = G—

CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Next, from the definition for the Chentsov’s coefficients, it follows that

€y 2¢,,

Wz 13 = 2¢., and Wi 3= 2¢., for this simple state of stress

e Noting that the previous matrix equation also gives 2€x = S0

and 2¢..=Ss01;  for this simple state of stress, and using

S
2¢,; = Sy,015 , it also follows that M= g™ and Miews=g

55 55

L gives the results

13

Uas 13 Wiz 13
Sp=—+ Ses=——~—
45 G13 and 65 G13

413



CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Finally, consider a parallelopiped of homogeneous
material that is subjected to only a constant value of

o,, and no thermal loading Vs
e For this case, — .

£, \ S, S, S13 S. S15 S167 ( 0 \

€, Sz1 Szz st Sz4 st st 0

€35 \ _ | Sar Ss2 Sa3 Sas S5 S 0

2e, [ S41 S42 S43 S44 S45 S46 0

2813 Ss1 Ssz Sss Ss4 Sss Sse 0

2¢, ) Ss1 Sez Sss Ss4 Sss Seef \ O )

e This equation also indicates that, in general, the parallelopiped will
expand or contract along all three coordinate directions, and shear
in each face for this very simple state of pure shearing stress
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Oy,

From the definition of the shear moduli, it follows that Gi. = %,

e Noting that the previous matrix equation gives 2¢:.=S¢01. for this

simple state of stress, it also follows that S = Gi

12

Next, from the definition for the coefficients of interaction of the first
& € €
kind, it follows that Mw.e= 5.~ , Mae=5. - , and Msz=5, - for this

simple state of stress
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Noting that the previous matrix equation also gives &1 =S:01. |

€= S0, ,and £ =S:0:.. for this simple state of stress, and
using 2¢,, =S,0,,, it also follows that
S S S
Ni,12= S—16 , N2, 12 = S—26 ,and M3 2= S—36

66 66 66

Using Se = Gi gives the results

12
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

® Next, from the definition for the Chentsov’s coefficients, it follows that

& &
Was, 10 = ﬁ and Wi 12 = Fﬁ for this simple state of stress

e Noting that the previous matrix equation also gives 2z =S.0:.

and 2¢:=Ss01. for this simple state of stress, and using

S
2¢,, = S0, , it AlsO follows that W, = S—46 and W2 = S—""‘
66 66

o USlng Sse = GL

12

gives the results

l‘“23 12 l‘“13 12
S,.= ’ S.. = ’
“="G, and =G,
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

Using all of the derived expressions for S

ij?
S11 S12 S13 S14 S15 S16 (o 29 Qyy
Sz1 Szz st Sz4 Sz5 Sze O,, A,
- 831 Ssz Saa Ss4 Sas Sse O3 Ajz
S41 S42 S43 S44 S45 S46 O 2(123
S:: S:, S Ss. S Sie O 20,
Se1 Ssz Sea Se4 Ses See | O 20-12
l Va4 Vai | Mi,23 Myz T
E1 Ez Es Gza G13 G12
_ Vi l Vi | M2z Moz MNea2
E1 Ez Es st G13 G12
_Viz Vy 1 MNs2s Mz Msaz
E1 Ez Es st G13 G1z
1 23, 1 Moo Mas 1 Moz 13 Moz 12
E1 Ez Es G23 G13 G12
MNizi Mgz MNags | Wigas 1 W3, 12
E1 Ez Es Gza G13 G12
Nzt Mizz  MNazs | Wiz Wig s 1
E1 Ez Es Gza G13 G12
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONTINUED

® Relationships between the engineering constants are obtained by
enforcing symmetry of the matrix [S]; that is:

S,=S, —> ‘é:‘é S,,=S, — \é"=? S1w=Sq = 2;.3=nE3
S, =S, — 73,1133 _ TIE131,1 S.=S, — 72,1122 — nE121,1 S,.,=S5,, —> \é?’: = \ézz’
S, =S, — vg,: _ TIEZ::Z S,.=S, — ”’é;,:: _ ”'lész,z S,.=S, — ”’(l;,: _ nE12;2
S, =S, —> Tg,: — nEzs;a S,=S, — 73,1;3 — "é?;?* S.,.,=S, — 73,1122 — "lEm:
SemSa = gregr SamsamiErale saes e lpnate
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CONSTITUTIVE EQUATIONS IN TERMS OF
ENGINEERING CONSTANTS - CONCLUDED

Using the previous symmetry conditions, the constitutive equations are
expressed as

1
€y = E[G" = V1202 — V13033 + N y; 103 + M43 1043 + 7]12,1012] + a11(T - Tref)
1
1
€ = E[_ V21041 F Ogp = V3033 + Ny3 2053 + 143,015 + 1My, 2012] + (1.22(1- - Tref)
2

1
€33 = E[_ V31011 = V3205 F O3z + M3 30,53 + M43 3045 + 1y, 3012] + ass(T - Tref)
3

- 1
28, = G [7]1,23011 + 1, 2305 + 13 23053 + Oy + Uy3 303 + Uy, 23012] + 2“23(1- - Tref)

23

- 1
28,3 = G [7]1,13011 + M, 1302, + M3 13033 + Woj 1303 + O3 + M12,13012] + 2(113(1- - Tref)
13

- 1
2g,, = G—[”'l1,12011 + M 1202, + 13 12033 + Wa3 15023 + W3 12015 + 0-12] + 2(112(1- - Tref)

12
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ENGINEERING CONSTANTS OF A SPECIALLY
ORTHOTROPIC MATERIAL

® The engineering constants for an anisotropic material have been
presented previously herein, for an {X:;X»X;} coordinate frame

e The subset of engineering constants for a specially orthotropic
material are given by
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ENGINEERING CONSTANTS OF A SPECIALLY
ORTHOTROPIC MATERIAL - CONTINUED

Substituting these expressions into

(S,,S,,S,, 0 0 0]
$.8.S, 0 0 0 | (o
S:: - S1sszs 33 00O 0: +
26, (710 0 08,0 0 )0
2] |0 00 0S,0||o
|0 000 0S,]
1 _Va _Va
- = = 0 0 0
Ve 1 _Va
€44 E1 E2 E3 0 0 0
€2 _ Vs _Vx 1
: =~ = = 0 0 0
33 =
2¢., 0 0 0 1 0 0
2¢ G
13
%, 0o 0 o0 |0 G1 0
1
0 0 0 0 0
G12
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T \(T - Tref)

|

gives

(T-T.)



ENGINEERING CONSTANTS OF A SPECIALLY
ORTHOTROPIC MATERIAL - CONTINUED

® Inverting these matrix equations ylelds

o, C11 C.C;0 0 O £, B,
O3 C1 022 023 0 00 €2 B2
O3 \ Cs;CyxCy; 0 0 O €33 B ss _
on(=l0 0 0cC,0 0 20 +{ ' (T-T.«) where
g” 0 00 0C,0O 2¢,, 0
/|0 0 0 0 0C,| \2x C
E, E, E,
C,.= T(" Va3 Vaz) C.= X('Vm + Vo, V31) = X("Vm + Vi3 V32)
E, E, E
C13 — X(Vm + VvV, Vsz) — K(Vm + Vi, st) C,= Xz(-l — Vi3 V31)
E, E. E
C,= X(Vsz + Vv, V31) = X("st + Vi3 V21) Ci:= Ks( 1-v, V21)



ENGINEERING CONSTANTS OF A SPECIALLY
ORTHOTROPIC MATERIAL - CONCLUDED

® And, where the thermal moduli are given by

(111(1 — Va3 "Vaz) + azz("V21 + Va3 "V31) + aas("'m + Vay Vsz)

1 — Vi, Vo — Vog Vi — Vi3 Vi — 2V Vap Vi

a11('V12 + Vi3 "V32) + azz(1 — Vi3 "V31) + ass("'sz + Vs V31)

1 — Vi, Vo — Vog Vi — Vi3 Vi — 2V Vap Vi

a11('V13 + Vi2 "V23) + azz(”\'23 + Vi3 V21) + (133(-| — Vi2 V21)

1 — Vy5 Vo — Vog Vi — Vi3 Va1 — 2V V3p Vyg
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ENGINEERING CONSTANTS OF ATRANSVERSELY
ISOTROPIC MATERIAL

Consider the constitutive equations for a specially orthotropic material

e,| [S#SuSw0 0 O
€, $:5.,S, 0 0 0 O,,
€ \ — S$:36,55,; 0 0 0 O3
2823 0O 0O S44 00 O3
2¢,, 0 0 0O S55 0 Ot
2.) |0 0 0 0 0S| '\°"
1 _Va _Va
e g g 0 o o
_ Ve 1 _ Vs
E. E, E, 0 0 0
_ Vs _ Va1
E. E, 3 0 0 0
1
0 0 0 0 0
G
1
0 0 0 0 0
G13
1
0 0 0 0 0
G12
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ENGINEERING CONSTANTS OF ATRANSVERSELY
ISOTROPIC MATERIAL - CONTINUED

@ For a transversely isotropic material with the plane of isotropy given by
X; = 0, the constitutitve equations have the following forms

o O O

o .

O
O
O

O
O
AL

m
n
»

»

N

»

W

© © O

o O O

»

pury

n
e

(%)

© © O

o O O

»

o oo i
co ¥ ooo

oo O ooo

S
o oooo

o O oo oo

N|=

o O ©O © o

(C11 -

© O O O o

2(S,, -
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S12)

611
611
5033 (T—Tref) and
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= (T = Tref)




ENGINEERING CONSTANTS OF ATRANSVERSELY
ISOTROPIC MATERIAL - CONTINUED

Using the conditions on the compliance coefficients required for a
transversely isotropic material, the matrix equation for specially
orthotropic materials, given in terms of engineering constants, can be

expressed as

i

1 _v _
E E g/ 9 0 0
v 1 _ V34
-y L -Blo o o |/, .
_ Vi Ve 1 O3 0o 4
E E E' 0 0 0 O3; o T T
1 o + 0 ( - ref)
0 0 0 - 0 0 23
G O3 0
0O 0 0 |0 & 0 Oy 0
0O 0 0|0 o %
- E - _
where E,=E,=E, v,=v,=v, G,=G= 21 +v] Oy =0y =0,

E.=FE', G;=G,;=G', and a;=o
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ENGINEERING CONSTANTS OF ATRANSVERSELY
ISOTROPIC MATERIAL - CONTINUED

In this matrix equation; E, v, G, and a are the Young’s modulus, the

Poisson’s ratio, the shear modulus, and the coefficient of thermal
expansion of the material in the plane of isotropy

e Notethat v,,=v, =v characterizes contractions in the plane of
isotropy that result from only tensile stresses applied in that plane

E', G, and o’ are the Young’s modulus, the shear modulus, and the

coefficient of thermal expansion of the material in the plane
perpendicular to the plane of isotropy

For only a tensile stress o,; applied perpendicular to the plane of

isotropy, the contractions are characterized by - =—V

€33 €33

Symmetry of the compliance matrix yields v,;=v,, = "V(E)
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ENGINEERING CONSTANTS OF ATRANSVERSELY
ISOTROPIC MATERIAL - CONTINUED

e Finally, the constitutive equations for a transversely isotropic material,
with the plane of isotropy given by x, = 0, are expressed by

-

1 v v

E E g ° 0 0

v 1 v’
€44 —E E —? 0 0 0 ([ a
€2 vV 1 Oz a
e |_| B E E O 0 O ouly o\ 1)
2¢ 0 0 0 G1' 0 0 O 0 ref
261, o o olo0o 1 o o g
2812 G’ O12

O 0 0|0 O %

@ The five independent elastic constants are E, v, E', v/, and G’

® The two independent thermal parameters are a and o’
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ENGINEERING CONSTANTS OF ATRANSVERSELY
ISOTROPIC MATERIAL - CONCLUDED

The inverted form of the previous matrix constitutive equation is given
by

o, C11 C12 C13 000 €44 311
O, C12 C11 C13 000 €, Bﬂ
Oy | _[Ci3Ci3Cy’ 0 00 €33 P _ where
023 — O 0 0 G , 0 0 2823 + 0 ( T Tref )
O3 0 0 0 0GO]| |2, 0
O 0 0 000O0G|\2e, 0
E ’2 E 12 ’
E 1 - £V - v+ 5V C = v'E
Nl 7 Y ] BRI Bk PRy -3y [ By
Vv - F"V A FV A FV
’ E'a (1 _
E'(1-v) B, = E(x(1 +—v) 8. = Ea(2"v + Eq (1 "V))
33 = P 2E )2 11 ! —v_ 2E 2 33 1 v ZE"V'Z
EY E'Y E'
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ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL

e Results presented herein indicate that, for an {X;X»X;} coordinate
frame, the engineering constants of an anisotropic material are given by

1 S 1 S S S
E.=_o e G L = Y14 = 15 = Y16
1 S, Vi = —S11 23 S.. M23, 4 S, LIFER S, LIFPR S_11
1 S 1 S S S
E,.=— =_"1B G.=—-— = SO = Y2 = S
2 322 Vi3 S11 13 S55 LI PY 322 LI FEW 322 LIFPY 322
1 S 1 S S S
E.= __Yx G,=- = D34 = O35 = 36
3 333 Vo3 = 322 12 366 M3 3 S33 M13,3 333 LI FPES S
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ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONTINUED

and

S S S S S
My,23 = = LIPR = N3 23 = 3—34 Wiz 23 = = Wi 23 = =
a4 a4 44 44 a4
S S, S Sis S

My,13= LI PRT N3i3=a oz 13 = o Wi 13 =

1,13 S, 2,13 S, 3,13 S, 23,13 S, 12,13 _

S S S S S
MNiy12 = L LIPRT = N3 12 = 8—36 Wo3 12 = S—46 Wiz 12 = =
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ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONTINUED

® Using these expressions, the nonzero transformed elastic compliances
for a specially orthotropic material transformed by a dextral rotation

about the x, - axis (m =cos6, and n =sinf;) become

S, = El1:m4 + mznz( (I:;(E_;) - 2v12) + n4E—; S = "VE—‘:*:mz + nZ:—j:E—;
S, = El2:m4 + mznz( ;22 - 2v1ZE—j) + n‘i—j B = ”VE—Z::m2 + nZ:—ZE—j
S1,2,=—\I'E—112 m4+n4—m2nzvl12(1 + E; _ :;(E;))] S,, =El3
S RNy
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ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONTINUED

and

R R I
S;¢ = 22" E—(v ”V23E—;)] S =Gli m2+nzg—j:
S%,=Gi12 4m nzGE—f(E—j)(1 + 2v +E—;) +(m’-n’)




ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONTINUED

® The matrix form of the constitutive equations is given by

435

(T = Tref)



ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONTINUED

Next, by inspection of the previously given engineering constants for an

anisotropic material, it follows that, for an {x,,X,,X,} coordinate frame,

the corresponding engineering constants are given by

G 2'3’

436

S1I4I
Nos, 1 =
1'1’

— S1161

Nz = S—
11

— SZIGI

Niz, 2 = S—
22

— Sars:
Niz,3 = S,



ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONTINUED

and
_Si S.. _ S _ S Sue
N2y = Ny oy = Na, 23 = S Wiz 23 = S Wig, 23 = S
a4 aw aw aw aw
_Sis _ S, _ Sy _ S Sse
N 1g = S Na 13 = N3 13 = S Wogz 13 = S Wig 13 =
55 55 55’ 55 55
_ S _ Sue _ S _ S _ Sse
Ny 12 = Na, 12 = S Na, 12 = S Woz 12 = S Wiz 1o = S
6%6 6%6 66’ 66’ 6%6

It is important to note that because the transformed compliance matrix
has the same structure as a monoclinic material, the conditions

S1'4' = S1'5' = S2'4' = Sz'5' = Ss'4' = Ss'5' = S4’6’ = SS’S’ =0 are valid
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ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL- CONTINUED

Thus

€14 - $,+8,2S5 0 0 S1's'- O,
€22 S1'2' Sz'z' Sz’a’ 0 0 Sz'e' O3,
€33 - S1'3' Sz’s' Sa’s’ 0 0 Sa'e' O3 +
2¢,., 0 0 0S,,S,.0]) o,
2¢,, 0 0 0S,;S., 0 O3
2812 | S1'6' Sz’s' Sse Se'e' ] O,
1 Vo Vay Mg
— = 0 0
E, E, E, G,,
Vi 1 Vo N2
- BN 0 0
E. E, E, G,
_ Vg Vay 1 0 0 Na
E, E, E, G,,
0 0 0 1 Wag, 13 0
Gz’s' c;1'3'
Wig, 23 1
0 0 0 0
Gz’a' G1'3'
Nz, 1 Ni2,2 Niz s 1
0 0
E., E, E, G,

438

o ((T-T«) becomes

2(11'2
01 "1 a1’1
02'2 a2'2
O3 Oy
+ T-T
02,3 0 ( ref)
O,q 0
Oy 201,




ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONTINUED

By using the expressions on the previous few pages, the effective
elastic and shear moduli of a generally orthotropic material are
given by

-1

E1' 4 2 2 E2 E1 4E1
—t=|m +mn — -2 n_—
E, * (Gm (E) ”‘2)‘“ E.
E E E,|” E
or 4 2 2 2 2 4 by 3
—Z=(m +m'n - 2v,—|+n = — =1
2 (G12 12E1) E1 E3
G G,| G G|
23 2 2M23 13’ 2 2M13
=(m +n =|m +n
G23 G‘13] G13 st]
-1
G,. 2 Gy, [ E, E, 2 2)2
=(4m n — 1 +2v,+ — |+ M —n
G., [ Ez(E1 Vet g, |+ )
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ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONTINUED

e Similarly, the effective Poisson’s ratios of a generally orthotropic
material are given by

m'+n’- mznzl(1 +0_E (E1))

Vo — Vi2 Ez G12 Ez
n\’12 4 2 2 E2 E1 4E1
m +mhn (G12(E2) — 2v12) + n E,
m” + an(E)
Vig _ Vis\ E;
nv13 4 2 2 E2 E-| 4E1
m +mn (G12(E2) — 2"v12) + n E,
m” + nZE(E)
Voy _ Vo | E;
nv23 4 2 2 E2 E2 4E2
m +mn (G12—2~v12E1)+n E
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ENGINEERING CONSTANTS OF A GENERALLY

ORTHOTROPIC MATERIAL - CONTINUED

Similarly, the nonzero effective coefficients of mutual influence

of the first kind for a generally orthotropic material are given by

2 2 E2 E1 2E1 2
_ =1l o o[ n2—t
G (E) (™ "] Gu(Ez) ”‘2)+ (" E,
n1' 12’ — mn
| E. \E, m'n E, 1+2 +E1 +(m’ nz)2
E1 V12 E2
E, E,
G, In*-m ]( 2v12E )+ 2( - an—1)
nZ' 12’ - mn
’ E2 2 2G12 2 2)2
1+2v,+ +(m®-n?
Vi —V E,
n _ 2mn G12 E2 13 23E2
3,12 E, | E, m2n2G12

E2 E-| 2 2 2
E. (E_1)(1 + 2~v12+E—) +(m®-n?

2



ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONTINUED

The nonzero effective coefficients of mutual influence of the

second kind for a generally orthotropic material are given by

E,E E
Im® - nz]( 2 —‘) - 2"v12)+ 2(n2—1 - mz)
n = mn G12 E2 E2
o m* + m°n° E. (E, —2v +n45
G12 E2 ” E2
E E E
In* - m"'](—2 - 2"v12—2)+ 2(m2 - n2—2)
n - mn G12 E1 E1
- m* + m’n’ E, —2v E. + n4E
G,, 12E1 E,
E,

N1z, x = 2MN

E,
E_1 Viz — V23E_2
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ENGINEERING CONSTANTS OF A GENERALLY
ORTHOTROPIC MATERIAL - CONCLUDED

® The nonzero effective Chentsov coefficients for a generally
orthotropic material are given by

1 _ G23 1 _ G23
- G13 - G13 G13
M1'3', 23 = mn G l‘"z's',1'3' = mn G G
2 223 23 2 213
m +n m +n

G13 G23
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REDUCED CONSTITUTIVE
EQUATIONS
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS

When, analyzing solids that are relatively flat and thin, simplifying
assumptions are made about the stress state to facilitate analytical
solution of practical problems

e One such assumption is that
the stresses in a thin, flat body,
that are normal to the plane of
flatness, are negligible
compared to the other
stresses

e This simplification is
commonly referred to as the
plane-stress assumption

X,

For a state of plane stress in a homogeneous, anisotropic solid, with
respect to the x, - x, plane, the stress field is approximated such that

O33=0,53=0,;= 0
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

For this special case, the general matrix constitutive equation

- S11 S12 S13 S14 S15 S16-

€44 S S S S S S Oy oy

€ 12 22 23 P24 P25 Do O, oy

€33 - S13 823 Sss Ss4 Sss Sss O33 + Oy, (T _T )
282 S14 824 S34 S44 S45 S46 Oz 201, ref
2815 S5 S25 Sis Sis Sss Sie O1s 20

%2 S 16 S26 Sas Sus Sss S o 20,

€41 \ S11 S12 S16 (o P9 Q4

€, | =[S, Sy Sy {022} +{ a, (T-T.,) and
2812f S16 826 866 Oi2 2(112

€33 \ S13 Sza Sss O, Q33

2¢,, ) =S, S, Sus {022} +{ 20, (T - T,)

2513/ S15 325 S56 (SP 20,
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

In terms of the engineering constants, the plane-stress constitutive
equations for a homogeneous, anisotropic material are given by

1 _Vy LIFRP

E E
€44 ‘\; 1 2 7?12 0'11\ ayy
€, = - 2 E_ GZJZ Oy | + a, (T - Tref)
2812 7]12,11 7]122,2 112 O12 f 20'12

E, E, G12

"E, E G,
€33 N N w (o 29 Qg3
2¢,, | = E,, E; G3;2 Op |+ { 204, (T - Ty)

2¢g,
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

However, simplification of the following general constitutive equation is

not as easy

First, the equation given above is expressed as

- C11 C12 C13 C14 C15
C12 C22 C23 C24 CZS

— C13 C23 CSS C34 C35
C14 C24 C34 C44 C45
C15 C25 C35 C45 CSS

| C16 CZG C36 C46 C56

_ C11 C12 C13 C14 C15 C16_

C.,C,C
C,C;C
C44 C46
CsC;C
CsC; C

448

a B @ N -
(=] » (=] (=]

OO0000O0

2]
(]
L

(=]

(

\

811

€2

€33
2¢,,
2¢,,
2¢,,

€11
€y

€33
2¢,,

2¢,,
2¢,,

ﬁﬁ
ﬁ22
ﬁ33
P2
B
ﬁ12

(T - Tref)

(T - Tref)




CONSTITUTIVE EQUATIONS FOR PLANE STRESS

® Then,using ox;=0,,=0,,=0

000000

-t

—h
—
-
—

iy
N

000000

W

N

N

'y
N

(7] W
(] (3] H (2] w (]

0CO0O00O

=y
(=] (3] £ W N
N

CONTINUED

gives
C14 C15 C16 ( €41
Cz4 C25 Cze €,
C34 C35 C36 €33
C44 C45 C46 28,
C.Cs Co 2¢+5

K 2¢,,

C46 Css Ces_

a11

a22

Q33
20.,,
20,
20,

(T-T.)

® Rearranging the rows and columns into a convenient form gives

011
022
01 2

0
0
0

- C11 C12 C15 C13 C14 C15- ( €,
C12 sz Cze Czs Cz4 Czs €5
C16 Cze Cee Cse C46 Cse ﬂ
C13 C23 Css Cas Cs4 Cas €3
C14 C24 C46 C34 C44 C45 282

€1 Cat ColCu Cra G| 26
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a11
a22

20,

Ass
205,
20,

(T - T.)
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

For convenience, let the mechanical strains be denoted by

80'
:,1 €11 a4
€2 €2 a,,
(¢}
2812 — 2812 2(112 T T )
80 - c - a ( = Fref
33 33 33
(o)
2¢,, 2¢,, 201,
28:’3 2¢ ., 20,

The previous matrix constitutive equation becomes

o, C11 C12 C16 C13 C14 C15 8?1
O, C12 sz C26 C23 C24 C25 €2
On \ _ C16 Cze Cee C36 C46 Css ZL:jz
g C13 C23 Css C33 C34 C35 8:(;3
0 C14 C24 C46 C34 C44 C45 28?
] C15 Czs Css Css C45 Css | 281
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS

CONTINUED

Next, the matrix constitutive equation

is separated to get

fledd
QOO0
QOO0
OO0V O
OO0V
QOO0
QOO LLO
||
%000

o
c
(1]
e S——y
M. o
0 8°S°0
“ N N
—_—
——
w 1 ©
N 1
0O00
T 3 2
000
SRS
0O00
+
e
6T o80T
882
—_—
——
= 8 8
000
8 8 8
000
= oy o
000
]
e
- &8 ¢
olllolo}
—
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

® Solving the previous homogeneous equation for &5, 2¢,,, and 2¢;, gives

€33 C33 Ca4 C35 C13 C23 Cse €11
25:3 = - C34 Cu C45 C.C. C46 €22
¢, C,.C,.C C.C,.C 2¢,

e Back substitution of the column vector containing &5, 2¢;,, and 2¢7; into

O, C.C,C, €11 \ C.,C,C, €33
{022} =[C,,C,, Cy € [ +|Cy Co Cys 2¢,,
O12 C.C,C 28?21 CiuCiCs 28?3
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

The matrix with the subscripted Q terms is given by

-1

Q11 Q12 Q16 C11 C12 C16 C13 C14 C15 C33 C34 C35 C13 C23 C36
Q12 Q22 QZG = C12 CZZ C26 a C23 C24 C25 CS4 C44 C45 C14 CZ4 C46
Q16 QZG QGG C16 C26 CGG C36 C46 C56 C35 C45 C55 C15 C25 C56

Next, expressing the mechanical strains in terms of the total strains
and the strains caused by free thermal expansion results in

Oy Q11 Q12 Q1e €44 (0 2
{022} = Q12 sz Qze €2 [ =\ O (T - Tref)
O Q16 Qze Qse 2¢1, 20,

This equation is manipulated further by defining
En Q11 Q12 Q16 L0 P
ézz — = Q12 sz Qze Ay
612 016 026 Q66 20’12
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

® Thus, the constitutive equations for plane stress, in terms of
stiffness coefficients and thermal moduli, become

(O Q11 Q12 Q16 €11 §11
{022} — Q12 sz st €p [+ | P2 (T - Tref) where
O12 Q. Q, Qg 2¢1, ﬁ12
Q,,Q,Q C.C.,C, C:CL.C||CsCyCys - C:;C,C,
Q,,Q,Q,(=|C,,;C,,C,|-|[C,;C,C,|C,C,C,; C.C,C,
Q;; Q, Q, C.:CxCq CixCuCs||Cis Cis Cys C,;C,;C,
E‘ﬁ Q11 Q12 Q16 / Olyq
and B == [ Q1 Q, Qy A3
B Q16 st st \2(112

e The Q, and Bu are called the reduced stiffness coefficients and
reduced thermal moduli, respectively
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

® The relationship between the reduced stiffnesses and the compliances
is obtained by first considering the previously derived equation

€44 S S, S16 (o 9 Q41
€0 [ = S12 Szz Sze Oy + 1\ Oz (T - Tref)
2812 S16 826 866 012 2(112
® Inverting gives
—1
Oy S11 S12 S16 €44 yq
Oz | = [ S12 S, Sy € [ =) Oz (T - Tref)
Oz Si6 S See 281, 201,
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

Comparing
Oy S11 S12 s16 B / €44 (0 2
Oy | = S12 Szz st €2 [ — | O (T - T f) with
O12 Si6 Sa Ses \2812 20,
(O Q11 Q12 Q16 €14 I§11 \L
{022} =1Q,,Q,Q,|{ & ;+1B»/(T-T.) indicates that
O12 Q, Q, Qg | | 28 Euf
- -1

Q11 Q12 Q16 S11 S12 S16

Q12 QZZ Q26 — S12 822 SZG

Q16 Qze st | S16 Sze See |
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

® The relationship between the reduced thermal moduli and the regular
thermal moduli is obtained by first considering the equation

B, | C11 C12 C13 C14 C15 C16- .,

B., c.C,C,;C,C,C, a,,

B - _ c,C,;C;C,C,C, A3,

623 C14 Cz4 C34 C44 C45 C46 2(123

Bis C:;C;C;;C,C.,;Cy, 2(113

P2/ | €15 € € Cig s Cg | 1 2%

e This matrix equation can be separated into
Bn - C11 C12 C16 L0 - C13 C14 C15 33
B, ) =—[C,C, Cp a, | —[CuCyCyu 2015, and
612 ] C16 C26 C66 ) 20, ] C36 C46 C56 ) 201,
{ Bss} - C13 Czs Css- { a4 } - Css Cs4 C35 - L0 7%

B ) = - C14 Cz4 C46 Oy [ — C34 C44 C45 201,
B s _ C15 C25 C56_ 2a.,, _ C35 C45 C55 | 201
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

® Solving the matrix equation

633 C13 C23 Cse (0 2
B ) =- C14 C24 C46 Ay [ —

B C15 C25 Cse

458



CONSTITUTIVE EQUATIONS FOR PLANE STRESS

CONTINUED

Substituting
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

Noting that

© © ©

000

mw <«
N AN
000
o < 1

SNIN3)

QOO
OO0
OO0

000

< < ©

000

(3] (¢ ©
(3]

000

SR INeY

00O

SNINS)
I

goo
goo
NeX<]
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS

CONTINUED

Finally, noting that

} , the expression

a4
a,,
201,
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

e For a material that is monoclinic, with x, = 0 being a plane of reflective
symmetry, the plane-stress constitutive equations become

€4 - S11 S12 S16 - O, Q4
€2 S12 Szz Sze {022} + | Oy (T - Tref) and
2¢,, _ S16 st Ses | 012 20,

£ - S13 st Sss - O Q33
2823 — 0 0 0 Oy + 0 (T - Tref)
2¢,, 0 0 0 (!\On 0

® The last matrix equation reduces to

€33 = 313011 + S23()-22 + S36012 + a33(T - Tref)
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

® Interms of engineering constants,

1 Vu M |
€p 1 =| -2 - 212 O, ) +{ Oy (T — T,e,)
f 1 EZ G12
2812 MNi24 MNi22 1 Oz 2(112
E,. E G,
Vi3 Va3 12,
€33 =~ E. O — E. Oy + % Oy + (133(1- - Tref)
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

e Similarly, for a material that is monoclinic, with x; = 0 being a plane of
reflective symmetry, the plane-stress constitutive matrix becomes

_1

Q,;Q,Q, C.C.C, C:0 O0|C,0 C:C,Cy
Q,,Q,,Q,(=(C,C,,Cx|-(C,;, 0 O 0 C,C, 0 0O
Q,; Q, Qg C.sCx Ce Cs0 0 0 C,;C, 0O 0O
which simplifies to
C13c13 C13C23 C13C36
C11 C C12 C C16 C
Q” 012 016 33 33 33
C13023 CZ3C23 C23C35
Q,,Q,Q,|=(|C, C C.. C Cx C
Q16 QZG QGG C 8 C é C 8
c.- &) (c.- &) [c,, - L
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

The remaining matrix equation for the strains, given by

823\ C3C4C Cscscse €11
28:3 = - Ca4 C44 C45 C14 Cz4 C46 €5 becomes
; f CxCisCs| |CisCyC

€3 C33 00 C13 C23 Cas €11
2¢,, | = - 4 Cus e ; which reduces to

0cC,C 0 0O
28?3 0 C,C, 0 0O 28?2
£, = — C1[c13s:’, + Cpel, + 2C,e5, | and 2e;, =267, =0
33
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

® Expressions for the reduced stiffnesses in terms of engineering
constants are obtained directly by using the previously obtained results

1 Vo M -1
S,,S., S, E, E, G, gn 812 816 _ 211 212 :16
312 322 st _| _ve 1 Mew and 12 g o | = 12 P22 D26

E1 Ez G12 Q16 st Q66 S16 SZG S66
S16 SZG SGG n12,1 n12,2 1

E1 E2 G12

® Inverting the matrix of compliances yields

E E E
Q, = f(-l - 7]12,2"']2,12) Q,= f(""m + "’112,2711,12) = f(vw + 7]12,1"']2,12)

@)

12

E E
Q,=- f(ntﬂ + "V21T]2,12) =" A (7112,1 + ”V127112,2) Q.. = Kz(.l - 7112,1711,12)
E G

G
st — = Kz(nznz + "V127]1,12) — = A1 ("12,2 + V217]12,1) Qee = A12(1 - V12V21)
A

N

— 1 — V42Va — 7]12,1(711,12 + V217]2,12) - 7]12,2(7]2,12 + V127]1,12)
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS

CONTINUED
j B Q,, Q,,Q,
e Similarly, the expression { B, =-|Q,,Q,, Q, o gives
\612 Q Q 6Q 2a,,

=
>|-L

(E (111(-I - 7]12,27]2,12) + Ezazz(""m + 7]12,1712,12) - 2(;12(112(7]12,1 + V127|12,2))
Bzz = %(E (X.11(”V21 + MN22M4 12) + E2a22(1 - 7]12,17]1,12) - 2G12a12(n12,2 + V21n12,1))

612 = %(E1a11(7|1,12 + V21n2,12) + Ezazz(nz,m + "V12”'l1,12) - 2G120~12(1 - V12V21))
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

® For a specially orthotropic material, the plane-stress constitutive
equations become

€41 S11 S12 0 Oy QA4
€pn [ = S12 Szz 0 {022} + | Oz (T - Tref) and
2¢,, 00 866 O1z 0

€33 = S13011 + S230'22 + (1.33(1- - Tref) and 2e,=2¢,=0

® Interms of engineering constants,

[ 1 Vay
1 _Va g
€1 E\: 1E2 Oy ay
€, | = —ﬁ E- 0 O, +1{ a, (T Tref)
2812 1 ? 1 O12 0
0 0
i G12
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

e Similarly, for a specially orthotropic material, the plane-stress
constitutive equations become

® The last matrix equation gives

€33 = — C1[C135$1 + C 562 ] and 2e,=2¢,=0
33
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONTINUED

Using the previous expressions for e, 2¢;, and 2¢;; , the constitutive

®
equations for plane stress, in terms of stiffness coefficients, become

011\ Q11 Q12 0 €11 Q11 Q12 0 €, oy,
{022 =1Q,,Q,, 0 €2 [ =|Q,;,Qp 0 {822}_ Oz, (T_Tref)
ou) |0 0 Q| lzs] |0 0|\l |0
where
o Culul(e G|
Q Q 0 11 033 12 C33
A C.:Cx C,Cos
Q,Q, 0 |=||C,- C C.- C 0
0 0 Q. 33 33
0 0 C.,
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS

CONTINUED
Next, noting that
611 Q11 Q12 0 (’-11\
B =-{Q,Q, 0 Oy, for a specially orthotropic solid
f.) |0 0q 0]
Oy Q11 Q12 0 €44 611
gives {022 =1Q,Q,, 0 {822 } +{ Ba (T - T
012] 0 0 Qg2 0

Now, note that the general expression for the regular thermal moduli
simplifies to

5. €C,C.C, 0 0 0/
Bzz C12022023 0 0O a,,
B ss - C13C23C33 0 0O [0 F9
B |0 O 0C, 0 O 0
Bis 0 00 0C_,0]|0O0
B 0000 0C,|'9
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS

e In addition,

f}" 611
E;zz ={ P2 -
612 612

CONTINUED
-1
3 C14 C15 C33 Cs4 Cas Bas
s C,.C|C. CL C,s B ; simplifies to
6 C46 Css Css C45 C55 B
1
3 0 (|C,;, 0 O B s
0 0C,, 0 0 which yields
0/flo oc,| |oO
n C.. n
Bao=P2— < Bas 12=0
C., i
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CONSTITUTIVE EQUATIONS FOR PLANE STRESS
CONCLUDED

® In terms of the engineering constants, the reduced stiffness
coefficients and are given by

Q — E1 Q — V12E2 — V21E1
11 = 12 =— -
1 — V12V2y 1 — V12V 1 — V412V2,
E
sz = 2 Qee — G12
1-v,v,

e Similarly, the nonzero reduced thermal moduli are given by

~ Olyq + Oy Vyy ~ Olgp + Oyq Vyy

B..=-E, B..=-E,

1-v,v,, 1-v,v,
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRESS

e Often, the relationship between the planar stresses and strains that are
defined relative to two different coordinate systems is needed

® Consider the dextral (right-handed) rotation of coordinate frames
shown in the figure
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRESS - CONTINUED

® Previously, the matrix form of the stress-transformation law for this
specific transformation was given as

cos’0, sing, 0 0 0  2sin0,cosH,
Oy sin’0, cos’®, 0 0 0 -2sin6,cos, | [ O«
O,y O,
o | 0 0 1 0 0 0 o
Oz 0 0 0 cos0, - sino, 0 O2
O3 . O
o,, 0 0 0 sinO; coso, 0 o,
- sinB,cos0, sinf,cos6, 0 @0 0 cos’d,-sin0,

® Substituting o, = 0, = 0,, =0 into this equation yields

_ L, _ _
cos’0, sin’0, 2sin6,cos0,
Oy Ty 5 - O, (8T 0
\02,2, = sin 0, cos 0, - 2sin0,co0s0, o,, and{o,, ' =10
O,y . . 3 o O, 0
2 - sin0,cos0, sin0,cosH, cos’0,-sinH, |\~ 3
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRESS - CONTINUED

® Thus, the stress-transformation law for a state of plane stress and a
dextral rotation about the x, axis is given by

_ ., _ _
5 cos’0, sin 0, 2sinB,cos6, |/
11 7 i 1
{ 02,2,} = sin 0, cos’®, - 2sinf,coso, { O, }
O, - . . 2
12 - sinB,cos0, sinf,cos, cos’d, - sin 0,

e This law is expressed symbolically by {Z’} = [TG(Gs)]{Z}

whers () ={a), () ={3:] ana

cos’0,

sinze3 2sin0,cos0,

[To(es)] =

. 2
sin 0,

cos’0, - 2sin0,cos0,

- . . 2
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRESS - CONTINUED

e Similarly, the matrix form of the inverse stress-tensor transformation
law was also given previously as

cos’0, sin’0, 0 0 0 - 2sinf,cos0,
O, sin’0, cos’0, 0 0 0 2sin0,cos0, | [ O
Oy O,
oo | 0 0 1 0 0 0 o
O3 0 0 0 cos0, sin6, 0 o
O3 . O3
o, 0 0 0 -sin0,;cos0, 0 o,,

sin0,cos0, — sinf,cosO, 0 0 0 cos’0,-sin0,

e Following a similar process gives {2} - [Tg(es)]_1{2'} where

cos’0, sin’d, - 2sin@,cos6,
[To(e3)] = [TG(_ 63)] = sin’0, cos’0, 2sin0,cos0,

= . . 2
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRESS - CONTINUED

Previously, the matrix form of the strain-transformation law for this
specific transformation was given as

- 2 - 1
cos’6, sin 0, o o 0 sinO,coso,

& . 2 . €

" sin 6, cos®, 0o o 0 - sin,cos0, i
82’2’ 822
e | _ 0 0 1 0 0 0 £,
282'3' 0 0 0 cos0, -sino, 0 2823
2¢... . 2¢

e 0 0 0 sinO, coso, 0 3
2¢,, : : ; g 2¢,,

-2sin0,co0s0, 2sin0.cos0O, 0 0 0 cos0,-sino,

This matrix equation can be partitioned into the following parts

. 2 o
. cos’0, sin 0, sin0,cos0, .
11" 1
. 2 0
2¢.., . . N
€12 _ 28in0,c0s0, 2sin0,cos0, cos’0, — sin'0, | | 2E+
{252,3,\ _ cosﬂag -sin0, {2823} and e =&
2¢,, | sind, coso, (| 2 E—
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRESS - CONTINUED

e The first law is expressed symbolically by {E'} = | T,(6:)|{E}

where {E'} = {2:; } , {E} = {2:; } , and
€,y €,

cos’0, sin’0, sin6,cos0,
[TE(Ba)] = sin’0, cos’0, - sin6,coso,
- 2sin0,cos0, 2sinf,cosO, cos’0, - sinze3

® A useful relationship that is easily verified is given by

T -1

[ T.(0,)] =[T,(0,)] =[T,-6,]
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRESS - CONCLUDED

Similarly, the matrix form of the inverse strain-transformation law was
also given previously as

cos’0, sin’0, 0 0 0 - sin6,cos0,
£,
€1 sin’o, cos’0, 0 0 0 sin0,cos0, "
€, €22
£ | _ 0 0 1 0 0 0 £
2823 0 0 0 cos0, sino, 0 282'3’
2¢
o 0 0 0 - sin@, cose, 0 285
€12 5 5 281.2
2sin0,co0s0, - 2sin0,cos6, 0 0 0 cos0,-sin 0,

From this matrix equation, it follows that {E} = [Tg(ﬂs)]—1 {E’>

where [TS(Gs)] = [Ts(_ 63)] = [TO(Gs)]
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS

® The two matrix equations that resulted from the reduction for a state of
plane stress are

S12 84| (o, o,
S22 Sze {022} + Qs (T - Tref) and
S, S

@ Also,0,=0,=0,=0 and generally €,,=¢,,=¢,=0
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

In terms of another set of coordinates (x1,, X, x3,) that correspond to a
dextral rotation about the x, axis, the constitutive equations must also
have the forms given as

€1 S1'1' S1'2' S1'6’ Oy Ay
€22 = S1'2' Sz'z' Sz'e' Oy ¢+ PPy (T - Tref) and
251’2' S1’6’ Sz's' Se's' Oyz 2(1-1'2'

Oy Q1'1' Q1'2' Q1'6' €41 E1’1’
Ozz | = 01'2' Qz'z' QZ'G' €22 + 62’2' (T - Tref) ’ where
Q1'6' Q Q 281:21 61’2'

E” Q11 Q12 Q16 QA Q11 Q12 Q1'6' S1'1' S1'2' S1’6’
Bor | =- Q12 sz Qze Ay and Q12 Q22 Qz'e' = S1'2' Sz'z' Sz'e'
B2 Q1 6 Qz'a' Qe'e 20, Q1 6 Qz'e' Qs's S1’6' Sz's' Se'e'
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

With this notation, the two sets of thermoelastic constitutive equations
are expressed in symbolic form by

(E} =[S|{Z} + {@)® and {2} =[QI{E} +{B}©
(E'}y = [S'{Z"} +{a'}© and (') =[QE"} +{B}©
where O =T-T,

By using the matrix form of the stress and strain transformation

equations for plane stress, {2} = [Q[{E} + {3}© becomes
[T,] =y =[QI[T.] (E"} +{5}e
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

Premuttiplying by | T| gives

(=) =[T,]lQI[T.] (&} +[T.]{3e

Comparing this equation with {2’} = [Q'[{E’) + {5’} © it follows
that

[Q1=[T,]J[QIT.] ana {#) =[T,[{B)

Rearranging [Q'] = [TG][Q][TJ_1 gives
[Q]=[T,] [Q[T.]
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

Next, by using the matrix form of the stress and strain transformation

equations for plane stress, {E} = [S{Z} + {a}©® becomes
[T.] (&) = [S][T,] (=) + (e}

Premultiplying by [TS] gives

(&'} = [T,][S][T,] (=} +[T.[(}®

By comparing this equation with {E’} = [S'|{0’} + {a'}© it follows
that

[S'] = [TJ[S][TG]_ and (o'} = [Te]{a}
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

e Rearranging [S’] = [T,][S][T.] gives [S] = [Te] [S’][To]
e Noting that for a dextral rotation about the x, axis,

[T.] =[T.] ana [T.] =[T.] itroliows that

S'=[T.][S][T.] S]=[T,][S][T,]
Q=[T,][Q][T.]  [Q]=[T.][Q][T.]
(a)=|T, () {a)=|T,| ('}
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

with
cos’0, sin’0, 2sin6,cos0,
[T0(63)] = sin’0, cos’d, - 2sin0,cos0, | and
- sin0,cos0, sin6,cos0, cos’0, — sinz()3

cos’0, sin’0, sinf,coso,
[TE(BS)] = sin’0, cos’0, - sin6,coso,
- 2sin0,cos0, 2sinf,cosO, cos’0, - sinze3
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

o |Q]= [T(,][Q][TG]T, with m = cosf, and n = sino, , yields

Q,, =m'Q, + 2m°n’(Q,, + 2Q,) + 4mn(m°Q,, + n°Q,;) + n‘Q,,
Q,, = m’n’(Q,, + Q,, - 4Q,) - 2mn(m’°- n*)(Q,; - Q) + (m* + n*)Q,,

Q1,6, —] mz(mz— 3n2)Q16 - mSn(Q" - Q12 - 2066)
+ mns(sz - Q12 - 2066) - nZ(nZ_ 3m2)Q26

Q,, = m'Q,, + 2m°n’(Q,, + 2Q,,) - 4mn(M°Q,, + N°Q,;) + n‘Q,,

Q,, = m’(m°- 3n°)Q,, + m’n(Q,, - Q,, - 2Q,,)
-mn’(Q,, - Q,, - 2Q,,) - n°(n*- 3m*)Q,,

2

Q.. = m'n’(Q,, + Q,, - 2Q,,) - 2mn(m’- n%)(Q,; - Q) + (m* - n%) Q
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

o |Q]= [TE]T[Q'][TS] , with m = cos0, and n = sing, , yields

Q,, =m’'Q,, + 2m’n*(Q,, + 2Q,,) - 4mn(M°Q,, + N°Q,,) + n’Q,,
Q,=m’n’(Q,, + Q,, - 4Q,,) + 2mn(m°- n%)(Q,, - Q,,) + (m* + n*)Q,,

Q16 = m2(m2_ 3n2)Q1’6' + msn(Qﬁ' - Q1'2’ - 206’6')
. mns(Qz'z' . Q1'2' . 2Q6’6’) . n2(n2_ 3m2)02'6'

4 2 2 2 2 4
Q,, = m'Q,, + 2m°n’(Q,, + 2Q,,) + 4mn(mM°Q,, + n°Q,) + n‘Q,,.

Q,,=m’(m°- 3n°)Q,, - m’n(Q,, - Q,, - 2Q,,)
+mn’(Q,, - Q,, - 2Q,,) - n°(n°- 3m*)Q,,

2

Q.. = m’n’(Q,, + Q,, - 2Q,,) + 2mn(m°- n*)(Q,, - Q,¢) + (M* - n°) Q,
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

° [S] = [Ts][s][Ts]T,with m =cosb, and h =sin6, , yields

S, =m’'S,, + m’n*(2S,, + S,;) + 2mn(m’S,, + n°S,;) + n’S,,
S,,=mn*(S,,+S,, - Si) - mn(m°- n’)(S,; - S,) + (m" + n’)S,,

S,s =m’(m°- 3n°)S,, - m’n(2S,, - 2S,, - S,)
+mn’(2S,,- 2S,,- S,) - n’(n°- 3m°)S,,

S,, =m’S,, + m°n*(2S,, + S;;) - 2mn(m’°S,, + n"S,;) + n’S,,

S,s =m’(m°- 3n°)S,, + m°n(2S,, - 2S,, - S,,)
-mn’(2S,, - 2S,, - S,) - n(n°- 3m’)S,,

2

S.c =4m n’(S, +S,, - 2S,,) - 4mn(m*- n’)(S,, - S,,) + (m* - n*)’S,,
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

°® [S] = [TO]T[S'][TO] , with m =cos6, and n =sinb,, yields

S,,=m’S,, + m°'n°(2S,, + S;.) - 2mn(m’S,, + n°S,,) + n’S,,
S,,=m'n’(S,, +S,, - Sgs) + MN(M*- n°)(S,, - S,¢) + (m* +n*)S,,

S,,=m’(m*>-3n°)S,, + m°n(2S,, - 2S,, - S
-mn’(2S,, - 2S,, - S;¢) - n’(n*- 3m’)S,,

4 2 2 2 2 4
S,.=mS,,+mn(2S,,+S,) + 2mn(m S, +n S1.6,) +nsS,,

S,,=m’(m*>-3n°)S,, - m’n(2S,, - 2S,, - S;,)
+mn®(2S,, - 2S,, - S;,) - n°(n°- 3m°)S,

S =4m'n’(S,, +S,, - 2S,,) + 4mn(m’°- n®)(S,, - S,¢) + (M* - n*)’S,,
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

Note that [Q’'] and [Q] can be expressed as
[Q'] = [T.(6)[[Q][T.(-8:)] and [Q]=[T.(-0.)][Q"][T.6.)]

e Thus, one set of transformed stiffness expressions can be
obtained from the other by simply interchanging the primed and
unprimed indices and replacing n with -n

Likewise, [S'] and [S|] can be expressed as
[S']=[T.0)][S][Ts(-6:)] and [S]=[T.(-0,)][S][Ts0)]

e Thus, one set of transformed compliance expressions can be
obtained from the other by simply interchanging the primed and
unprimed indices and replacing n with -n
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

{a') =|T,|[{a} , with m=cos6, and n=sins, , yields

2 2 2 2
o, =Ma, +2mna,, + N a,, A, =M a,, — 2Mmna,, + N a,,

a,, = (m*- n®)a, + mn(a,, - a,)

Similarly, { @} = [TG]T{G’} gives

2 2 2 2
o, =Maoa,,+2mna,, + N a,, a,, =Ma,, —2mna,, + N a,,

a,, = (m°- n’)a,, + mn(a,, - a,,)
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONTINUED

° {/3)'} [TG]{B} , with m =cosf; and n =sin, , yields

~ 2~ ~ 2~ ~ 2~ ~ 2~
Biv=mp,+2mnB ,+nP,, B, =mB,,-2mnB,,+ NP,

B> = (m2_ nz)Bu + mn(ﬁzz - 611)

e Similarly, {/;’} = [TS]T{ﬁ'} gives

~ ~

2% ~ 2% 2% ~ 2%
Bu=mp,. —2mnB,, + N B, Bo=M B, +2MNP ., + N B,

~ 2 ~ ~

612 — (m - nz)sz' - mn(ﬁz'z' - 61'1')

495



TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRESS - CONCLUDED

Note that {¢'} and {a} can be expressed as
{a)=[T,0.)[{@) and {a)}=[T,(-6,)]{a?}

e Thus, one set of transformed thermal-expansion expressions can
be obtained from the other by simply interchanging the primed and
unprimed indices and replacing n with -n

Likewise, {#'} and {3} can be expressed as

~

(B} = [T 0){A} and {B)=[T,(-0:)[{5}

e Thus, one set of transformed thermal-compliance expressions can
be obtained from the other by simply interchanging the primed and
unprimed indices and replacing n with -n
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS

When relatively thin plates, with uniform thickness h, are supported
and subjected to inplane loads such that the dominant stresses,
strains, and displacements act only in planes parallel to the plane x,=0
shown in the figure, significant simplifications can be made to the
equations governing the elastic response

: X
Moreover, these dominant response ’
quantities are presumed to vary
symmetrically through the plate L
thickness, givenby - 5 <x, <+ 15, X,

such that no significant bending |
deformations are exhibited by the ){ T
plate E

In contrast to the plane stress approximations previously presented
herein, when these conditions exist, with respect to the through-the-
thickness variations, the plate response is described as a state of
generalized plane stress
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

For a state of generalized plane stress in an anisotropic solid, with
respect to the plane x, =0, the displacement fields in the x,-, X,-, and x,-

coordinate directions are approximated by averaging the through-the-
thickness variations as follows

h

+ 5 +h
U,(x, x,) = %f Uy (% X %) dx, Uy(x,, x,) = %f * uy(x, X, %) dx,

N

+h
and U3(X1, xz) - %f 2 us(xﬂ XES X3) dx3 =0

e To exclude bending deformations, U,(x. x.) =0 is required for the
out-of-plane displacement field

e Note that allowing u(x, x., x,) = X, € , where ¢ is a constant

satisfies U,(x,, x.) =0
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

The strain-displacement relations of the linear theory of elasticity, given

1 aui auj .
by &;(x x» X)) =5 ax. T ax | » are approximated as follows
i i

NS

First, average strains are defined by &;(x. x.) = % f €;(X0 Xz X,) dx,

N

- u 1 aui auj n n - -
Substituting aij(x" X, X, ) = _2(—ax + e ) into this expression and using
j i

the definitions for the average displacements yields

;(aui + (')Uj

€(xn %) =5 ox * ox ) , 28,=2§,=0 and g, =¢

e Thus, € represent a uniform through-the-thickness normal strain
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

Next, the stress field is approximated such that o, =0,,=0,,=0

e For this case, the stresses in a thin, flat body, that are normal to the
plane x; = 0, are presumed negligible compared to the other

stresses

In addition, average stresses are defined by

.h
Oji(x: X,) = %Ji 2 oji( X1 X, X;) dX,

h
2

The conditions on the presumed stress field are satisfied by the
previously derived plane-stress constitutive equations given in the form

044 €14 Ly,
O | = €2 [ — | Ox2 (T - Tref) and
O 2¢,, 2,
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

Oy Q41

{022} + { Ay }(T - Tref)
Oz 2a,,
€33 (o 39 Qsg

{2823} = {022} + {2(123 }(T - Tref)
2¢,, Oy 20,

e That is, substituting 0., =0, =0,,=0 into the general form of the

constitutive equations and simplifying yields the same plane stress
constitutive equation given above
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

Restricting the plate to homogeneous construction, integration of the
constitutive equations through the plate thickness yields

Oy Q; Q, Q| Ex Q,, Q, Q[ «a, ] +h
(:’22 = Q12 sz st 522 - Q12 sz Qze (PP Ff h (T - Tref) dX3
Oz Q16 026 056 21_.:12 Q16 st QGG 20, T2

Next, the temperature change T -T, is presumed to vary symmetrically
through the plate thickness so as not to cause bending deformations

The average temperature change is defined as

Nz

(:)(xu xz) - %f+ (T - Tref) dx3

h
2

such that the constitutive equations become
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

O, Q, Q,Q 2t Oy | —
{622} = Q12 sz Qze 522 - { QA }®
O1o Q16 Qze Qee 2(_-:12 20,
€4 \ S11 S12 S16 O, (o B9 \_
Similarly, €, /=|S:25,S 622} + { o, /(® and
2(_512 f S16 Sze Sss_ O12 20"12[

Inspection of the last matrix equation reveals that the material must be
monoclinic, with the plane x, = 0 being a plane of reflective symmetry, in

order to satisfy the kinematic hypothesis 2g€,,=2g,,=0 and g,,=¢
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

Note that the symmetry requirement on the material properties is
consistent with the symmetry requirements imposed up front on the
displacements, stresses, and strains

€ S13 Sz3 Sse O Oy |
Thus, { €, ; =[S:1S:S,|{0»; +1{ 20, ;0 becomes
23_-:13 S15 st Sse Oz 201

Oy Qg3 \_
G, +1{ 0 [@ , which reduces to
0

8 = S13(_)'11 + 823622 + S36612 + (1.33@)
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

In terms of engineering constants, €=- 125, - = 5, + '=** 55, + 0,0 and

g 1 _Va M |

1 E, E, G, Oy f(x" _
P — V1 1 lrl2,12 -
€2 (Z| "E E . Gp | +{ 0 O
2§ Mar Mae 1 | | Op 20,

12 E1 E2 G12 |

Now consider the previously derived stress-transformation law for
a state of plane stress and a dextral rotation about the x, axis is given

_ L, _ _
fﬁ cos’0, sin’0, 2sin@,cos6, |
11’ ) i 1
\ 02,2,} = sin 0, coszﬂ3 - 2sin0,co0s0, { Oy, }
o, . . . 2 (0
2 - sin0,cos0, sin0,cosH, cos’0,-sin O, |\ "

This law was expressed symbolically by {Z’} - [T0(63)]{2}
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

, 01'1' 011
where {2 } = a2 i ] {Z} =92/, and
O,y O,
cos’0, sin’0, 2sin0,coso,
[T0(63)] = sin’0, cos’0, - 2sin0,cos0,
- sin0,cos0, sin0,cos0, cos’0, - sin’0,

e Integrating the stress transformation law over the plate thickness yields

the trans formation law {il} - [To(es)]{i} , where

Oy =/ 1 Oy
O, ; dX; and {Z } = h Oy, | dX,
Oy, O,y

h h
*a *2

()=

Nz
N
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONTINUED

® Likewise, the previously derived strain-transformation law for a
state of plane stress and a dextral rotation about the x; axis is given by

{(E"} = [T(0) {E}

where {E'} = {2:;; } , {E} = {2:; } , and
€,y €,

cos’0, sin’0, sin0,coso,
[Ts(es)] = sin’0, cos’d, - sinf,coso,
- 2sin0,cos0, 2sinf,cosO, cos’0, - sinze3
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CONSTITUTIVE EQUATIONS FOR GENERALIZED
PLANE STRESS - CONCLUDED

e Integrating the strain transformation law over the plate thickness yields

the transformation law { E’} = [Tg(ﬂs) ] {E} , Where

+h h
€1

E)=p| (& wa (B

2¢,,

+
2
1 11
H €22 dxs
h 2¢,.,

2

_h
2

e Comparing the stress and strain transformation equations and the
constitutive equations for generalized plane stress with the
corresponding equations for plane stress, it is seen that they have
identical structure

e As aresult, the constitutive equations for generalized plane

stress transform in exactly the same way as those for plane
stress
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES

Another practical case of interest that is similar to generalized plane
stress is the case of thin, nonhomogeneous plates that undergo inplane
deformations without any bending deformations

For this case, the stresses in a thin,

flat body, that are normal to the x, - x, Xs

plane shown in the figure, are

presumed negligible compared to the p

other stresses X
2

h

Thus, the stress field is / l

approximated such that o,=0, X, T

6x=0,and o;,=0 —25X3$+2

But, O,y = Oyy(X45X5X,) , 02 = O 55(X45X55X5) , and O.. = O 12(X 15X X;) are permitted

because of through-the thickness nonhomogeneity that is presumed to
exist
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

In addition, the plate-like body is required to have a uniform thickness
h and is not allowed to bend when subjected to inplane loads

The conditions on the stress field are satisfied by the previously
derived plane-stress constitutive equations given in the form

044 \ Q11 Q12 Q16 €11 oy
{022 = Q12 sz st €2 [ — | Oz (T - Tref)
012] Q16 Qze Qee 2¢ 1, 20,

In the present formulation, the total strains are presumed to be uniform
through the plate thickness; that is,

€11 = &44(X,)X,) , €25 €5(X1sX,) ,and €= €15(X1:X,)

However, the plate is allowed to be nonhomogeneous through the
thickness such that the reduced stiffness coefficients and the
coefficients of thermal expansion can vary with the x, coordinate
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

Because of the plate’s thinness, the temperature change T -T,; is
presumed to be uniform through the thickness

The requirement that the plate not bend is fulfilled by picking the middle
surface of the plate to correspond to x, = 0 and then to require that

the following integral be valid

This matrix integral equation then requires the following through-the-
thickness symmetry conditions on the stress field

0'11(X1, Xy — xs) = O-11()(15 X2 xs) ) ozz(xu Xy — xs) = Gzz(xu X2y X3) y and

0‘12()(1! xzs - xs) = ()'12(X1, xzs xs)
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

The requirement that the plate not bend also places requirements on
material properties

First, note that substituting the plane stress constitutive equation into
the previously stated integral equation yields

h +%
€11

X; dX,{ €, ;) —
2¢,,

Next, note that for arbitrary strain and temperature fields, the two
integrals in the above equation must vanish independently; that is,

x,dx, =0
2(112

Q11 Q12 Q16
Q12 Q22 QZ
Q,Q,;Q

16

o

{ Ly, }x3 dx, (T-T,) =0

20,

2 66

NS

h h
2 *2

Q,; Q,; Q¢
Q12 Q22 Q26

Q16 Q26 066

x,dx,=0 and

Q,,Q,Q,
Q,,Q,, Qy
Q. Q, Qg

Nz

_h
2
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

N\:'

The integral

Q
Q, X, dx, =0 requires that the reduced
Q

N\:'

stiffness coefficients be symmetric functions about the plane x, =0

e Thus, the full set of stiffness and compliance coefficients, Cii and
S;» must be symmetric about the plane x; = 0; i. e., monoclinic

h
a2

The integral

Q,, Q,,Q
Q,, Q,, Q
Q. Q, Qs

{ 0y, }x dx;,=0 and the symmetry

h 2(1'12
2

requirement on the reduced stiffness coefficients require that the
coefficients of thermal expansion be symmetric functions about the
plane x, =0
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

® Recall, that for a material that is monoclinic with respect to the plane
X, = 0, the general form of the constitutive equations is

0

(S,,S,,S,, 0 0S
S12 SZZ S23 0 0 SZG
S13 S23 S33 0 0 S36
0 00S,S,0
0 00S,.S,,0
_S16 st Sse 0 0 See_
Cc,C,C, 0 0C,]
C12 C22 C23 0 0 C26
C13 C23 C33 0 0 CSG
0o 00C,C,0O0
0 00C,C.0O
16 C26 C36 0 0 C66_

514

Y
(=2}
!

611
622
633

612

(T - Tref)

(T - Tref)



»woun

(=] N

—

CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

»woun

(] N N

00O

(=2} N

nwoon

2]
(=]

In addition,

—h

iy
(=2}

N
(2]

00O

(=2} N N

C.C
C.” 13 13
Q,
C13C23
st = C12
Qee
C13C36
C16_
l _h N2
E1 E2 G12
_J l n2,12
E E ¢, | and
LI BPY LI PP 1
E, E, G,
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

To facilitate the formulation of a two-dimensional boundary-value
problem, the through-the-thickness functional dependence of the stress
field is eliminated by introducing the following stress resultants

011

O,, ; dX,

012
Substituting

ER R
Oy 2¢,, 20,

into the expressions for the stress resultants and performing the
integration yields a two-dimensional constitutive equation

S
zzz
N N

[[]

Q, Q,Q,
Q,,Q,,Q,
Q, Q,, Q.
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

The two-dimensional constitutive equation is given by

an A11 A12 A16 €44 ,@11
\ N,, / = A12 A22 Azs €n (T Ezz (T — Tref)
N, AsAxAg 2, \ 912
where
+h +h
A11 A12 A16 2 Q,;Q,,Q, fﬁn 2 Q,, Q,, Q Ay
A,A,A, |= Q,,Q,,Q,|dx, and | B, | =- Q,Q,Q, | a, ' dx,
A A, A, _% Q, Q, Qg \ 912 _% Qs Q; Qs \2(112

The A; and P, are called the inplane, plate stiffness coefficients and
thermal moduli, respectively
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

A more convenient form of the two-dimensional constitutive equation is
obtained by first inverting it to obtain

11

(T - Tref)

22

TR TR TR

12

Next, the inverted matrix equation is manipulated to look like the plane-
stress constitutive equations

€41 S11 S12 S16 (o 29 Q4
€n [ = S12 Szz st On ( + | Ay (T . Tref)
2¢,, S16 526 Sss Oz 20,

That is, a set of overall plate coefficients of thermal expansion are
defined to make the construction of the equations paraliel
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

The overall plate coefficients of thermal expansion are defined as

®
_ -1 ~4h
&11 A11 A12 A16 911 \ A11 A12 A16 2 Q11 Q12 Q16 Ay
& | =|[ApARAL| (B, =|ALALA, Q,Q,Q, | a, ) dx,
24, A.A, A, [312/ A.A, A, B Qs Qs Qo \Zamf
~ 2

so that the two-dimensional constitutive equation is given by
N, A11 A12 A16 €41 f Qa,

N,, ) = A12 Azz Azs € | — | Oz (T . Tref) or
N,, A16 A26 A66 2¢,, \ 24,
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

A, a, A
= QA Ay Ay
A Ay Agg

—t

16

A, A A
For convenience,let (A, A,, A,
A A, A

811
822 -
2812

The subscripted a terms are plate compliances that are given by

so that

a,;aa; || N, \ ayy
a12 azz aze sz + &22 (T - Tref)
a16 a26 ase | N12 f 2&12 f

a.. = (AzzAss - Azzs) a. = (A16A26 - A12A66) a. = (A12A26 - A16A22)
" |A = |A] i |A]
- (A11A66 = A216) - (A12A16 - A11A26) - (A11A22 - A212)
Y Y a A] o= A

Where | A| — (A11A22 - A212)A66 - A11A226 - A22A216 + 2A 12A16A26
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

Once a given boundary-value problem is solved, the strain fields
E1(XpX,) | €x(XuX:) and 2€.(XsX.) are known

The stresses at any point of the body are found by substituting the
strain fields and the coordinates of the given point into

Oy €11 Q4 \\
Oy | = €2 - a2 (T = Tref)
BN E (R

The other strains are given by

Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 QGG

€ S13 S23 S36 (o P9 Qj3
2g,, =10 0 0 |[{o,,+{ 0 (T-T.) which reduce to
2¢ 0 0 0| !Cx 0

2€,,=2€,=0 and €, =S,,0,+ S0, + S0, + ay(T - T,
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

Now consider a transformation of coordinates that corresponds to a
dextral rotation about the x, axis

The stress-transformation law for a state of plane stress has been
given by

{Z’} — [TO(G:;)]{Z} where {Z’} E{Ezz;}, {2} E{gl} , and

cos’0, sin’0, 2sinf,cos0,
[T0(63)] = sin’0, cos’d, - 2sin0,cos0,
- sin0,cos0, sinf,cos0, cos’0, — sin263
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

® Integrating the stress transformation law over the plate thickness yields

the transformation law { N ’} - [To(ea) ] { N } , Where

h
N, o, f N, 2 Oy
{ N } = N O, dxs and { N ’} = Nz'z' = {02'2'} dxs
N,, O, \k N.. O,z

_h
2
® Likewise, the previously derived strain-transformation law for a
state of plane stress and a dextral rotation about the x, axis is given by

(E'} = |T.(0.) {E} where {E'} = { } E} = {2}
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

cos’0, sin’0, sin0,coso,
—_— = 2 2 .
and [T8(63)] = sin 0, cos 0, — 8in0@,cos0, - and
— 2sin0,cos0, 2sin0,cos0, cos’0, — sin’0,

remains unchanged for thin, nonhomogeneous plate

|
o)
q
o
o)
=
<
D
El
D
=
o
@
@
™
=
>
S|
1|
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

11’

A. A A
Similarly, let [A']| =[A, A, Ay,
A.A, A

Y
o

such that [A’]:f

N

The transformation laws that relate [A] and [A’| are obtained by using
the following plane-stress transformation equations

[Q]=[T,J[Q][T,]  [Q]=[T.][Q1][T.]
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

Integation of [Q']=[T.J[Q][T.]" and [Q]=[T.][Q][T.] overthe
plate thickness yields [A]=[T,][A][T,] and [A]=[T.][A’][T.]

h

From [A] =f+hE | Q] dx, , it follows that [A]_1 =f

2

a,,a,,a;, i S11 S12 S16 _1
Noting that [a] =|a,a,a,(=[A] and [S|=|S.S.S:|=[Q] ,
a16 a26 a66 S16 SZG SGG
. h
it follows that la] = f h2 [S] dx,
2
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

11 1 1

'S,
'S,
'S,

2

2 6

a1l1l a1121 a1’6'
a1127 a2121 a2161

A, Aye Agg

N
N
N

woun

.S
.S
.S

Similarly [@'] = = [A’]_1, |S']=]S. .

6 6

(=]

The transformation laws that relate [a] and [a’| are obtained by using
the following plane-stress transformation equations

T T

[S']=]T.J[S][T.] [S]=[T][S'][T,]
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

Integration of [S']=[T.][S][T.] and [S]=[T,][S’][T.] over the
plate thickness yields [a']=[T.][a][T.] and [a]=[T,][a][T.]

Now consider the thermal moduli of the plate given by

~ 11 i Q11 Q12 Q16 a11
{ ﬁ} S Q,, Q,, Qze ay | dX,
Q,; Q, Qg | | 20y,
611 Q11 Q12 Q16 Ay
Noting that { /3} Bzz =-1Q,Q,,Q,;|{ a, ; for plane stress, it
B12 Q16 Qze Qee 20,
Lh L h
2 2 ~

follows that E f {ﬁ} dx, and that {E} = /3} dx,
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

The transformation laws that relate {B} and {B} are obtained by

using the following plane-stress transformation equations
(7) = [T.]B) (B =[T.](7)
Integration of these equations over the plate thickness yields
() =[T,](B) ana (B)=[T.](B)

Next, recall that the overall plate coefficients of thermal expansion
have been given by
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

a1l1l a1121 a1161
a1121 a2121 a2’6’

&y
It follows logically that {a'} = { &y } =
a1'6’ a2’6’ a6'6'

2&112!

ool < ey
L6 |
Substituting [a'] = [TS][a][Ts]T and ('} =|T,]{B} into {&)} =[a’[{B)
gives (&) =[T.][a][T.][T.](8)

-1

Next, using [T.] =[T,]  gives (@) =|T,][a]{B)

n

Then using (&) = [a]({p) gives the result (@'} = [Tg]{a}

T

Inverting this result and using [Ts]_1 = [T(,]T gives (O} = [To] (&)

530



CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONTINUED

® In summary:

Al=[TJAlT.] [A]=[T][A]T]
al=[T][a][T.] [a]=[T,][a][T,]
(#) =[T,)(p) (8)=[T.](8)
(@) =[T,](a) (@) =[T,] (&)

e Comparing these equations with those of the plane stress case reveals
that the specific transformation equations can be obtained from those
given previously for plane stress as follows
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CONSTITUTIVE EQUATIONS FOR INPLANE
DEFORMATIONS OF THIN PLATES - CONCLUDED

T

For plane stress, [Q'] = [To][Q][TG] , with m = cos6, and

n =sino, , gave

Q,, =m'Q, +2m°n’(Q,, + 2Q,) + 4mn(m’Q,, + n°Q,;) + n‘Q,,

Thus, by similarity, [A'] = [TG][A][TG]T gives

A..=m'A,+2m°n° (A, +2A,) +4mn(m°A+n°A,) + n‘A,,

The other transformation equations are obtained in a similar manner
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

When, analyzing solids that are relatively prismatic and slender,
simplifying assumptions are made about the strain state to facilitate
analytical solution of practical problems

slender, prismatic body, that distort the cross-
sectional planes, are negligible compared to
the other strains

e One such assumption is that the strains in a T
&

e This simplification is commonly referred to as
the generalized plane-strain assumption

For a state of generalized plane strainin a
homogeneous, anisotropic solid, with respect to
the x, - x, plane, the strain field is approximated

SUCh that €33 — a33(T - Tref) =& and 2823 = 2813 =0 ’
where ¢ is a constant
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

® For this special case, the general constitutive equation

o C11 C12 C13 C14 C15 C16 ( €, o » \
0;; C12 C22 C23 Cz4 C25 Czs € Oy,
Oz \ C13 C23 C33 Cs4 Css Css ) €33 _ Olgs (T T ) >
Oz C14 C24 C34 C44 C45 C46 \ 285, 2015 “
g13 CsC;C;C,;C, Cy 2¢4, 20

") |CuCuCuCuCuCy \ 2] 20 )

uncouples directly into

044 C11 C12 C16 f €44 oy C13\
{022} =1C,,C,C, { €22 } - { A }(T — Tref)} +(C,, /¢

O12 C.s Cs Ce \2812 20, Cssf

and

—
g8
|
|
O0O0
& » o
OO0 0
5OR B
OO0
8 & 8
—
e
Ne o
~— N
I
—
gl
—
_|
=
o
~——
+
—_—
O00
& R 8
(e7)
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

This equation is manipulated further by defining thermal moduli
Bn C11 C12 C16 a,y, 633 C13 C23 C36 Ay
Ezz — = C12 sz Cze Ay and st — = C14 C24 C46 Qy;
612 C16 Cze Css 20, 613 C15 Czs Css 20,

such that

S
Q Q Q
5 N =
~—
Il

000
> =
000
8 N ®
000
& 8 o
e
N

o N O
o M7
~— N
=+

—_—

e ——y
2 8
D
|

600

000

000

36 | €44 Esa C33 \
€2 + Bza (T - Tref) + C34 €
56 | 2¢,, B 13 C35 /

Note that the stiffness coefficients are obtained by inverting the fully
populated compliance matrix - a nontrivial task
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

CONTINUED

Simplification of the following general constitutive equation is not as

easy

(

811

822

€33
2¢,,
2¢,,
2¢,,

€1
€2

€33
2¢

2¢,,
2¢,,

(T-T.) |

\

536

a11

(1‘22

20:::3 (T =T
20,

2a,,

S.1:S:5 Sy o
S2: S5 Sy 0;;
Sa Sis Sy O3
S44 S45 S46 Oz
S5 Sss Sse g13
S Sss See ] "




CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

CONTINUED

33333

© © O v v o
- N o < 1 o
DO OHLOhOOw
n v v °w v o
- N o < 1 v
NNV
S & S S 0 o
- N 0 & < <«

DO

DODODNHDND
DODODNDO D

- - - ~—

Then, elimination of the transverse-shearing strains gives

Rearranging the rows and columns into a convenient form gives

$965d S
@O BB D >
®ODB B D
@O DD B D
® OB B D
XA
@B BB BB
| I

_
e
.
£
Fdgdeo
_

§dg doo
Z —
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

CONTINUED
® For convenience, let the mechanical strains be denoted by
8?1 €41 ayy
822 € Qy,y
2Lg12 = ﬂ - 20'12 (T — Tref)
€33 €33 Ols;
0 0 0
0 0 0
® Using & - a,(T - T, ==, the previous matrix constitutive equation
becomes
8$1 - S11 S12 S16 S13 S14 S15 - o,
823} s12 Szz Sze st Sz4 st Oy,
2e,, — S16 st Sss Sss S46 Sss O,
€ S13 st Sse Sss 834 Sas g”
0 S14 Sz4 S46 334 S44 S45 0?2
0 L S15 st Sse Sss S45 Sss
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is separated to get

O3
Oy
O3

1
72} n [Te}

CONTINUED

NDOOLOLOLY
SSSQW,.A%S%
DODD DD
A
A
BBBDBB G

w O O

CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

Next, the matrix constitutive equation

539




CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

Solving the previous equation with ¢ for Os» 0, @and 0., gives
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

The matrix with the subscripted ¢ terms is given by

11 842 ¢4 Sn S12 S16 S13 S14 S15 Sss S34 Sss _ S13 st sse
Q1282 25 | = S12 Szz Sze - st Sz4 st Ss4 S44 S45 S14 Sz4 S46
Q.6 €% ¢6s S16 st Sss Sse S46 Sse Sss S45 Sss S15 st Sss

The vector with the subscripted s terms is given by

Next, expressing the mechanical strains in terms of the total strains and
the strains caused by free thermal expansion results in

€44 @11 ¢12 246 (o 9 (0 9 511
€p | = | 81, 8, &0 Oy ) +4{ Oy (T — Tref) +( S, /€
2¢,, .. 8. 8 O,z 2a,, Sy
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

Thus, the constitutive equations for generalized plane strain, in terms
of compliance coefficients and thermal-expansion coefficients, become

€44 d11 d12 d16 Oy (0 P 311
€2 = d12 dzz 42(;, Oy, + Oy, (T - Tref) + 522 € Where
2812 y’) p.) y’) 012 2(x'12 512

16 ~ 26

-1

@11 212 ¢46 S5, S Si3514 S5 || Sas Sas Sis Sis S5 Sy
Q8,85 | = S5, S| — | S22 Sy || S34 5S4 Sy S5, S
@6 €% ¢es S16 Sze Sss Sse S46 Sss Sss S45 Sss S15 st Sse
S, S1551 S5 |[ Sas Sas Sis 1 1
and {522} =S5 S, Sss || Sas Sus Sus {0}
Siz) S SuSsel| S Sus Ses| 0

The ¢; are called the reduced compliance coefficients

When =0, the state of strain reduces to that known simply as plane
strain
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

Once a given generalized-plane-strain or regular-plane-strain boundary-
value problem is solved by using the following equation, the stresses
and strains in the following equation are known

€ | = | 8y, 0 &0 Oy ) +4{ Oy (T — Tref) +( S, /€

543



CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

® The relationship between the reduced compliances and the stiffnesses
is obtained by first considering the equation

O C” C12 C16 €41 \k f Q4 C13
o0, ,=|C,,C,C, €n [ =\ O (T - Tref) +{ C, /¢t
O12 C16 C26 C66 2812[ \2(’-12 C36

® Inverting gives

(=]
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

CONTINUED
Comparing
[en] _[CuCuCi o) [ @ C. C,,Ci| [Cu
€n [ = C12 C22 Cze {022} + 1\ Oy (T - Tref) - C12 C22 Cze Czs €
\2812 C.sCxCe O 20, C.sCxCe Cs
with

€11 11 ¢12 846 (o J9 a4 S
Er | =[0858, |{0n ) +{ an ((T-T,) +{ S, ;¢ indicates that
281zf 3. 8.8 / \ Sz

-1 -1
21 212 ¢4 C.C.C, S C.C.,C, C.
8,8, 8 | = C.C,C, and S»p,=-1C,C,,C, C.
Q.6 €26 ¢6s C16 Cze Ces S C16 Cze Cee Cse
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

CONTINUED

For a material that is monoclinic in the plane of the cross-section
x, = 0 of the body, the generalized-plane-strain thermal moduli reduce

to

ﬁ33
~~
BZ3
~~

\ C13C23C36
0 00
B 0 0O

=

0'11
a22
2a.,,

The generalized-plane-strain constitutive equations become

C11 C12 C16 -
C,
C

2

OO0

(:26
C

2 V22
16 26 66 |

C13 C23 C36 -

0 00
0 0 0

~~
B11

Lo
ﬁ22

~~

}(T ~T.) +
B12

€41
€., +
2¢,,
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

The last equation is reduced further to give 9:x=0::=0 and

33 — C13(811 - an(T - Tref)) + C23(522 - azz(T - Tref)) + 2C35(512 - (112(T — Tref)) + C33£

Likewise, for a material that is monoclinic in the plane of the cross-
section of the body,

-1

11 812 846 S11 S12 S16 S13 0 0 S33 0 0 S13 Sz3 Sse
8,8, 8, | =15125,85[-[S5 0 0] 0S,S,; 0 0O
e ¢ ¢ S1s Sze Sss Sse 0 0 0 S45 Sss 0 0O
which simplifies to
S13S13 S13SZ3 S1SS36
S11 S S12 S S16 S
11 812 46 o o -
S1SSZ3 SZ3SZ3 S23S3G
¢.,8,, 8, | = S - S S S S S
¢16 ¢26 s S.:S, S.:.S, S:Ss
s16 - S S26 - S SSG - S
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

Similarly,

||
X

N
(=] (%] (%)

X

W
(=]

()
o OO

N
(2]

»wnon

Y

CONTIN

4 S15 I Sss Ss4 Sss _ 1
4 S25 S34 S44 S45 {0
¢ Sss || Sss Sus Sss| 0
0|s,0 0]
0/l 0S,S. {o
0/ 0S,S.| '°

UED

The other stresses are then given by

|

which reduce to o, =

Oj;
O3
O3

|

S, 0

4

0S
0 S,

0

)
al

2 S
5855

-1

. S,,0 O
{8} -1 0 S44 S45
0 S45 Sss
[s — $,301; — S$,,0,
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

thermal moduli reduce to

Eﬂ
EZZ
B12

The generalized-plane-strain constitutive equations become

C11 C12 0
C12 sz 0

0 0C,

0

C

- C11 C12

C12 CZZ

;C

-
N

3

0 0
0 0

0C

0
0

2]

o OO

|

6_

CONTINUED

For a specially orthotropic material, the generalized-plane-strain

a11
a22

0

E33
and Ez3 - —
B 13

C13C230
0 00
0 00

a11
a22
0

and

- €44 EH C13
€2 + 622 (T - Tref) + C23 €
2812 0 0
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

e The last equation is reduced further to give 9:=0:=0 and

Oy = C13(s11 —oy(T - Tref)) + C23(£22 — 0op,(T - Tref)) + C_ ¢

® Interms of engineering constants,

C,.= A(1 ~ V3 Vi) C22=X(1 ~ Vi3 Va) C33=%(1 — Vi3 V)
C,.= EX("V21 + Vy Vg ) = EK(V12 + V3 V) Ce=Gy,

(G = EK('V31 + Vy V) = EK("V13 + V., Vas)

C,.= EK(”v32 + Vv, Vi) = EK("\/23 + Vi3 V)

Where A= 1 — V42 Vo1 = V3 Vg — V43 V3 — 2"\’21 V3 Vi3
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

® The nonzero thermal moduli are expressed as

~ E1[(1 — Vy3 V32)a11 + (V21 + Vo, V31)a22]

Bi=-

1 — V2 Vo — V23 V32 - V13 V31 - 2"\’21 Vsz V13

= _ Ez[(vu + Vi3 ”V32)a11 + (1 — Vi3 ”V31)(x22]

1 — V2 Vo — st V32 - V13 V31 - 2‘\’21 V32 V13

2 - E3[(V31 + Vy Vsz)“n + (V23 + Vi3 V21)a22]

1 — Via Vo — "V23 Vaz - V13 "V31 - 2”\'21 V32 V13
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

Similarly, for a specially orthotropic material, the generalized-plane-
strain constitutive matrix becomes

-1

@1 212246 S11 S12 S13 0 0 Sss 00 S13 st 0
¢.,2, ¢, =SS, 0 |-|S, 0 0/ 0S, 0 0 0O
. ¢, o, 0 0S,] |000|oO0O0S,/|0O00O
which simplifies to
s11 S1ss13 S12 _ S13323 0
'4 s.. 0 S33 S33
o S13823 stszs
¢ ¢, 0 = S12 - Szz - 0
0 ¢ Sss Ssa
66
0 0 S,
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN

CONTINUED

o
0l
0l
~—
Il
T
N —
ol
o )
= 8
8 )
7 = -
8 o %
o o D =
-
\ s O S S
OO0 Y- 00
I
|
. s o2 o® 2
© o g XK © O
SRy S 3 9 3
NN RO K) S wn e
S 3 3 3 3
39 non n°°
- |
_556 _ _
S DS oo
T < ©
) ooo
M o o Mm o™

Also
Similarly,
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

e Finally, the generalized-plane-strain constitutive equations for a
specially orthotropic material become

€4 ¢ ¢4z 0 O, Qy, S
€0 | = | &y, ¢ Oy ) +1{ Oy (T - Tref) +( S, /€
2812 466 Oy, 0 0

_ S11 S;s“; S12 Sgszs 0
) y) 0 33 33
! 12 S13323 323823
412 422 0 = S12 S Szz S 0
0 466 33 33
0 0 S,
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONTINUED

® The matrix equation for the other stresses becomes

033\ Sss 00 £ Sss 00 S13 Sza 0 Oy
0,'=[0S, 0 {o}- 0S, 0 0 0 0|/o,
on] |0 o0 s.| '\0 0 0S.| |0 0 0]!low

which reduces to o, = S‘[s - S,,04; — S,,02 ] and o,=0,,=0
33
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CONSTITUTIVE EQUATIONS FOR PLANE STRAIN
CONCLUDED

® Interms of the engineering constants, the reduced compliance
coefficients and are given by

= 1 - v,,v,, .. =— (V12 + V13V32) _ (""21 + V23V31)
11 E1 12 E1 E2
- 1 - vyuv,, = 1
22 E2 66 G12
e Similarly,
S = -V S =— Vs S.,=0 and

O3 = Es& + V5,041 + V3,00
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRAIN

® The two primary constitutive equations of generalized plane strain are
given by
(o P9 \ C11 C 2 C16 €44 Eﬂ C13
Op ) =[CCprCul{ €2 |+ B2 (T Tref C, ¢ and
012] C16 Czs Css | \ 2812} B 12 \ C

€44 11 ¢12 ¢46 O, Ay S
€2 (T | @43 85 25 Op )+ O (T - Tref) +\ S (&
2812 y’) y’) p’) 012 20-12 512

e To obtain transformation equations for the constitutive terms appearing
in these equations, transformation equations that relate

(Z') = { } to {=) = { } are needed
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRAIN - CONTINUED

e Likewise transformation equations that relate

(E') = ] o (E) = 2| o nooseo
" €,

2¢,

® Consider the dextral (right-handed) rotation of coordinate frames
shown in the figure
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRAIN - CONTINUED

Previously, the matrix form of the stress-transformation law for this
specific transformation was given as

cos’0, sing, 0 0 0  2sin0,cosH,
Oy sin’0, cos’®, 0 0 0 -2sin6,cos, | [ O«
02'2' 022
o | 0 0 1 0 0 0 o
Oz 0 0 0 cos0, - sino, 0 O2
O,y . O3
o,, 0 0 0 sinO; coso, 0 o,
- sinB,cos0, sinf,cos6, 0 @0 0 cos’d,-sin0,
By inspection, it follows that
. 2 . ]
cos’0, sin’0, 2sin0,cos0,
01'1' T 2 i 011
O,y | = sin 0, cos 0, - 2sin0,c0s0, Oy,
o, . . . 2 (0]
2 - sin0,cos0, sinf,cosh, cos’B, - sin'B, [\ *

559




STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRAIN - CONTINUED

Thus, the stress-transformation law for a state of generalized plane
strain and a dextral rotation about the x; axis is identical to that for the

corresponding plane-stress case and is given by

{Z'} = [To(es)]{z} where

cos’0, sin’0, 2sin0,coso,
[T0(93)] = sin’0, cos’0, - 2sin0,cos0,
— sin0,cos0, sin0,cos0, cos’0, - sin’0,

Likewise, the inverse is given by {2} - :TO(GS)]_1{Z'} where

cos’0, sin’d, - 2sin6,coso, |
[To(63)] = [To(_ 63)] = Si"293 cos’0, 2sin0,cos0,

q - . 2
sin0,cos0, — sin6,cos0, cos 0, — sin'0,
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRAIN - CONTINUED

® Previously, the matrix form of the strain-transformation law for this
specific transformation was given as

.2 . ]
cos’0, sin 0, o o 0 sin0,coso,

€, T ; £

i sin 0, cos®, o o 0 - sin6,cos0, i
€22 €2
£y | 0 0 1 0 0 0 5.
2¢,, 0 0 0 cos0, - sino, 0 2¢,,
2¢ ., . 2¢

£13 0 0 0 sinO, coso, 0 °
2e,, . . 2 . 2 2¢,,

- 28in6,cos0, 2sin6,cosO, 0 0 0 cos’0,-sin 6,

® Inspection of this matrix equation reveals

[ .2 . 1
. cos’0, sin’0, sin0,cos0, .
11 1
. 2 o
82!21 } - Sln 03 cosze3 - S|ne3cose3 822 f
- . T
21 _2sin0,cos0, 2sin0,cos0, cos’d, — sin'0, | | 2&x
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STRESS AND STRAIN TRANSFORMATION EQUATIONS
FOR PLANE STRAIN - CONCLUDED

® The last matrix equation is expressed symbolically by

{E’} = [Ta(e3)]{E} where

cos’0, sin’0, sin0,coso,
[Ts(es)] = sin’0, cos’d, - sinf,coso,
- 2sin0,cos0, 2sinf,cosO, cos’0, - sinze3

e Similarly, the matrix form of the inverse is given by

(E} =[T.0.] {E")
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRAIN

In terms of another set of coordinates (x1,, X, x3,) that correspond to a
dextral rotation about the x, axis, the constitutive equations must also
have the forms given as

O,q C1'1' C1'2' C1'6’ €41 B C1'3'
Oy [ = C1'2' Cz'z' Cz'e' €s + | B (T Tref) + Czs e and
Oz C1’6’ Cz's' Cs'e'_ 28, Bz Cs'e'
€414 i1 12 45 Oy Ay S \
€y, = | &2 5x 855 O,y [+ Oy (T Tref) + 4\ S, /8
2812 e.s ¢og @55 Oy 2(1.1,2, 512
— -1
B C1'1' Q1'2' C16 Qg @1 12 ¢4 C1'1 C1’2' C1’6'
Bzz' =l = C12 C22 C26 Ay 4’1’2 "’22 2'6 = C12 C22 C26
B 12 C.e Coe Cos 20, ¢16 ¢26 o6 Cio Coe Cos
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRAIN - CONTINUED

$1'1'
and 52'2' -
51'2'

® For convenience, let

@ =liz] (Br=li (s)e[E] oer

such that the corresponding constitutive equations are given by

(E) =[e|(Z} + {a})©+{S}e and (=) = [C|{E) + {B}©+{C)e
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRAIN - CONTINUED

® Additionally, let

such that the corresponding constitutive equations are given by
(E') =|o'[{2") +{@}0+{S")c and

(2) = [C'H{E"} + {p'}©+{C"}e
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRAIN - CONTINUED

Substituting {Z} = [TG]_1{Z'} and {E} = [Ta]_1{E’} into
(2)=[CE) +{5}O+{C)e gives

[To] (=) = [C][T.] (E"} +{B}©+{C)e
Premultiplying by [T,]| gives

(3"} = [T][C][T.] {E'} + [T{B)}O+[T,]{C}e

Comparing this equation with {3’} = [C'{E"} + {f'}© + {C" )¢ it
follows that

[C'] = [TI[CI[T.] ", {B') =[T{B}, and {C")=[T,]{C)
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRAIN - CONTINUED

Rearranging [C'] = [T,][C][T,] " gives [C]=[T,] [C'][T.]
Likewise, {B)=[T,] {B’} and {C)=[T,] {C")

Next, substituting {Z} = [TG]_1{Z’} and {E} = [Ts]_1{E’} into

{(E} = [o|(Z) + {@}©+{S}e gives

[T.] {E) = [&][T.] (=} +{a)})®+ (s}

Premultiplying by |[T.| gives

(E") = [T][¢][T,] (=} +[T.{a}© +[T,[{S}e
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRAIN - CONTINUED

Comparing the last equation with {E'} = [4']{2’} +{a'}O+{5"}e
reveals that

[¢'] =[T[e]IT.]", (&) =[T{a}, and (s} =[T.I(s)
Rearranging [dl] = [Ts][¢][To]_1 gives [4] = [Ts]_1[¢'][TG]

In addition, {a)=[T,] {a&') and {s)=[T,] (5"
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRAIN - CONTINUED

e Noting that for a dextral rotation about the x, axis,

[T.] =[T,] and [T,] =[T.] itfollows that

o']=[T.][][T.] o] =[T,][][T,]
C|=[T,J[C][T.]  [C]=[T.][C][T]
(@) =[T,](a) (@) =[T,] ()
{B'y=|T,|{(B) (B)=[T.]{B")
(c'y=[T,](c) (c)y=[T,] (c)

(s")y =[T.]is) (s)=[T,] (s
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRAIN - CONTINUED

with
cos’0, sin’0, 2sin6,cos0,
[T0(63)] = sin’0, cos’d, - 2sin0,cos0, | and
- sin0,cos0, sin6,cos0, cos’0, — sinze3
cos’0, sin’0, sinf,coso,
[Tﬁ(@s)] = sin’0, cos’0, - sin6,coso,
- 2sin0,cos0, 2sinf,cosO, cos’0, - sinze3

e Comparing these equations with those of the plane stress case reveals
that the specific transformation equations can be obtained from those
given previously for plane stress as follows
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TRANSFORMED CONSTITUTIVE EQUATIONS FOR
PLANE STRAIN - CONCLUDED

T

For plane stress, [Q'] = [To][Q][TG] , with m = cos6, and

n =sino, , gave

Q,, =m'Q, +2m°n’(Q,, + 2Q,) + 4mn(m’Q,, + n°Q,;) + n‘Q,,

Thus, by similarity, [C'] = [TG][C][TG]T gives

C,.=m’C, +2m°n’(C,, + 2C) + 4mn(m°C,, + n°C,,) + n"C,,

The other transformation equations are obtained in a similar manner
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LINES AND CURVES
OF
MATERIAL SYMMETRY
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LINES AND CURVES OF MATERIAL SYMMETRY

Up to this point of the present study, a local view of material symmetry
at a specific point P of a material body has been examined

The conditions for the existence of various types of material
symmetries have been ascertained by using reflective-symmetry
transformations based on rectangular Cartesian coordinate frames that
are local to the point P

For some homogeneous materials, the corresponding planes of
material symmetry for every point of the material body are aligned such
that it is possible to define at least one straight line whose tangent is
perpendicular to each corresponding symmetry plane

e This line is called a principal material direction
When more than one distinct line connects sets of contiguous material

points with identical planes of reflective symmetry, more than one
principal material direction exists
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LINES AND CURVES OF MATERIAL SYMMETRY
CONTINUED

For example, a homogeneous orthotropic material possesses three
principal material directions that are mutually perpendicular

One important point illustrated herein is that the constitutive equations
become simpler when a material symmetry plane exists, and that the
inherent simplicity becomes hidden when the constitutive equations
are expressed in terms of another rectangular Cartesian coordinate
frame whose axes are oriented differently

e For example, one coordinate frame exists for a generally
orthotropic material in which the constitutive equations correspond
to a specially orthotropic material

In addition, by defining a global rectangular Cartesian coordinate frame
with at least one axis parallel to a principal material direction, the
simplicity of the constitutive equations can be exploited to simplify the
corresponding boundary-value problem
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LINES AND CURVES OF MATERIAL SYMMETRY
CONTINUED

In a more general scenario, a contiguous set of material points may
exist with a plane of elastic symmetry, at a given point, that is
perpendicular to the tangent to a curve, at that point

e For this case, the principal material direction follows a smooth
curve, referred to herein as a material symmetry curve

For this case, a curvilinear coordinate system can be defined in which
one coordinate curve coincides with a material symmetry curve

e For example, consider an orthotropic material in which the three
perpendicular principal directions at a given point of the body
coincide with radial, circumferential, and axial directions of a
cylindrical coordinate system

It is important to emphasize that the rectangular Cartesian coordinate
frames used to define symmetry transformations are local frames
associated with a material point and not a global coordinate frame

575



Coordinate curve

LINES AND CURVES OF MATERIAL SYMMETRY
CONCLUDED

Thus, at a given point of a material symmetry curve, one should
envision a local rectangular Cartesian coordinate frames upon which all
symmetry conditions associated with that point are deduced

Plane of material

Curve of material — £ symmetry at point P
symmetry

Tangent vector
at point P

Plane of material
symmetry at point Q

\Tangent vector

at point Q

N\

Surface of
material

points Coordinate curve
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