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Popular Summary   

The forested regions of Siberia, Russia are vast and contain about a quarter of the world’s 

forests that have not experienced harvesting. However, many Siberian forests are facing twin 

pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the 

dynamics and mapping the structural parameters of the forest is important for understanding the 

causes and consequences of changes observed in these areas. Because of the inaccessibility and 

large extent of this forest, remote sensing data can play an important role for observing forest state 

and change.   

In Central Siberia, multi-sensor remote sensing data have been used to monitor forest 

disturbances and to map above-ground biomass from the Sayan Mountains in the south to the 

taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C 

(SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar 

images from the Japanese Earth Resources Satellite -1 (JERS-1), European Remote Sensing 

satellite-1 (ERS-1) and Canada’s RADARSAT-1, and data from ETM+ on-board Landsat-7 were 

used to characterize forest disturbances from logging, fire, and insect damage in two regions of 
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central Siberia (Boguchany and Priangar’e areas).  The results and recommendations are 

presented. 
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Abstract    

The forested regions of Siberia, Russia are vast and contain about a quarter of the world’s 

forests that have not experienced harvesting. However, many Siberian forests are facing twin 

pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the 

dynamics and mapping the structural parameters of the forest is important for understanding the 

causes and consequences of changes observed in these areas. Because of the inaccessibility and 

large extent of this forest, remote sensing data can play an important role for observing forest state 

and change. 

In Central Siberia, multi-sensor remote sensing data have been used to monitor forest 

disturbances and to map above-ground biomass from the Sayan Mountains in the south to the 

taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C 

(SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar 

images from the Japanese Earth Resources Satellite -1 (JERS-1), European Remote Sensing 

satellite-1 (ERS-1) and Canada’s RADARSAT-1, and data from ETM+ on-board Landsat-7 were 

used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and 

mailto:kenneth.j.ranson@nasa.gov�
mailto:gsun@umd.edu�
mailto:jovet@aol.com�


3 

  

Priangar’e areas.  

1. INTRODUCTION 

In Central Siberia (Fig. 16.1), a vast area between the Yenisey and the Lena Rivers, the 

character of taiga changes dramatically. The Central Siberian plateau and Sakha-Yakutia are 

distinguished by their extreme continental and arid climates. The mean January temperature 

decreases from -17°C in Krasnoyarsk (56°10'N; 93°00'E) to -43°C in Yakutsk (62°10'N; 

129°50'E) while the annual precipitation total decreases from 410 mm to 200 mm. The Siberian 

anticyclone dominates the area throughout winter and, with little winter precipitation (34 mm and 

21 mm, respectively); the depth of snow cover is small. A severe climate and continuous 

permafrost predispose the development of forests composed by cold-resistant species (mainly 

Larix gmelinii) and poor floristic diversity. (www.rusnature.info).  

<Fig. 16.1> 

It is known that about 70% of the permafrost areas in Siberia are occupied by larch 

dominated forests, with the remaining 30% composed of tundra.  The maximal depth of permafrost 

is about 30-100 m in north-western Siberia and 500-1500 m in the northern parts of central and 

eastern Siberia. Depth of thaw in the summer is typically 5 cm to >1.0 m.   

Larch dominated forests are an important component of the global circumpolar boreal 

forest.  In Russia, larch is the most widespread species and is found from the tundra zone in the 

north to the steppes in the south.  The zone of larch dominance extends from the Yenisei ridge in 

the west to the Pacific Ocean and from Lake Baikal in the south to the 73rd parallel in the north, 

where it forms world’s most northern forested stand, and is called Ary-Mas. In Central Siberia, the 

southern and western margins of the larch forest come in contact with evergreen conifers (Siberian 

pine, Pinus sibirica, pine, Pinus silvestris, spruce, Picea obovata, fir, Abies sibirica), hardwoods 
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(birch, Betula pendula, B. pubescens, and aspen, Populus tremula).  Larch forms high closure 

stands as well as open forests, and can be found primarily growing over permafrost, in locations 

where other tree species barely survive. Wildfires are typical for this territory, and they most 

commonly occur as ground fires due to low crown closure. Due to the surface root system (caused 

by permafrost) and dense lichen-moss cover, ground fires are primarily stand-replacing fires. The 

vast area of larch forests, including the forest-tundra ecotone, is generally considered a “carbon 

sink".  However positive long-term temperature trends at higher latitudes result in an increase in 

fire frequency and an increase of greenhouse gas emissions, and may convert this area to a source 

for greenhouse gases.   

Litter decomposition in the larch communities is reduced by low summer temperatures 

resulting in increased litter thickness. The thick litter layer, together with moss and lichens, 

becomes a thermal insulator that promotes permafrost formation at an increasing depth in the soil.   

In addition, during low-precipitation years, the ground cover layer dries and becomes a fire fuel 

source. This facilitates the spread of fires over tens to hundreds of kilometers. The burning fires 

emit greenhouse gases, which in turn can increase temperature and decrease the permafrost depth.  

The fire return intervals (FRI) within the interior of larch forests were found to be about 82±7 

years, and increased to 300 years in the northern extreme of the larch forest.  (Kharuk et el, 2008). 

There is evidence of decreasing FRI (fire frequency increase) in the 20th century compared with 

the 19th century caused by both natural (air warming) [jch1]and anthropogenic impacts.  

 

Taiga forest in Central Siberia can be divided in northern, middle and southern subzones.  

Both the northern and middle subzones are dominated by larch forests (Larix gmelinii and Larix 

sibirica), while the southern subzone is dominated by Scotch pine (Pinus sylvestris) stands.   
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In the northern subzone of Central Siberia, forest-tundra and open forests reach their 

largest latitudinal extent. Relatively high (about 13°C) summer temperatures on the lee side of the 

Putorana plateau, which shelters the region from the northerly winds, allow forests to penetrate 

further north than anywhere in the world. On the Taymyr peninsula, woodlands (known as 'forest 

islands' or ‘Ary Mas’) formed by Larix gmelinii extend to the world's northernmost location at 

72°30'N in the valley of the river Novaya, the Khatanga's tributary.  

The tundra-taiga transition area is dynamic because it is very sensitive to human activity 

and climate change. During the last 6000 years in northern Eurasia, there has been a general 

cooling trend of about 2-4o C,  and larch and birch stands have retreated between 400 and 500 km 

southward during this period (Callaghan et al., 2002).  Temperatures have warmed by as much as 

2o C in the past three decades in parts of the Northern Hemisphere (Hansen et al 1999).    Reports 

on modern changes of the tundra-taiga boundary associated with climate warming are rare (e.g. 

Kharuk et al, 2004, 2007-2010, Sturm et al. 2001), but observations within the northern most forest 

stand showed regeneration advance into tundra and stand densification (Kharuk et al, 2004, 2006).  

The northward movement of tundra-taiga boundary may be the eventual outcome if 

climatic warming persists over centuries or millennia (Skre et al. 2002). The situation, however, is 

complicated by human activities that have led to ecosystem degradation in this area. In some 

Russian case studies, southward displacement of the taiga-tundra boundary was reported due to 

human disturbance and increasing waterlogging, which led to paludification and the death of 

treeline trees (Skre et al., 2002; Vlassova, 2002). Local variations in climate and human activities 

require continued monitoring and research. 

In the middle taiga, forests composed of Larix sibirica prevail in the relatively warmer and 

moister western areas, with some dark taiga species (spruce, Siberian Pine and fir). East of the 
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Yenisey, much of the taiga is represented by monospecies larch stands with the presence of 

Siberian pine and spruce along the rivers. Because of the severity of the environment and the 

remoteness of the area, these forests remain virtually untouched by humans. In the drier eastern 

part with low seasonal permafrost thawing, Larix gmelinii dominates with the sporadic appearance 

of Pinus sylvestris. 

For the middle taiga it was shown that “dark needle” coniferous forest (DNC), made up of 

Siberian pine, spruce and fir, are expanding into the habitat of larch. The age structure of the 

regeneration (with mortality control) showed that it was 20 to 30 years old.  The results obtained 

indicate climate-driven migration of Siberian pine, spruce and fir into traditional larch habitat. On 

the western and southern margins of the larch-dominated forest, DNC regeneration formed a 

second layer in the forest canopies, which could eventually replace the larch in the over story. With 

stand densification Siberian pine received an additional advantage since larch is a shadow 

intolerant species (Kharuk et al, 2007).  

In the southern taiga, vegetation is more varied because of the higher diversity of climatic 

and soil conditions. Forests are composed of Pinus sylvestris in the west, Larix gmelinii in the east 

and the dark taiga (i.e., fir, spruce and Scotch pine) along the high watersheds which have cool 

summers and ample precipitation. The Sayan Mountains are a system of deeply eroded ridges.  

These mountains have an average elevation of 1000-2000 m, but the highest summits, 

Munku-Sardyk and Mongun-Taiga reached 3,492 and 3976 m, respectively. Permafrost occupies 

about 50 per cent of the total area of the western Sayan and almost the whole of the eastern Sayan 

except for its westernmost part. Vertical zonality is well expressed in the distribution of soils and 

vegetation in the Sayans. Although topographic and climatic variability create differing vertical 

sequences, all are dominated by taiga vegetation. In the Western Sayan Mountains, there is a 
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considerable difference between the altitudinal sequences of the northern and southern 

macroslopes. The most prominent feature of the northern Western-Sayan sequence is the large 

extent of the dark taiga belt. This is composed mainly of Siberian Pine (Pinus sibirica) and fir 

(Abies sibirica) with an admixture of Larix sibirica in the upper regions. Spruce (Picea obovata) is 

another important dark taiga tree species, especially in river valleys. The lower part of the forest 

belt has been substantially modified by human activity. In disturbed areas taiga has been replaced 

by secondary birch-aspen forests and patches of pristine taiga survive only locally. The high 

mountainous zone is represented by floristically rich subalpine and alpine meadows and 

mountainous tundra communities. The southern macroslope of the Western Sayan receives more 

insolation and is much drier. This sequence begins with the steppe (which is intensively cultivated 

at present) developing on chernozem and in drier regions on southern chernozem and chestnut 

soils. The steppe zone is succeeded by a narrow belt of birch-aspen forest-steppe. The forest belt is 

composed mainly of Larix sibirica forests with well-developed undergrowth and the herbaceous 

cover enriched by steppe species. The dark taiga is confined to higher elevations of this belt and 

reaches highest elevations on south facing slopes. Taiga, the largest biome in Northern Eurasia, 

accounts for a quarter of the world's pristine forests (Dirk et al. 1997). It has been affected by 

development, in particular by the production of timber and oil. Although the annual industrial 

production of timber has declined since the 1980s, many areas experience problems with respect to 

illegal cutting of forests, fragmentation of mature stands, and unacceptable forest-harvesting 

practices. Global climate and land use changes have multiple effects on forests worldwide. 

However, the multi-scaled interactions among climate change, disturbance regimes, and land use 

change make it difficult to predict key ecosystem characteristics except by coarse, generalized 

estimates. Many Siberian forests are facing the twin pressures of rapidly changing climate and 



8 

  

increasing timber harvest activity. Mean temperatures have risen significantly over the past 40 

years, and this trend is expected to continue. The frontier of timber harvest is pushing into 

previously uncut areas.  

 

Mean temperatures have risen significantly over the past 40 years, and this trend is 

expected to continue.  There are reports showing that Siberian pine and larch growing in the alpine 

forest-tundra ecotone are strongly responding to warming by an increase of growth increments, 

stand densification and regeneration density, upward tree line shift, and transformation of 

krummholz to arboreal forms. Climate-induced waves of upslope and downslope tree migration 

were reported for the alpine forest-tundra ecotone in the southern Siberian Mountains. 

Observations show that tree mortality was observed during the Little Ice Age, but lagged behind 

the initial cooling. Living tree natality dates showed that treeline advance began at the end of the 

19th century, but lagged behind the warming temperatures. Larch and Siberian pine regeneration 

now survive at elevations up to 160 m higher in comparison with the maximum observed treeline 

recession during the Little Ice Age and surpasses the historical maximum during the last 

millennium by up to 90 m. A 1°C change promoted an upward shift in the treeline of about 80 m. 

The treeline advance rate was estimated at 0.90 +/–0.22 m yr – 1 (Kharuk et al, 2010a). Presently, at 

high elevation seedlings are still in the vulnerable stage and could be killed by cold winters 

consisting of low temperatures and strong winds, and this could result in the recession of the 

treeline.   

  Studies within Altai-Sayan Mountain sites showed an increase of the dense forest stands of 

about 1.5 times during the last four decades.  An increase of tree growth increment starting in the 

mid 1980’s was observed, which was strongly correlated with mean summer temperatures.  Stand 
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densification was also observed along rivers and streams due to earlier snowmelt which increases 

the growing period. Substantial densification in tree line populations seems to be a common 

phenomenon in northern and high-elevation environments and occurs more frequently than actual 

elevational tree line advance (Kharuk et al, 2008). Forest response to climate variables at high 

elevations is non-uniform because tree establishment and survival depends on the availability of 

sheltered (wind protected) areas. The forest spatial distribution is dependent on azimuth, elevation, 

and slope steepness and this pattern changed over the last decades. A typical upper boundary is a 

mosaic because tree and regeneration survival depends on the availability of sheltered relief which 

is provided by rocks or local depressions   (Kharuk et al, 2010c).  

Milder climate also promotes changes in tree morphology, i.e., transformation of mat and 

prostrate krummholz into vertical form (Kharuk et al., 2006, 2010a). The last decades of warming 

caused a wide-spread transformation of larch and Siberian pine mat and krummholz to a vertical 

form beginning in the 1980s.  This date approximately coincides to the period when winter 

temperatures surpassed the mean value during the 20th century. Larch is much less likely than 

Siberian pine to be found in krummholz forms. This species surpasses Siberian pine in frost and 

wind resistance and was observed in arboreal forms where Siberian pine was still prostrate.  

In a warming climate, Siberian pine should enjoy a competitive advantage due to its higher 

temperature response. Stand densification is also beneficial for Siberian pine since larch is a shade 

intolerant species. Thus, current climate change should lead to an increase the proportion of 

Siberian pine in the upper canopy. Substitution of “light-needle” deciduous larch by evergreen 

conifers, decreases albedo and provides positive feedback for even greater warming.   The other 

expected consequence is an increase of biodiversity since Siberian pine dominated communities 

provide a better food base for the animals and birds. Larch will continue to maintain its advantage 
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in drier areas and in zones of temperature extremes.  

The Siberian forests are the habitat of many insect species.  Periodic outbreaks of certain 

insect pests cause a decrease in growth increment, forest decline or mortality over vast areas.  The 

Siberian silkmoth (Dendrolimus superans sibiricus, Tschetw) feeds heavily on needles of certain 

tree species, defoliating and killing large stands rapidly. This is one of the primary factors of taiga 

succession.  The preferred pest host species are fir and Siberian pine but spruce and larch are also 

sometimes affected. Outbreaks are encouraged by favorable weather conditions: low summer 

precipitation, relatively mild winters with stable, dense snow cover and lack of late spring and 

early autumn frosts. On the contrary, cold, rainy summers and severe low-snow winters are not 

favorable for the Siberian silkmoth.  Outbreaks have a periodicity, occurring about every 15–25 

years.   Between 1878 and 2004 ten Siberian silkmoth outbreaks were observed in the Yenisey 

River watershed area.   The largest outbreak (1954–1957) resulted in tree damage over about 4 

million ha and tree mortality on about 1.5 million ha (Kharuk et al, 2003, 2004).  The last 

catastrophic outbreak occurred in the Priangar’e area and caused about 10.0 million ha damaged 

and 300 thousands killed stands between1993 and 1995. Outbreaks of insect pests promotes 

wildfires, because pest-killed stands accumulate combustible material in form of dead wood, grass 

and bush communities.  

Global change is likely to significantly change forest composition of south-central Siberian 

landscapes, with some changes taking ecosystems outside the historic range of variability. Direct 

climate effects generally increased tree productivity and modified probability of establishment, but 

indirect effects on the fire regime generally counteracted the direct effects of climate on forest 

composition. Harvest and insects significantly changed forest composition, reduced living 

aboveground biomass, and increased forest fragmentation.  Gustafson et al. (2010) studied the 
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relative effects of climate change, timber harvesting, and insect outbreaks on forest composition, 

biomass (carbon), and landscape pattern in south-central Siberia and found global change is likely 

to significantly change forest composition of south-central Siberian landscapes, with some 

changes taking ecosystems outside the historic range of variability. Remote sensing provides a 

useful tool for monitoring forest disturbances and estimation of forest parameters in Central 

Siberia, because the area is broad and hard to reach. Twenty years ago two authors of this chapter, 

Dr. Ranson and Dr. Kharuk committed to collaborate to study the remote forests of Siberia. Since 

then, with Sukachev Institute of Forests and NASA’s support we have been conducting research 

on forest mapping, disturbance characterization and parameter retrieval using multi-sensor data in 

Central Siberia. For example, in the Western Sayan Mountain, radar data was used to map forest 

aboveground biomass (Sun, Ranson, and Kharuk, 2002). In the middle subzone of  Central Siberia, 

around Boguchany and Prianger’e, multi-sensor data including LANDSAT ETM+ data, radar data 

from the Japanese Earth Resources Satellite (JERS-1), European Remote Sensing satellite 

(ERS-1) and Canada’s RADARSAT-1, were used to detect fire scars, logging and insect damage 

in the boreal forest (Ranson et al., 2003). From July 10 to 25, 2008, a team of American and 

Russian scientists conducted an expedition to study an extremely remote and harsh section of 

northernmost central Siberia. The expedition started from a flat spot near the headwaters of the 

Kotuykan River, above the Arctic Circle, and the team, using three inflatable rubber boats packed 

with survival gear and scientific instruments, traveled the river, stopped frequently to make 

observations and collect data in support of several ongoing studies. Data from the field, collected 

by Geoscience Laser Altimeter System (GLAS), Phased Array type L-band Synthetic Aperture 

Radar (PALSAR) and LANDSAT MSS, TM and ETM+ were used for monitoring changes of 
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forest cover, and estimation of above-ground biomass. The following sections will describe these 

studies in detail. 

2. Forest Biomass Estimation from SAR data in The Western Sayan Mountains 

2.1. INTRODUCTION 

Methods and algorithms have been developed for mapping above ground biomass in the boreal 

forest (Saatchi and Moghaddam, 2000; Kurvonen et al., 1999; Paloscia, et al., 1999; Bergen et al., 

1998; Ranson and Sun, 1997a; Dobson et al., 1995; Ranson et al., 1995; Saatchi et al., 1995; 

Rignot, et al., 1994; Beaudoin, et al., 1994; Le Toan et al., 1992; Dobson et al., 1992).  These 

studies concentrated on relatively flat areas, where terrain effects were not significant.  Estimation 

of forest biomass using synthetic aperture radar (SAR) data can be complicated by topography that 

influences radar backscatter (Luckman, 1998; van Zyl, 1993; Bayer et al., 1991; Rauste, 1990), 

particularly through local incidence angle and shadowing. Changes in radar incidence angle 

caused by terrain slope can have several effects on radar image data. For example, radar 

backscattering varies with incidence angle, which varies with terrain slope and aspect.  

Foreshortening is also a terrain-induced effect where a smaller incidence angle results in more 

ground surface area being illuminated. Another effect of terrain on the backscatter is the apparent 

change of the forest spatial structure in the radar field of view. For example, when trees of a 

relatively uniform stand grow on a slope, a portion of the sides of these trees will be directly 

exposed to the radar beam.  

Terrain correction techniques are designed to reduce effects of incidence angle and illuminated 

target area.  For correction of the illuminated pixel area, simple algorithms can be used if a suitable 

digital elevation model (DEM) exists (Kellndorfer et al. 1998).  Correction of the backscattering 

dependence on incidence angle requires knowledge of the land cover type within a pixel.  A few 
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attempts have been made to correct terrain effects by using simple radar backscattering models and 

a DEM. For example, Goering et al. (1995) used a DEM and empirical radar backscatter models to 

reduce terrain effects from ERS-1 SAR images. However, Goyal et al., (1998) found that the 

small-scale topographic features resolved by SAR couldn’t be resolved by a DEM in rugged 

terrain. Periodic artifacts due to the terrain model generation methodology were observed in the 

derived variables (e.g., slopes).  Other methods, such as image ratios were used to reduce the 

effects of radar incidence angle caused by topography (Ranson et al., 1995; Shi and Dozier, 1997; 

Wever and Bodechtel 1998, Ranson et al, 2000).  Wever and Bodechtel (1998) proposed the use of 

L-band hv (Lhv) and X-band VV (Xvv) ratio or difference images for radiometric rectification.   

A method was developed to correct for the backscatter dependence on terrain using an 

algorithm derived from simulated radar backscattering of a forest stand on various slopes. The 

derived dependence of the L band hh (Lhh) and Lhv backscattering on radar local incidence angle 

was used to remove the terrain effect from the Lhv data. Finally, a biomass map was produced 

from the corrected Lhv data. 

2.2. STUDY AREA and DATA 

The study area, in the Western Sayan Mountains covers a 50 x 25 km area with center 

coordinates of 53o 4.2' N latitude and 93o 14.3' E longitude (Fig. 16.1). The area is the site of the 

Ermakovsky Permanent Study Area established in 1959 and used for research by the Sukachev 

Institute of the Siberian Branch of the Russian Academy of Sciences.   

The Western Sayan Mountains are a complex of ridges dissected by a widespread drainage 

network. Topographically, the territory is very heterogeneous and therefore climatic conditions 

and ecosystems are very diverse. The elevation varies from 2400 m above sea level to 1300–1500 

m in the basins. The slopes are covered by dark needle coniferous forest with a predominance of 
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Siberian pine (Pinus sibirica Du Tour) and fir (Abies sibirica Ledeb.); spruce (Picea obovata 

Ledeb.) is an admixture within the drainage network. In a southward direction, with the decrease in 

precipitation, larch (Larix sibirica Ledeb.) appeared within canopy (mostly on the south-facing 

slopes). Within the study site, forest types are arranged in elevational belts including pine-birch 

forest-steppe (up to 250–300 m), a narrow belt of light coniferous and mixed stands (up to 

400–450 m) and dark needle coniferous stands (up to 1600–1700 m) which gradually transform 

into a sub-alpine belt of meadows and sparse fir-Siberian pine stands (1600–1800 m). At higher 

elevations, there are very sparse stands mixed with mountain tundra, bushes, alpine meadows and 

stony areas. The mean annual, summer and winter temperatures are -3°С, +12°С, and -16°С, 

respectively. Precipitation totaled about 1200 mm/yr which mainly falls May-September. 

 

<Fig. 16.2> 

A Russian forest inventory map (1:50,000) compiled from aerial photographs and site visits 

between 1993 and 1995 was used as ground truth information (Fig. 16.2).  The map is typical of 

forest inventory maps with forest units related to economic value of the stands.  Total 56 biomass 

plots ranging from 1.16 to 24.0 Kg/m2 were prepared from field measurements and forests 

inventory data. The field plots were sorted according to biomass values. Even numbered plots 

were used for developing biomass estimation model and the odd numbered plots were used for 

validation. 

Shuttle Imaging Radar-C (SIR-C) data were used in this study.  The SIR-C/X-SAR missions 

were flown during April 9-19, 1994 and September 30-October 10, 1994 (Stofan et al., 1995).  The 

instrument had quad-polarized (hh, hv, vv, vh) L-band (wavelength =23 cm) and C-band (5.6 cm) 

and a vv polarized  X-band (3 cm) radar channels. The mission was a cooperative experiment 
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between NASA’s Jet Propulsion Laboratory (JPL), the German Space Agency, and the Italian 

Space Agency. The SIR-C image data used in this study were acquired on April 16, 1994 with an 

image center incidence angle of 46.4o. The original image is single look complex (SLC) data with 

line spacing (azimuth) of 5.8 m and pixel spacing (slant range) of 13.3 m. The images were 

processed with 6 looks in azimuth and 2 looks in range direction resulting in images with a pixel 

size of ~35 m.   

Since previous work (Ranson et al., 1995; Dobson et al., 1995; Ranson and Sun, 1997b) had 

shown that Lhv data is especially sensitive to forest above ground biomass, only L band data were 

used in this study.  Figure 16.3A is the Lhv image of the study area.  In the image, the Sayan 

Mountains can be seen on the left side of the image. Forested mountains appear bright or dark 

depending on the slope and aspect with respect to the radar illuminating direction (from right of 

this image). Some deforested areas can be seen in the center of the image. A broad level plain to 

the right has large wetland areas such as the dark object in the lower right corner and bare 

agricultural fields. The village of Ermakovsky and the Sukachev Institute of Forest field camp are 

located at the upper right in this image. 

<Fig. 16.3> 

2.3. METHODS 

2.3.1. Terrain Effects Correction Using a Digital elevation Model 

 Slope and aspect were  be generated from elevations and used to calculate the local incidence 

angle for a pixel of the radar image: 

    

 

cos(ϑ ) = sin(s)cos(α)sin(s + ϕ) + cos(ϑ 0)sin(α)      (16.1) 

where   θ  is the local incidence angle, s is local slope, θ 0 is radar incidence angle at the center of 
the image,  ϕ is aspect of the slope, and α is azimuth angle of the radar look direction. 
 



16 

  

 Radiometric distortion due to the illumination areas was corrected using the local 

incidence angle with an equation of the form used by Kellndorfer et al. (1998).   

   

 

σ corr
0 = σ 0 sin(ϑ ) /sin(ϑ 0)              (16.2) 

where:  σocorr is radar backscatter coefficient after correction, σo is original backscatter 

coefficient. 

Kellndorfer et al (1998) found that this correction was adequate for land cover classification 

purpose.  However, for estimation of biomass from radar backscattering, the effect of terrain on 

scattering mechanisms needs to be considered. The radar backscattering is a function of incidence 

angle even in flat area.  With a fixed radar looking direction,  terrain changes the local illumination 

direction (both zenith and azimuth, see Fig. 16.4) of radar beam interactions  with the forest 

canopy. Radar backscattering models may be used to model the dependence of backscattering on 

local radar incidence angle if the detailed knowledge of the forest types and their structure 

information are known.   

  <Fig. 16.4> 

2.3.2. Modeling Radar Backscatter Of Forest Stands On Slopes 

The three-dimensional radar backscatter model (Sun and Ranson, 1995) was modified for this 

study to include the effect of slopes on backscatter. The modified model accepts a stem map (with 

location, diameter breast height (dbh), height, species and crown shape for each tree), an elevation 

map (height for each surface pixel), and a soil surface roughness and dielectric constant map as 

inputs to simulate high-resolution polarimetric radar images of the forest stand. The scattering 

components are also available from the modeling outputs. Detailed measurements of the forest 

structure were not available for the Western Sayan Mountain study area. A 100X100 m stem map 

of conifer stand was made during the Boreal Ecosystem-Atmosphere (BOREAS) Study (Sellers et 
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al., 1997) in 1994.  The measurements included the stem locations and diameter at breast height 

(dbh) for every tree in the stand.  This stand is a typical boreal conifer forest with above ground dry 

biomass of about 10 Kg/m2.  In addition to the stem map, total height, crown length and crown 

width were measured. The relationships between these parameters and dbh were developed from 

the field measurements.  These relationships were then used to infer tree crown characteristics for 

each tree from its dbh.  When a slope was introduced, the horizontal position of a tree was not 

changed, but the tree was vertically moved depending on its position within the stand. Tree crowns 

were modeled as cones. The backscattering from the ground surface was calculated using the IEM 

(integral equation model) model (Fung, 1994). The parameters for the simulation are listed in 

Table 16.1. 

High-resolution radar images of the stand on various slopes and azimuth directions were 

simulated. The radar backscattering coefficients were obtained by averaging the simulated images. 

Three slopes (10o, 20o and 30o) and eight azimuth directions (45o increment from 0 to 360o) for 

each slope were simulated. Local incidence angle was calculated for each case.  

Since Lhh backscatter is more sensitive to slope (because of greater canopy penetration and 

seeing more ground), it was used to estimate the local incidence angle (θ) from the LHH image.  

Then it was used to correct the Lhv image. To do so, a simple analytical relationship between 

backscattering coefficients and incidence angle needed to be established for both hh and hv 

polarizations.  

The simple backscattering models for vegetation-like media take the form of (Ulaby et al., 

1982):  

  σ0 (θ)  =  σ0 cosp θ                        (16.3) 

where θ is the local incidence angle.  Both σ0 and p are polarization dependent. When p=1, the 
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model means that the scattering coefficient (scattering per unit surface area) is dependent on cos θ, 

which is the ratio of projected area (normal to the incoming rays) to the surface area. When p=2, 

the model is based on the Lambert's law for optics.  Ulaby et al. (1982) pointed out that although 

either p=1 or 2 seldom closely approximate the real scattering, sometimes p=1 or 2, or a value 

between 1 and 2 may be used to represent scattering from vegetation.  The model simulation 

results were fit to this simple model to estimate σ0
 and p for both L-band hh and hv polarizations. 

2.3.3. Biomass Estimation 

The biomass parameters of 56 stands were defined from forest inventory tables based on age 

and site index. These tables and methods are in operational use for Russian forest inventory and 

management. Positions of these  stands were located on corrected Lhv radar images and the 

backscattering signatures were extracted.  These stands were sorted according to biomass and 

selected alternately for either model development or testing.  Regression relationships were 

developed between the cube root of total biomass and the averaged radar signature similarly to the 

method described by Ranson and Sun (1997a).  The derived equation was used to convert the Lhv 

images to biomass maps. 

2.4. RESULTS 

2.4.1. Terrain Correction with a DEM 

In this study, we first corrected the dependence of illuminated pixel area within the SIR-C 

image on incidence angle using the DEM available from NIMA.  We found that the spatial 

resolution and accuracy of this DEM was not suitable for terrain-effect correction of SIR-C 

imagery.  Figure 16.3B is the Lhv image that was corrected using the local incidence angle derived 

from the DEM.  While the correction for large slopes appears to be appropriate, the smaller slopes 

have not been corrected due to the lower resolution of the DEM data than that of the SIR-C image.  
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Consequently, the method of using backscatter modeling to account for terrain effects on 

backscatter was used. 

2.4.2. Modeling of the Terrain Effect 

Figure 16.5 shows simulated radar images of the stand on a 20o slope with four different 

azimuth directions. The one on the upperleft represents a stand on a 20o slope facing the radar. The 

radar looks from left to right. The image on upperright represents the same scene, but the surface is 

facing to the right and away from radar. Trees are still growing vertically, so the images of the tree 

crowns did not change, but crowns project longer shadows upon the ground surface. The 

backscattering from the ground (a rough surface) decreases when the slope faces away from the 

radar (resulting in a larger local incidence angle effect). 

  <Fig. 16.5> 

The pixel size of these images in Figure 16.5 is 0.5m by 0.5m. The radar incidence angle used 

was 46.4o (illumination from left) the same as the SIR-C image used for the modeling.  The 

observed change of the backscattering coefficient (the brightness of the images) with changing 

slope was caused by three major factors.  First, is the change of the illuminated area per pixel.  This 

is easily seen in Fig. 16.5 as the increase in the number of range pixels (resulting in less area 

illuminated by a pixel) of the scenes. The second major factor is the change in tree shadowing.  

There are more shadows cast by trees visible in the images for slopes facing away from the radar.  

The third major factor is change in contribution of surface backscattering because of local 

incidence angle.   

  <Fig. 16.6> 

The simulated dependence of radar backscatter on local incidence angle shown in Figure 16.6 

were used to correct terrain effects.  The best fits of the simulated data yield the following two 
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equations of the form suggested by Ulaby et al. (1982): 

θθσ 78.10 cos*361.0)( =hh     r2 = 0.93                 (16.4) 

   θθσ 50.10 cos*203.0)( =hv     r2 = 0.95                 (16.5) 

Ideally, equations of this form should be developed for different kind of land cover types, which 

will be part of our future modeling efforts. For this study, we used the pair of equations to make the 

terrain correction of the L-band hv (Lhv) image. Here, we assume that Equation 16.4 is applicable 

to the SIR-C Lhh image.  

2.4.3. Terrain Correction from Modeling 

For each pixel, Equation 16.4 was used to estimate cosθ from the Lhh image data: 

 78.1/10 )361.0/)((cos θσθ hh=                                                             (16.6) 

If the actual SAR data is different than the simulated data and gives a different value for 0
iσ  other 

than the 0.361, the resulting cosθ will be: 

ahhihh
78.1/1078.1/100 )361.0/)(()/)((cos θσσθσθ ==               (16.7) 

Where 78.1/10 )/361.0( ia σ=  and accounts for the difference between σ0‘s from the simulation 

(0.361) and radar image ( 0
iσ ). 

The purpose of the terrain correction is to bring the Lhv backscattering coefficients at incidence 

angle θ to a reference incidence angle θ0. Using Equation (16.5) for both θ and θ0, and taking ratio 

of the two result in the following Equation: 

    50.1
0

0
0

0 )cos/)(cos()( θθθσθσ hvhv =                                       (16.8) 

The reference incidence angle θ0 can be any value, but the natural choice will be the SIR-C radar 

incidence angel at the image center (46.4o).   It can be seen that the uncertainty of cosθ caused by 

the factor a (Eq. 16.7) only causes a relative scaling to the corrected Lhv image (Eq. 16.8).  
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The corrected Lhv image using this method (Fig. 16.7A) shows that the terrain pattern was 

removed (compared with Figure 16.3A, uncorrected data and Figure 16.3B corrected with the 

DEM). The low biomass areas, such as clear cuts, top of high mountains, and bare valleys are still 

identifiable.  A threshold limit for Lhv backscattering was set in the correction, so the pixels with 

Lhv backscattering lower than this limit (shadowing, water surface, or other very low 

backscattering targets) will not be 'corrected'.  

  <Fig. 16.7> 

2.4.4. Biomass Estimation 

The equation developed from corrected LHV data is:  

  B1/3 = 8.45 + 0.67 σo ,  r2 = 0.78, N=28   (16.9) 

Figure 16.7B is the biomass map developed from corrected data. Biomass differences shown 

are mostly related to logging, disturbance or natural vegetation communities, such as wetlands.  

The biomass map has a continuous level of biomass ranging from 0  to >25kg/m2 .  This upper 

value range was specified since a small number of points in the image exceeded the maximum 

biomass levels in the training and testing data. 

The comparison between field biomass test data and predicted biomass developed from the 

terrain corrected LHV data is shown in Figure 16.8.  The accuracy for the independent set of 

validation points, given as the root mean square error, was acceptable at 1.81 kg/m2.  The r2 of 0.91 

was also very good, but the predicted values did not follow a one-to-one relationship with the field 

measurements.   Statistical tests performed on the regression coefficients showed that the slope 

(0.77) was significantly different from 1.00 and the intercept (1.84) was significantly different 

from 0.00.  Consequently, the prediction model over-estimated areas with low biomass levels and 

under estimated areas with higher biomass levels.   
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  <Fig. 16.8> 

2.5. CONCLUSIONS  

The effect of terrain on SAR backscatter and subsequent biomass estimation was discussed.  

We have demonstrated a model-based method for terrain-effect correction of SAR images without 

using a DEM.  However, this method requires multiple polarization SAR data.  It seems that if 

general information on forest structure is available, this method could be used in other areas.   

The terrain slope changes the local radar incidence angle, as well as the forest structure 

perceived by the radar. The dependence of radar backscattering on the slope and aspect (azimuth 

of the slope) is very complex.  Regardless of the methods to be used for terrain effect correction 

(using DEM or not), certain assumptions have to be made about the nature of the backscatter. The 

3D radar model used in this study provides a tool to simulate complex structure of the forest stand 

in mountainous areas. If land cover information is available, this method can be applied to reduce 

the terrain effect for different cover type using different equations.  If a very good DEM is 

available, the 3D model can be used to simulate radar backscattering dependence on terrain, and 

then it can be used to correct single polarization SAR data. 

In this work we based our correction on the model results from a biomass stand of 10 

kg/m2, which resulted in better estimates of midrange biomass values.  Methods to improve the 

biomass estimates over the full range by simulation of low and high biomass cases need to be 

explored.  

3. DISTURBANCE DETECTION USING RADAR AND LANDSAT 

3.1. Introduction 

 Disturbance is an important factor in determining the carbon balance and succession of 

forests. Fires and resulting scars can be detected using measured changes in temperature during the 
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fire and the vegetation changes immediately after the burn (Kasischke et al. 1993, Martin 1993).  

Michalek et al. 2000 also reported on the utility of TM data for assessing stand density and fire 

severity in Alaska. Woodcock et al. 2001, showed that Landsat 7 could be used over large areas to 

detect change, especially logging in the western United States. Defoliation of forest stands results 

in changes in reflectance and can also be used to detect insect damage in forests. Early work by 

Dottavio and Williams (1983) and Nelson (1983) demonstrated the utility of Landsat data for 

gypsy moth and spruce budworm damage in US forests.  Landsat has also been studied to provide 

information on other insect outbreaks (Royle and Lathrop 1997, and Radeloff et al. 1999).  A 

number of papers in the Russian literature describe successful use of airborne and satellite systems 

to monitor insect outbreaks (e.g., Peretyagin et al. 1986, Kharuk, et al. 1989, 2003, 2004, 2009a).  

A problem with optical systems for northern forest studies was a lack of available data caused 

by cloud cover and low solar illumination in winter. The launch of the synthetic aperture radar 

(SAR) systems: European Resource Satellite (ERS) -1 and 2, Japanese Earth Resources Satellite 

and Canada’s Radarsat provided the availability of data in all weather conditions. Kasischke et al. 

(1992) found ERS data could be used to detect fire scars in the boreal forest because the fire scars 

were 3-6 decibels (dB) brighter than the rest of the landscape. This brightness is a result of physical 

changes that occur due to fire including increased surface roughness, removal of tree canopies, and 

alteration of soil moisture patterns (Bourgeau-Chavez et al., 1993).  While optical and thermal 

sensors are sensitive to the initial changes in temperature and vegetative cover, SAR is sensitive to 

the longer-term roughness and moisture patterns that occur post-fire.  

 Landsat has provided long term, high-resolution optical data (30 m). The high-resolution 

data available from orbiting SARs also provides a closer look at disturbance patterns. While large 

area frequent coverage may not be practical, the detailed reflectance and backscatter can provide 
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information useful for identifying type and extent of disturbances on a local to regional scale. This 

information can then be used with the coarser resolution systems to identify disturbance over large 

remote areas such as Siberia. This section describes work towards understanding the use of remote 

sensing to detect important disturbance factors (fire scars and insect damage) in Siberia and 

explore the use of combined data from Landsat and SAR systems.   

3.2. Study Sites 

The study area is located in central Siberia within 88-92 degrees East longitude and 50 to 70 

degrees North latitude (Figure 16.1).  Within this larger site are Landsat image sized (~180 X180 

km) intensive study sites identified by their predominant disturbance. The Boguchany wild fire 

test site was selected because of the presence of large fire scars and logged areas.  The site is 

located at 97o 25’ E and 59o 2’ N, 75 km North of the Angara River and 350 km east of the Yenisey 

River in Eastern Siberia.  The Priangar’e Insect site is located to the west of the Boguchany site 94˚ 

30’ E and 57˚ 30' N, and was plagued by a severe insect outbreak between 1992 and 1995. 

The Boguchany test area, named after the nearby town, is located within an important region 

for timber logging in Siberia (Kharuk and Ranson 2000). The elevation of the study site ranges 

from 300 to 500 m.  The growing season in the region is short, ranging from late May to early 

September.  In the summer, smoke plumes from burning wild fires obscure the sky; fire is the 

principal factor that determines ecosystem dynamics in this region and therefore most of the stands 

are of pyrogenic origin (Kharuk and Ranson, 2000). Scotch pine (Pinus silvestris) and larch (Larix 

siberica) cover most of this landscape. However other conifers, such as Siberian pine (Pinus 

siberica), Spruces (Picea obovata) and fir (Abies siberica), can also be found in patches in the 

area.  Deciduous stands such as birch (Betula pendula) and aspen (Populus tremula) cover the 

areas of lower elevation in this region. Several methods of logging are practiced in the area 
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including the Finland technique (logging with seedlings preserved), and complete clearing where 

no vegetation is left on the site.  These sites are covered with live grasses in the summer and 

covered with dry, dead grasses in the fall.  

  <Fig. 16.9> 

The fires that caused the burn scars in this study were ignited by lightening and extinguished 

by rainfall. This study will focus on the two largest fire scars in the area (See Fig. 16.9). Fire scar 1 

is the product of two fires that were detected on the July 16 and 19, 1996 and merged into one fire 

the 21st of the same month. One of the two fires is known to have started on a 1979 clear-cut in an 

area of regenerating pine, birch and aspen when a large volume of dead wood ignited. The fire was 

a strong surface and crown fire and by the time it was extinguished on August 8, 1996, 32 thousand 

hectares of forest, old clear cuts and dense regenerating stands were burned. The second fire 

contributing to fire scar 1 started in an approximately 100 year old pine-larch stand that also 

included some regenerating pine and larch trees. Fire scar 2 burned in an undisturbed coniferous 

forest 60 km northwest from fire scar 1 also in 1996.  The fire scars were located using satellite 

imagery and verified by field surveys in the fall of 1999 conducted by scientists from the Sukachev 

Institute of Forests. Ground location was determined and survey plot measurements and digital 

on-ground photos were taken. IKONOS Carterra imagery was also available from the summer of 

2001 for field checking. 

  <Fig. 16.10> 

The insect damage study site, as shown on Figure 16.10, is within the Niznee Priangar’e 

region where a severe Siberian silkmoth (Dendrolimus sibiricus) outbreak occurred between 1993 

and 1995 (Kharuk et al, 2003). The topography of the area consists of a plateau with low hills.  

Soils are mainly spodosols (podzols). Climate is continental with cold dry winters and warm moist 
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summers. Annual precipitation is 400-450 mm. Mean annual temperature is +2.6˚ C with an 

absolute minimum of -54˚ C recorded during December and maximum of +36˚ C recorded in July.  

Vegetative growth period is about 100 days. Forests cover 95% of area. The dominant species are 

fir (Abies sibirica); other species included by Siberian pine (Pinus sibirica) also known locally as 

Siberian cedar, Siberian spruce (Picea obovata), Scotch pine (Pinus silvestris), larch (Larix 

sibirica), aspen (Populus tremula), and birch (Betula pendula). Stands are of average productivity 

with a wood stocking density of 200-230 m3/hectare and mean age of 135 years. Typical insect 

damage is characterized by complete defoliation and death of conifer stands, or death of only 

conifer trees within mixed stands. 

3.3. Data and Preprocessing 

Available JERS, ERS-1, Radarsat and Landsat-7 satellite data were analyzed to determine to 

what extent these sensors could detect the presence of fire scars, clear cuts and insect damage. 

Table 1 summarizes important parameters of the sensors used. 

The JERS data were resampled to 25 m pixel size, reoriented, and filtered using a 3 by 3 Frost 

filter (Frost et al. 1982). The ERS-1 data were received from the Alaska SAR Facility (ASF).  

These data were then multilooked to 25 m pixel size, reoriented, converted to ground range, 

wrapped onto a longitude/latitude grid using corner coordinates and, filtered using a 3 by 3 Frost 

filter. The Radarsat standard beam data received from ASF were previously converted to ground 

range. The data then were ingested, resampled to 25 m pixel size, wrapped into a longitude/latitude 

grid using corner coordinates and filtered using a 3 by 3 Frost filter.  The Landsat 7 scenes were 

ordered and received from the EOSDIS EROS Data Center Distributed Active Archive Center 

(DAAC). There was no radiometric terrain correction applied to the images because neither area 

had a steep topographic gradient (the elevation difference was less than 250 m).  No additional 
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atmospheric corrections were applied to the Landsat 7 data. 

To attain greater geometric accuracy and to ensure that the data sets were co-registered with 

the highest possible accuracy, the JERS, ERS, and Radarsat data were registered to the Landsat 7 

scene. Landsat 7 data were selected as geometric ground information for this site because these 

data have good geometric calibration. Ideally, orthorectification of radar images using a DEM 

should be performed before registration, but there was no high resolution DEM available. Instead 

we used a large number of control points to register the images. Because of the low terrain relief, 

the results seem satisfactory.  

The SAR images were manually registered to the Landsat 7 scene. To accomplish this, points 

at the intersection of linear features were selected such as on roads, rivers, and clear cuts when 

applicable. In Boguchany, 103 points were used to register the ERS data, 74 to register JERS and 

65 to register the Radarsat data. In Priangar’e 70 control points were used to register the JERS data 

and 90 to register the Radarsat data. The same procedure was used for both sites.  After 

registration, images were subset to the area covered by each of the 4 sensors. Figures 16.9 and 

16.10 show the SAR and Landsat 7 images used for the analysis. 

3.4. Methods 

3.4.1. Vegetation classes 

The following land cover classes were identified for the two sites: coniferous forest (CF), 

broadleaf deciduous forest (DF), regeneration/sparse forest (RS), bare surfaces (BS) and clear cut 

(CC).  For the Boguchany site the following disturbance classes were added: burned coniferous 

forest (BC), burned deciduous forest (BD), and burned logged areas (BL). Additionally, two 

classes of insect damage were identified in the Priangar’e area: severely damaged (SD) with 
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complete defoliation of a stand and moderately damaged (MD) with only conifer trees defoliated.  

Since the insect outbreak had occurred in 1996 and subsequently subsided the two classes 

represent severity of damage rather than stage of insect attack.  Table 16.2 provides a list of classes 

and descriptions for the two study sites. 

3.4.2. Training site selection 

Field campaigns were conducted in the Boguchany area in the fall of 1999 and Priangar’e area 

in the summer of 2000. During this field campaigns, tree species were identified.  GPS 

measurements were acquired and in Boguchany, plot measurements pertaining to the successional 

stages of the burned and logged areas were obtained.  Fig. 16.11-A shows the burned area in 

Boguchany. A field visit to Priangar’e included aerial overflights to obtain photography of 

damaged areas (Fig. 16.11-B). Information gathered during these field campaigns along with the 

existing local ecological knowledge of the staff at the Sukachev Institute of Forest provided a good 

basis for determining and locating the different vegetation classes on the Landsat and radar 

images. 

  <Fig. 16.11> 

The training sites for the classes mentioned above were determined based on the information 

gathered in the field, the multi-year and multi-season coverage provided by other Landsat scenes 

and the contextual information provided by the individual Landsat scenes.  Once the training sites 

were so determined, histograms were examined for each class in each radar band. If the data was 

normally distributed, the class was left intact. If however the histogram showed a multimodal 

distribution, these training sites were displayed using the radar bands and training sites assigned to 

a more or less homogeneous subclass.  Then the histograms for these subclasses were once again 

reviewed to make sure that the distribution of the values was normal. This way, the deciduous 
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forest and bare ground classes was split into three subclasses on the Priangar’e site, and the 

burned-logged class was split into two subclasses on the Boguchany site. Approximately one-third 

of the training sites were set aside for testing the classification and two-thirds were used for 

training the classifier. 

The clear cuts in both Boguchany and Priangar'e sites appear as rectangles with straight edges 

cut out of the forest cover in a checkerboard fashion revealing their man-made nature. The older 

clear cuts are clearly overgrown with deciduous trees, whereas the most recent ones have exposed 

bare soil. Because of the time difference between JERS and Landsat 7 data, only those logged sites 

were included in the clear cut class that were at least three years old and had grasses and seedlings 

growing on them.  Based on a priori work, it was determined that the older, now tree covered clear 

cuts could not be separated from the natural deciduous forest cover. The fire scars in the 

Boguchany area are spatially quite distinct from the clear cuts. The fire scars have lobe-like edges 

that are at times discrete and at other times more transitional.  

It is worth noting that if an unburned area is spectrally, structurally and texturally 

heterogeneous, it is likely that the fire scar visible in the landscape after burning will also be 

spectrally, structurally and texturally heterogeneous. This is to say that fire scars are not 

monolithic features at a 30 m resolution.  The patterns observable within a fire scar provide 

valuable information of the history of the site. When anthropogenic disturbance (such a logging) 

has occurred in the area prior to the burn, the burned area will be a patchwork of spectral, structural 

and textural features shaped by a combination of anthropogenic and natural disturbance factors. 

This texture information was used to identify these sites but was not explicitly included in the 

classification. 

On the Priangar'e site the logged areas do not appear in juxtaposition with the insect damage. 
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In this case the anthropogenic (logging) and natural disturbances (insect infestation) are spatially 

separate. Insect damage appears on the landscape as patchy “thinned out” forested areas since 

insect only damaged the needles of the coniferous trees and left the leaves of other trees intact. The 

degree of the damage they caused partly depends on the species composition of the stands: if a 

stand was composed of coniferous species (food species), the stand was severely damaged. If the 

stand consisted of a mix of food and non-food species, then the damage was more moderate. It is 

important to mention that severely and moderately damaged classes are not thematically distinct. 

Instead they are two, somewhat arbitrarily defined overlapping areas on a thematic continuum 

between completely healthy and completely damaged forest stands.  

Training sites for each class were chosen, keeping in mind that the radar data available was 

acquired over a period of three years. The changes that have occurred within the landscape during 

this period had to be eliminated or at least minimized within the training sets. For example some of 

the Boguchany training sites were eliminated from the training set because on a 1991 Landsat 5 

images they appeared as coniferous forest, and by the time the 1999 Landsat 7 scene was taken, the 

site became a clear cut. Since there was no additional information available on this particular site, 

it could not be determined at what point between the two dates the site was logged and whether or 

not the date of its logging fell within the three year period the radar data was acquired.  

3.4.3 Data Analysis 

 The purpose of this analysis was to determine whether or not and how each sensor was 

detecting each land cover class and whether or not the radar sensors were capable of separating the 

classes from one another based on backscatter information alone. Once the training sites were 

carefully selected and split into subclasses as described above, backscatter values were extracted 

from each class for each radar sensor, and descriptive statistics were generated. The analysis 
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procedure consisted of two parts 1) Transformed Divergence (Richards and Jia, 1999) analysis and 

2) maximum likelihood classification. Transformed Divergence (TDM) is a measure of 

separability between classes and may therefore be used to assess the quality of the class spectral 

mean vectors and covariance matrices. A high TDM (> 1.80) indicates good statistical separation 

of the classes and indicates how well each sensor or sensor combination detected each land cover 

class. Maximum likelihood classification provides the means to examine the separability of classes 

in a mapping or thematic sense.  After classification, the subclasses were merged into their original 

parent class. 

3.5. Results and Discussion 

3.5.1. Radar Data Analysis 

Burned Site 

Figure 16.12a presents the average backscatter and standard deviations for each radar 

sensor for the 7 classes from the Boguchany fire scar study area.  For JERS data the coniferous and 

deciduous forest classes, as well as the burned deciduous and coniferous forest classes have very 

similar backscattering coefficients. This is probably because at L band (0.23 m wavelength), larger 

tree branches and trunks are the primary scatterers. After surface and crown fires, many of the tree 

trunks still remained standing as seen on the images of the burned forest sites. This might explain 

why the returns are so bright for both unburned and burned forest types in the L band.  It is also 

clear that the regeneration sparse, clear cut and burned logged areas classes all have lower 

backscattering coefficients, which is likely due to the absence of large branches and trunks. 

Classes with little or no tree cover (RS, CC and BL) also have similar backscatter and, as a group, 

have lower backscatter than the classes with standing trees.   

  <Fig. 16.12> 
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In Figure 16.12a it can also be seen that the unburned classes (CF, DF, RS, and CC) all 

have lower ERS-1 brightness values than the burned classes (BC, BD, RS). The post-fire 

regeneration class seems to have intermediate values. C band radar is scattered by structures in 

about 5 cm in size such as leaves and small twigs on trees or grasses.  Field observations revealed 

that small structures such as leaves and twigs were no longer present on burned trees, however 

grasses having leaves of similar sizes are abundant on the fire scar during the summer months.  

Based on this, the burned and unburned vegetation should be difficult to distinguish. There must be 

some other factor such as soil moisture (Bourgeau-Chavez et al., 1993) influencing the CVV 

backscatter that causes the burned areas to be brighter than the unburned ones.  

The plotted Radarsat backscatter shows very little difference between any of these classes 

(Figure 16.12a).  Only the clear-cut class has backscatter values that are a bit lower than the others.  

These areas also appear dark on the radar image (Figure 16.12b).  There is not an obvious 

explanation as to why burned and unburned classes are so clearly separable using CVV ERS data 

and why the CHH Radarsat backscatter for these same classes are so similar.  Only one year passed 

between the acquisition of the two data sets, therefore land cover change is unlikely be the answer.  

There is an 11o difference in incidence angle between the two sensors, (ERS = 23 o,  Radarsat = 34 

o), but it is not well understood exactly how incidence angle influences radar backscatter from 

burned areas. Soil moisture could have changed over the one-year period and it is also possible that 

at a larger incidence angle, the differences in soil moisture between burned and unburned areas are 

less pronounced.   

The separability of classes using the radar data was quantitatively examined with the use of the 

Transformed Divergence Measure (TDM). For JERS data, high TDM values exist between logged 

classes (CC and BL)  and unburned and burned conifer (CF, BC, respectively) and unburned and 
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burned deciduous stands (DF, BD, respectively).  In this case, unburned forest stands are not 

separable from burned forest stands.  High TDMs also exist between RS and BD classes.  This 

indicates that forested classes and classes lacking tree cover are easily separable from each other 

using JERS data regardless of their burned state.  ERS and Radarsat TDM values were generally 

lower than those for JERS.  The exceptions were for ERS data which had much higher separability 

values for burned forest (BC and BD) and unburned forest (CF and DF). From these results it is 

clear that any single radar sensor used alone cannot be used to discriminate between burned and 

unburned forest classes, between deciduous and coniferous forest classes, and between unburned 

and burned non-forested classes.  However, JERS data can be used to discriminate between forest 

and non-forest classes regardless of burning, and between post-logging regeneration and forest 

classes also regardless of burning.  

ERS data appears most useful for discriminating between burned forest areas and unburned 

forest, regeneration and clearings.  Other class pairs with relatively high TDMs include RS and BC 

(1.49), and BD (1.73). This indicates that post-cutting regeneration is easily separable from the 

burned forest classes. However, the separability between the RS and the unburned forest classes 

(CF and DF) is very poor (< 0.20).  Low TDMs were found between CF and DF classes indicating 

that CVV data cannot be used to distinguish between coniferous and deciduous forest classes. 

TDM values were also minimal between CF and CC.  

From these data it is clear that the CVV band alone cannot be used to discriminate between 

coniferous and deciduous stands, clear cuts and forest classes, and between clear cuts and post fire 

regeneration classes. However, ERS data can be used to discriminate between the burned and 

unburned land cover classes, regardless of other characteristics of the site, and between post 

cutting regeneration classes and burned forest classes. JERS data at the L-band seems to detect 
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larger structural differences between forest types that are caused by logging (i.e. removal of large 

trunks). At the same time ERS C-band data seem to detect soil moisture differences and perhaps 

structural and moisture differences at a leaf level associated with burning. This indicates that the 

combination of the two sensors should provide improved results in discriminating logged and 

burned areas.  The maximum separability from the Radarsat data is 0.72 and occurs between the 

CF and the CC classes. This value is quite low and indicates that the Radarsat data alone is not 

suitable for distinguishing any of these classes from each other.  

For the TDM values generated based on the three sensor data combined, the average 

separability increased to 1.55. Although this is an increase from using each sensor alone (JERS 

average separability: 1.23, ERS: 0.64, and Radarsat: 0.16), on the whole, combining the three 

sensors does not provide very good distinction between these eight classes since TDM values 

under 1.8 are considered poor.  Combining the radars provided the greatest increases in useful 

separability (> 1.80) over individual radars between burned classes (BC, BD, BL) and 

regenerating forest (RS).  Overall, forest (CF, DF) could be separated from disturbance classes 

(RS, CC, and BL), but not from burned forest (BC, BD).  Burned forest could be separated from 

regeneration and clear cut. The common theme among class pairs is that classes can be separated 

successfully that have different structural characteristics determined by the presence or absence of 

large trunks and branches, such as forest and non-forest classes. This is mostly due to the LHH 

band JERS data, since these class pairs had reasonably high TDM values (around 1.7) using JERS 

data alone.  ERS contributes the most in separating burned forest from other classes; however, 

TDMs never reached 1.80 for any class pair. 

Table 16.3 lists the maximum likelihood classification results of the combined radar data for 

the Boguchany site.  Only the burned logged class (BL) was identified with accuracy greater than 
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80%.  Forest classes were confused with each other as were burned forest classes.  Regeneration 

and clear cut classes were mostly confused with each other.  These classification results indicate 

that using this combination of radars might provide useful classification of forest classes (CF + 

DF), logging (CC + RS), burned forest (BD + BD) and burned logged areas (BL). The overall 

classification accuracy for all classes was about 66%. 

Insect Damage Site 

Figure 16.12b presents the average backscatter and standard deviations for the insect damaged 

site.  Neither JERS nor Radarsat backscatter differs much across the forested sites (CF, DF, IS, 

IM).  JERS backscatter decreases slightly for clear cuts and drops off for the bare surface class and 

water. Radarsat does not show this decrease in backscatter except for the water class.  Apparently 

CC and BS surfaces are sufficiently rough to the C-band radar beam to maintain backscatter levels 

similar to forested sites.  

Two trends in the radar separability values for the Priangar’e site are obvious that both JERS 

and Radarsat can distinguish water from the land cover classes very successfully, including the 

bare surface sub classes.  JERS and, for the most part, Radarsat are also successful at 

distinguishing bare surfaces from the vegetated classes (1.92-2.00).  Radarsat has low TDM values 

between bare surfaces and clear cuts and fails to separate the BA-2 class from all the vegetated 

classes.  For JERS, TDM values are very low between coniferous forest (CF) and insect damage 

classes (IS, IM) and the deciduous forest subclasses and the moderate insect damage class.  This 

might be because the insects only damage the leaves of the trees and the L band radar does not 

detect leaves, only major branches and trunks. Radarsat values are low for these classes, but higher 

than JERS for separating conifer forest from disturbance classes (IS, IM and CC).  

 Radarsat separability of the forests classes was poor (< 1.31), as was separability of 
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damaged forest classes from each other and with undamaged conifer forest (< 0.97). The TDM 

values between deciduous subclasses and both damaged classes were also extremely low (< 0.28). 

However the separability between coniferous forest and clear cuts was higher (1.77). This may be 

because there is volume scattering occurring within the tree canopies while volume scattering back 

to the radar is absent from the grassy clear cuts.   

With the combined use of the two radars the distinction between the clear cuts and coniferous 

forest (TDM=1.96) and clear cuts and severe insect damage (1.86) increased.  There was no large 

increase in the separabilities between the other classes.  In addition, there was good separability of 

conifer forest and the deciduous subclass (DF3).  Low TDMs were found for CF and the other two 

deciduous subclasses suggesting a possible mixture of conifer and deciduous trees or forest density 

differences among these deciduous classes.  Overall, the combination of JERS and Radarsat may 

be useful for separating clear cuts from other forest types, but is not useful for separating insect 

damaged stands from undisturbed forest. 

 The results of classification of the training sites using the JERS and Radarsat backscatter 

show 61% correct classification of conifer forest and 77% correct classification of the deciduous 

forest (combined subclasses).  Reasonable classification results (> 80%) were obtained for clear 

cuts and bare areas and water (Table 16.4).  Only 29% of the severely insect damaged, and 46% of 

the moderately damaged classes were classified correctly.  Misclassifications were primarily with 

deciduous forest (51% and 41% respectively) indicating the combination of JERS and Radarsat is 

not useful for recognizing this disturbance.   

3.5.2. Landsat and Combined SAR 

Burned Site 

 Mean spectral reflectance digital numbers (DN) from burned area training sites are shown 



37 

  

in Figure 16.13a.  Only Bands 3 (0.63-0.69µm), 4 (0.76-0.90µm) and 5 (1.55-1.75 µm) are shown 

for illustration. Because of the post-senescence timing of the acquisition deciduous trees are bare 

and ground vegetation is dead reducing near-infrared (NIR) reflectance. Conifer forest has higher 

NIR response than burned conifer forest. Deciduous forest and burned deciduous forest exhibit a 

similar trend but with higher responses. Clear cuts have unique spectral characteristics in this fall 

image with overall higher responses, especially in the SWIR (band 5).  

The TDMs from Landsat ETM+ data are greater than 1.80 for all classes except between 

burned forest classes (BC and BD) and between burned logged (BL-1 and BL-2 ) and clear cut 

(CC) classes.  Regeneration (RS) and BL-1 TDM was slightly less than 1.80.  Even though this 

Landsat 7 image was acquired in 1999, three years after the burn, many dead, burned trees still 

remained standing on the burned forested sites casting their shadows on the regenerating 

vegetation forest floor. This is why there is good distinction between the live and burned forest 

classes. One exception to this good separation between live and burned vegetation classes are the 

clear cut (CC) and the burned logged (BL) classes (TDM < 1.45).  The burned logged sites were 

logged prior to the burn in 1996. When the burn occurred, there were no trees standing on these 

sites, only grasses and seedlings. Since there were no mature trees on the site, there were no burned 

trunks left standing either, therefore no trunks could cast their shadows on the regenerating grasses 

and seedlings after the burn and lower the site’s reflectance in the NIR. This is why three years 

after the fire the burned logged site seems spectrally similar to a clear cut class and the 

regenerating/sparse class. 

  <Fig. 16.13> 

 Using the Landsat spectral statistics to classify the Boguchany burned area produced 

generally good accuracy.  As shown in Table 16.5 conifer and deciduous forest classes, 
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regeneration and the two burned forest classes had classification accuracies greater than 89%.  

Clear cut and burned logged areas were confused with each other resulting in lower classification 

accuracies of 83% and 84%, respectively. Overall accuracy was 90% and Kappa coefficient was 

0.88 indicating Landsat reflective bands should perform well in discriminating the burned area 

classes.   

Combining the three radars and Landsat data increased the TDM values for those classes that 

the optical and microwave sensors alone could not distinguish well. The largest increase occurred 

in the case of the burned logged and burned deciduous class where TDM increased from 1.35 to 

1.97 when the spectral and structural information was combined. However, there was only a minor 

increase in the TDM values between the clear cut and burned logged subclassess since in this case 

both classes were both spectrally (regenerating grasses and seedlings) and structurally (lack of 

trunks) similar. 

In summary, L band radar data provided structural information of the vegetation such as the 

presence of absence of large trunks and C band radar data seems to provide information on soil 

moisture conditions while Landsat data provides spectral information on the vegetation cover such 

as whether or not the vegetation is reflective in the NIR. This synergistic interaction between the 

optical and microwave sensor is key to distinguishing disturbed sites from non-disturbed ones 

since they might look extremely similar using one or the other type of data alone.  

 Classification with combined data sets of Landsat, JERS, ERS and Radarsat resulted in 

classification accuracies above 90% for all classes (tables not shown for brevity).  The overall 

classification accuracy was nearly 94% with a Kappa coefficient of 0.93.  The classes with the 

most improvement were the burned logged class (BL) from 84% to 93% and the CC class from 

83% to 90%.  The reduction of confusion between these two classes resulted in the higher 
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classification accuracies.  The added information on surface roughness condition available with 

the radar likely contributed here. 

Insect Damage Site 

Figure 16.13b shows that NIR reflectance are high for broad leaf trees and ground vegetation 

for the midsummer acquisition of the insect damaged area. The shorter wavelength reflectance 

(bands 1, 2 and 3, vis 3) did not vary much across the classes with vegetation in them.  NIR and 

SWIR reflectance (Bands 4, 5 and 7, vis 4 and 5) however, are quite different and appear suited for 

discriminating forest classes from disturbed classes. Notice the overlapping spectral responses for 

the three deciduous subclasses. This is also apparent for the bare surface subclasses except for TM 

band 4, suggesting a sparse vegetation cover on BA1 (more than on BA1 and BA2, but less than 

the clear cut (CC). 

The widely varying spectral reflectance shown indicate that Landsat data can be used very 

successfully to distinguish among water, bare ground, clear cuts and all of the vegetation classes.  

Very high TDM values were observed between all class combinations from Landsat data 

indicating good separation of the forest classes and disturbances. Even TDM values between 

severe and moderate insect damaged classes were high (1.83).  The only low TDM values were 

found among subclasses of deciduous or among bare surface subclasses. 

TDM results obtained after combining JERS, Radarsat and Landsat 7 for the insect disturbance 

area shown that there was only modest improvement in TDM adding the radar data with the 

Landsat over the Landsat alone for most of the classes.  However, combining the radar data with 

the Landsat data increased the separability between the severe and the moderately severe insect 

damaged classes from 1.83 to 1.93.  Of interest is the increase in separability between DF-1 and 

DF-3 deciduous forest subclasses.  Recall that the subclasses were selected from training sets 
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originally selected from Landsat data, but yielded multimodal histograms with radar backscatter.  

DF-3 then is spectrally similar to DF-2 in the Landsat bands but apparently structurally dissimilar 

as inferred from the JERS backscatter.  Based on this, DF-3 is likely a deciduous conifer or larch 

(Larix sibirica).   

The classification results with Landsat 7 data were excellent as shown in Table 16.6.  Every 

class had at least 95% classification accuracy. Overall accuracy was 98.6% with a Kappa 

coefficient of 0.98.  Adding the additional radar channels (results table not shown) offered only 

slight improvement in class accuracy with an overall 99% correct and kappa coefficient of 0.99.   

3.6. Conclusions 

This study was designed to examine the utility of using different radar systems and Landsat 7 

for identifying forest landscape classes, especially those related to disturbance. We found that the 

results were limited when using each single channel radar alone, however JERS and ERS were 

found to be useful for identifying certain classes. JERS was most useful for separating forest from 

disturbed classes with no standing trees.  ERS was more useful for separating forest classes from 

disturbed classes where trees are left standing. Radarsat, on the other hand, was the least effective 

individual radar for this study. Combining the radars improved the identification of classes over 

results obtained with any single radar.  Generally, if one radar sensor was found to have high 

separability for a pair of classes, adding additional radars did not greatly increase the separability.  

If all radars had low separability, combining the radars had very little benefit.  In both sites the low 

separabilities found between CF and DF and burned forest and insect damaged forest classes 

indicates that classes that have both large trunks and leaves present on them are not possible to 

separate using even combined radar sensor data.   

Regarding the detection of disturbance, the available data was acquired over a two-year period 
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therefore careful comparison of radars for burn scar detection was not possible.  Changes in 

surface soil moisture can greatly change the backscatter from burn scars as shown and verified by 

other researchers (e.g. Kasischke et al., 2011). Landsat 7 data proved the most useful of any single 

remote sensing system for recognizing forest type and discriminating between disturbance types. 

Even with non-growing season images, as was the case for the fire damaged site, the results were 

very promising.  Combining the Landsat data with the available radar data improved the 

separability of classes and the overall classifications.  The results also indicate that the 

combination of radar and Landsat 7 may be especially useful for recognizing other forest types by 

utilizing the structural information of radar and spectral information of Landsat 7.  As radar and 

Landsat 7 data becomes more widely available combining these data sets should improve the 

accuracy of forest mapping activities.  However, there is extra effort and cost involved in 

registering different image types. 

This work underscores the importance of using multichannel SAR data for forest studies. 

When combined with optical data the SAR appears to offer potential for improving classification. 

The future multichannel systems may contribute greatly to improved results in forest analysis and 

disturbance mapping.   

4. Characterization of forest-tundra in the North of Central Siberia 

4.1. Introduction 

Northern Siberia is a climatic hot spot—an area that is warming faster than the rest of the 

planet. In the past 30 years, average temperatures across the region have risen 1-3°C, while the 

worldwide average increase in that time is about 0.6 °C. The region remains fiercely cold. The 

average winter time low in Khatanga, a small village in Northern Siberia, is -37 degrees C and can 

drop to -59 ° C. Yet the warming trend is so rapid here that scientists are curious to watch the 
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effects on the land. Scientists from all over the world are now looking at Siberia. 

Starting July 10, 2008, authors Ranson and Kharuk led a team of American and Russian 

scientists (Fig. 16.14) to study an extremely remote and harsh section of northernmost central 

Siberia. A Russian MI 8 helicopter flew the team from Khatanga  above the Arctic Circle, and 

landed at a flat spot (70o41’34”N, 105o38’46”E) near the headwaters of the Kotuykan River and 

the team made a rapid exit from the helicopter (Fig. 16.15) into the rain. In the following two 

weeks, the team used three rubber boats to travel the river, stopping frequently to make 

observations and collected data in support of several ongoing studies. 

  <Figs. 16.14, 16.15> 

4.2. Study Region and Data 

The study area is located around 70o 20’-71o15’N, 102o40’-105o50’E (Fig. 16.16).  The 

river flowing from south to north in the western part of the area is the Kotuy and it flows northward 

into the Kheta River, and then flows north into Arctic Ocean. Fig. 16.17 shows the lower reach of 

the Kotuy River as seen from the helicopter (the upper-left corner of Fig. 16.16). In the middle of 

the Fig. 16.16 it is the Kotuykan River.  The white triangle near the lower right of the image was 

the landing place of the Russian MI 8 helicopter.  Fig. 16.18 shows a scene where the Kotuykan 

River joins with the Kotuy River. The mountains, the Siberian Traps, were formed from basaltic 

lava flows during massive eruptions about 250 million years ago. The freeze/thaw cycle cracks and 

crumbles the rocks. The weather and the river have eroded the mountains into spectacular 

formations and sheer drop-offs. 

  <Fig. 16.16> 

<Figs. 16.17-20> 

From the bank across from the camp site (Fig. 16.19), there are larch trees growing along 

http://earthobservatory.nasa.gov/Features/SiberiaBlog2008/siberia_bio.php�
http://earthobservatory.nasa.gov/Features/SiberiaBlog2008/siberia_bio.php�
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the river, these are gradually replaced by tundra and bare rocks as elevation increases. In the 

background are the flat-topped mountains known as the Siberian Traps. The slope in the 

foreground is littered with basaltic rocks formed from lava flows about 250 million years ago. Fig. 

16.20 is a picture taken on the top of a trap at one side of the river looking across to the one on the 

opposite river bank. At the top of these traps, few trees can survive.  

The harsh climate of Siberia is a challenging one for larch trees. The photo (Fig. 16.21) 

shows the fates of several trees. A tree without bark or branches leans across the center of the 

photo. This tree died centuries ago, but the frigid and arid climate has kept it from decaying. In the 

foreground, a tree that broke at the trunk and toppled managed to survive when a side branch grew 

into a vigorous new tree. In front and to the right of the “reborn” tree is a small dead tree that still 

has branches and bark. It is an ancient tree that died recently. In its last years, it put energy into 

making seed. Pinecones from the previous two years still cling to its branches.  Forest ecologist 

and author titled the photo (Fig. 16.22) as Siberia’s “bones and flesh.” The “bones” are the 

skeletons of fossil trees that died prior to the extremely frigid climate of the Little Ice Age, during 

the 14th to 18th   centuries. Although they died hundreds of years ago, the frigid climate has 

prevented them from decaying. The “flesh” is the new trees that are colonizing the area as the 

climate warms. These trees are growing far above the “fossil” tree line, which is evidence that the 

current warming trend is very strong. These data on the ages of both old and new trees— will be 

used in future analysis to create a timeline of climate change in this part of Siberia. 

  <Figs. 16.21-22> 

Landsat data (MSS, TM and ETM+) from 1973 to 2009 were acquired for this study. These 

images were used for classification and comparisons of vegetation status. Japan’s Phased-Array 

L-Band Synthetic Aperture Radar (PALSAR) on the Advanced Land Observing Satellite (ALOS) 
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(Shimoda et al., 2009), data acquired in 2007 by JAXA’s ALOS mission was used  for showing the 

vegetation cover and information related to above-ground biomass. The lidar waveform data 

acquired by Geoscience Laser Altimeter System (GLAS) on board NASA’s ICESat satellite were 

used to predict biomass. 

Table 16.7 lists the PALSAR and Landsat data acquired for this study. Landsat data (MSS, 

TM and ETM+) were acquired in 1973, 2002 and 2009 and these images were used for 

classification and comparisons of the vegetation status.  Dual-pol PALSAR data acquired in 2008 

by JAXA’s ALOS mission (http://www.eorc.jaxa.jp/ALOS/en/obs/palsar_strat.htm) were 

acquired to study the vegetation cover and information related to above-ground biomass. The lidar 

waveform data acquired by the Geoscience Laser Altimeter System (GLAS) on board NASA’s 

ICESat satellite were used to predict biomass from waveform data.   Though it is not ideal from a 

vegetation measurement standpoint, GLAS data have been used for forest studies (e.g., Lefsky et 

al. 2005; Harding and Carabajal 2005; Ranson et al. 2007; Sun et al. 2008, Boudreau et al. 2008). 

GLAS systematically samples the forest vertical structure and provides top canopy height in 

addition to the surface elevation. GLAS illuminates/measures an area on the ground ~65m in 

diameter, though the footprint size and degree of circularity changed significantly over the course 

of the mission (Abshire et al. 2005).  Sequential GLAS footprints are spaced 172 m apart (Schutz 

et al. 2005).  GLAS waveform data (GLA01), land products (GLA14), and associated 

documentation are available through the National Snow and Ice Data Center (NSIDC) website 

(http://nsidc.org/data/icesat/data.html).  

4.3. Data Processing 

4.3.1. PALSAR Data Processing 

 The L-band dual-polarization (HH/HV) ALOS PALSAR data in Level 1.1 were converted 

http://www.eorc.jaxa.jp/ALOS/en/obs/palsar_strat.htm�
http://nsidc.org/data/icesat/data.html�
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from digital number to sigma0 using the revised calibration coefficients (Shimada, et al., 2009). 

The Repeat Orbit Interferometry Package (ROI_PAC) version 3.0 released on Oct. 4th, 2007 was 

used to geo-locate the SAR data.  After the image data were imported into ENVI, these images 

were geographically mosaicked. Figure 16.23 shows the mosaic of PALSAR L-band HV data for 

the region. A ration of HV to HH was also generated.  

  <Fig. 16.23> 

4.3.2 Landsat Image Processing and Classification 

 A dark-object subtraction technique was used to correct for varying atmospheric 

conditions for each sub-scene; subsequently, Landsat digital number (DN) was converted to top of 

atmosphere (TOA) radiance in W/(m2 sr µm) and then to surface reflectance.  The DN to 

reflectance conversion is important because DN is an inappropriate index of change over time 

given differences in sensor calibration, solar zenith angle, and sensor viewing angle, among others 

(Slater, 1980). The Normalized Difference Vegetation Index (NDVI) has been in use for many 

years to measure and monitor plant growth (vigor), vegetation cover, and biomass production from 

multispectral satellite data (Tucker, 1979). NDVI were calculated from Landsat data acquired in 

1973, 2002 and 2009. 

 The Landsat data acquired on July 23, 2009 were classified using the unsupervised method 

(isodata) of ENVI package. The clusters were then combined into 7 classes based on field 

observations. 

4.3.3. GLAS Data Processing 

 The GLAS data used in this study were the level-1 product GLA01 (waveform) and level-2 

product GLA14 (Land/Canopy Elevation). Among the elevations reported in the GLA14 products 

are the heights of up to 6 Gaussian peaks fit sequentially to a given waveform. The last, i.e., lowest 
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fitted Gaussian peak included in GLA14 data is assumed to be the ground peak.  The difference 

between signal beginning and this peak will be the top or maximum canopy height. From the 

waveform data many additional variables were generated (Sun, et al., 2008) that captured 

characteristics of the canopy structure. The indices derived from GLAS waveform and used in the 

study include the total extent of waveform (wlen) and top canopy height (h14) from GLA14 data; 

the ratio of waveform energies returned from canopy to ground (eratio), the heights of four energy 

quartiles (rh25, rh50, rh75, rh100) and additional eight heights (rh10, rh20, rh30, rh40, rh60, rh70, 

rh80, rh90) where 10%  - 90% of total waveform energy were cumulated above ground surface, 

calculated from waveform.   

4.3.4. Field timber volume data 

The Equations use to estimate stem volume of larch trees was: 

 V=0.00001*H*(3.24*D^2+6.601*D+3.361)    (16.10)  

where D is the diameter at breast height (DBH) in cm. H is the height of the tree (m), and V is the 

volume of the tree (m3). This equation is based on the data at Lucunskoe of the Ary-Mas Reserve 

(72034’) (Bondarev, 1989).   

During the two-week field campaign, one hundred GLAS footprints were sampled. The 

stem volume was calculated for all of these footprints using the above equation. It was found that 

the rh50 of some footprints was less than zero, which was probably caused by noisy signal. Also a 

few footprints had rh50 greater than 15 m, which was problematic because the highest tree we 

measured in the field was less than 15 m. After excluding these abnormal points, a total of 

fifty-three points were left for development of a prediction model using the step-wise regression in 

S-plus.  

4.4. Results and Discussions 

4.4.1.  Landsat Data Classification and NDVI comparisons 
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 Fig. 16.24 is the classification from Landsat-5 TM data acquired on July 23, 2009. These 

classes are: water (blue), larch forests with three levels of densities (bright green, green, dark 

green), grass tundra (yellow), wet tundra (maroon) and bare surface (pink).  Dense larch forests are 

growing in the south or along the valley.  

 Fig. 16.25 is a false color composite using NDVI of July 23, 2009, June 26, 2002 and July 

23, 1973 as Red, Green and Blue.  It can be seen that in the area of know larch forests, the NDVI 

was stable across imaging period so the composite color is white or light gray. The red color in the 

grass-covered areas indicates that NDVI on July 23, 2009 was higher than on other dates.  

  <Figs. 16.24-25> 

4.4.2.  Timber Volume Assessment 

 The regression model was created by step-wise regression in S-plus.  The procedure picked 

nine indices (h14, rh10, rh20, rh25, rh30, rh40, rh70, rh80 and rh100). The relation between field 

stem volume and GLAS predicted volume is (Fig. 16.26): 

 Y = .26 + 0.75 * X               (16.11) 

With a R2 of 0.75, residual standard error of 4.89 m3, F-statistic is 159 and p-value is zero. 

 Fig. 16.27 shows GLAS orbits for the data acquired in one data-take period. The 

background image is composed of 3 channels of PALSAR L-HH (red), L-HV (green) and the ratio 

of HV to HH (blue). The GLAS data of L3F (May-June, 2006) and L3G (Oct-Nov, 2006) were 

used in this study.  The stem volume prediction model was applied to the footprints with the rh50 

between zero and 15 m.  Then the footprints falling in the larch forests were compiled, and the 

mean stem volumes were calculated. The mean stem volume was 17.88 m3/ha (standard deviation 

11.10 m3/ha) derived from L3F data (n=185), and 21.61 m3/ha (standard deviation 13.47 m3/ha) 

from L3G data. Most GLAS footprints sampled in the field were from L3G data.  
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  <Figs. 16.26-27> 

4.5. Conclusion 

 Landsat multi-spectral data, PALSAR L-band SAR data and GLAS lidar waveform data 

along with the field sampling data were used to characterize the land cover and stem volume in the 

area along the Kotuykan River in the extreme north of the central Siberia. The analysis shows 

some capabilities of long term observations with Landsat and the capability of observing forest 

structure with lidar and forest cover type with SAR.  The data sets used herein represent the state of 

the technology available to measure frontier lands.  The US National Research Council advised 

NASA on the important measurements and technologies for answering pressing science questions.  

Among the several missions recommended is the Deformation, Ecosystem Structure and 

Dynamics of Ice or DESDynI.  This mission will orbit a multi-beam lidar and a multi-polarization 

SAR on separate platforms to provide the best data ever for quantifying forest height and above 

ground biomass (Hall et al., 2011). 
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Table 16.1. Parameters used in radar backscatter simulations. 

 

Geometry 

 Radius Length Probability 

Needle 0.3 mm 2.7 cm 100% 

Branch 0.2 cm 15 cm  90% 

 0.8 cm 50 cm    8% 

 1.6 cm 150 cm    2% 

Orientation 

Needle Vertical preferred (p(θ) = 4sin2θ/π, θ ∈ (0o, 90o) is the zenith angle of 

the long axis) 

Branch zenith 

angle 

10o 20o 30o 40o 50o 60o 70o 80o 90o 

Probability 1.5% 2% 1.5% 3% 14% 25% 22% 14% 17% 

Density 

          Needle - 23000/m3       Branch - 120/m3 

Dielectric constants (real, imaginary) 

Needle (18.03, 6.10) 

Branch (15.38,5.29) 

Trunk (6.68, 2.07) 

Soil surface (10.0, 2.0)  Roughness: Standard deviation of surface height σ=2.5 cm,  

Surface correlation length l = 18 cm 
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Table 16.2. Radarsat and Landsat data used for Boguchany and Priangar’e Sites. 
Site Boguchany Priangar’e 

Sensor JERS ERS-1 Radarsat ST4 JERS Radarsat ST4 

Frequency (GHz) L band (1.275) C band (5.3) C band (5.3) L band (1.275) C band (5.3) 

Wavelength (cm) 23.5 5.66 5.66 23.5 5.66 

Polarization HH VV HH HH HH 

Inc. angle (deg) 38.9o 23o 34o 38.9 34 

Image Center 58.01oN, 97.43oE 59.49oN, 97.55oN 59.10oN, 97.33o E 57.27o N, 94.16o E 58.01o N, 93.86o E 

Orbital Direction Descending Descending Ascending Descending Ascending 

Image Swath (km) 75 100 100 75 100 

Altitude (km) 580 785 798 580 798 

Data take date 31 March 1997 7 June 1998 21 Aug. 1999 19 May 1997 18 Aug20 00 

Pixel size (m) 12.5 12.5 12.5 12.5 12.5 

 

Site Boguchany Priangar’e 

Sensor Landsat 7 

Data Take Date 3 Oct.1999 22 July 2000 

Image Center 58.71N, 96.81 E 57.31o N, 94.36 o E 

Path and Row P141 R19 P140 R20 

Resolution (m) 30 30 

Sensor ETM+ ETM+ 

Cloud cover (%) 0 9% 

Bands 7 + pan 7 + pan 
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Table 16.3. Vegetation class and training set information. a)  Boguchany Site, b) Priangar’e site  

a). 

Class 
Training 

pixel # 

Testing 

pixel # 

Class name Description    

CF 4184 1723 coniferous forest Predominantly needle leaf species including larch 

DF 4544 1361 deciduous forest Predominantly broadleaf leaf species 

RS 3593 1797 
Regeneration/sparse Site logged over 10 years ago, mixture of pine and 

deciduous seedlings 

CC 3371 1210 
Clear cuts Recently logged stands with low vegetation cover 

of grasses and forbs. 

BC 3679 1810 burned coniferous Burned needle leaf species including larch 

BD 3754 1675 burned deciduous  Burned broadleaf leaf species 

BL 7459 1889 burned logged Burned logged stands 

b). 

Class 
Train 

pixel # 

Test 

pixel # 

Class name Description 

CF 7934 3836  Coniferous forest Predominantly needle leaf species including larch 

DF 7119 2663 Deciduous forest Predominantly broadleaf leaf species 

IS 6774 4082 Severe insect damage Defoliated stands, few live trees 

IM 3373 1809 
Moderate insect 

damage 

Stand with defoliated and undamaged trees.  

CC 6191 3864 
Clear cut Recently logged stands with low vegetation cover 

of grasses and forbs. 

BS 3384 1154 
Bare surface Non-vegetated areas may include roads, bare soil, 

fresh clear cuts, rock outcropping, bogs 

WR 975 
467 

 

Water Taseyeva River, tributary of the Angara river 

 



62 

  

Table 16.4.  Classification confusion table for Boguchany area classes and combined JERS. ERS, 

and Radarsat data. Average accuracy = 63.7, overall accuracy = 65.8% 

 

Percent Classified As 

Name CF DF RS CC BC BD BL 

CF 62.21 26.94 1.65 0.00 1.60 7.60 0.00 

DF 46.96 45.69 2.29 0.00 0.11 4.78 0.18 

RS 3.79 1.36 72.25 10.97 0.39 0.58 10.66 

CC 0.09 0.18 19.25 52.65 0.00 0.00 27.82 

BC 7.23 0.68 0.52 0.00 52.35 36.99 2.23 

BD 3.76 2.53 0.03 0.00 17.05 76.27 0.37 

BL 0.20 0.20 4.95 9.40 1.03 0.00 84.22 
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Table 16.5. Classification confusion table for Priangar’e area classes and JERS and Radarsat 

combined data. Average Accuracy = 62.48%, Overall accuracy = 70.71  

 

Percent Classified As 

Name NULL CF DF IS IM CC BA WR 

CF 0.00 61.44 36.50 0.52 1.54 0.00 0.00 0.00 

DF 0.00 4.77 77.42 4.09 8.51 5.21 0.00 0.00 

IS 0.00 9.71 51.34 29.57 9.24 0.13 0.00 0.00 

IM 0.00 0.80 40.76 10.91 46.13 1.39 0.00 0.00 

CC 0.00 0.08 14.00 0.19 4.28 81.39 0.05 0.00 

BA 0.09 0.00 0.00 0.00 0.00 0.89 99.03 0.00 

WR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

 

 

Table 16.6. Classification confusion table for Boguchany area classes and Landsat 7 data. Average 

accuracy = 91.10, overall accuracy = 90.55% 

Percent Classified As 

Name CF DF RS CC BC BD BL 

CF 98.35% 1.60% 0.05% 0.00% 0.00% 0.00% 0.00% 

DF 1.01% 94.89% 2.68% 0.00% 0.04% 0.07% 1.30% 

RS 0.22% 2.59% 92.32% 3.73% 0.00% 0.00% 1.14% 

CC 0.00% 0.12% 2.17% 83.06% 0.00% 0.00% 14.65% 

BC 0.03% 0.49% 0.16% 0.00% 95.90% 2.58% 0.85% 

BD 0.00% 0.32% 0.43% 0.00% 3.30% 89.00% 6.95% 

BL 0.00% 0.44% 0.87% 8.48% 1.56% 4.45% 84.21% 
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Table 16.7. Classification confusion table for Priangar’e area classes Landsat 7data. Average 

Accuracy = 98.18%, Overall accuracy = 98.14%  

Percent Classified As 

Name CF DF IS IM CC BA WR 

CF 99.04% 0.03% 0.53% 0.40% 0.00% 0.00% 0.00% 

DF 0.01% 99.61% 0.00% 0.32% 0.06% 0.00% 0.00% 

IS 0.52% 0.00% 96.22% 2.23% 0.01% 1.02% 0.00% 

IM 0.06% 1.46% 1.87% 95.61% 0.03% 0.98% 0.00% 

CC 0.00% 0.02% 0.00% 0.00% 98.34% 1.65% 0.00% 

BA 0.00% 0.00% 0.03% 0.00% 1.45% 98.43% 0.00% 

WR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 

 

 

Table 16.8 PALSAR data used for the study 

ALPSRP132821410/1420 7/22/2008 HH, HV 

ALPSRP131071410/1420 7/10/2008 HH, HV 

ALPSRP129321410/1420 6/28/2008 HH, HV 

ALPSRP127571410/1420 6/16/2008 HH, HV 

LANDSAT-1 MSS 7/23/1973 Bands 4,5,6,7 

LANDSAT-7 ETM+ 6/26/2002 Bands 1,2,3,4,5,7 

LANDSAT-5 TM 7/23/2009 Bands 1,2,3,4,5,7 
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Figure Captions 

Fig. 16.1. Study sites in Central Siberia, Russia from south to north: Western Sayan; Boguchany & 

Priangar’e; and Kotuykan. 

Fig. 16.2. (A) Western Sayan Mountains and (B) authors (From left, Guoqing Sun, K. Jon Ranson, 

and V. I. Kharuk) in the field. 

Fig 16.3. A – original L-band HV radar image; B – Corrected using DEM of coarser resolution 

Fig. 16.4. Terrain changes illumination area of a pixel and the spatial structure of the canopy. 

Fig. 16.5. Simulation of radar images of a forest stand on various slopes. 

Fig 16.6. Relation between backscattering coefficient and local incidence angle for L-band. 

Fig. 16.7. A – corrected L-band HV image; B – Biomass map from corrected LHV image. 

Fig. 16.8. Comparison of SAR derived biomass with field biomass: SAR Biomass = 1.84 + 

0.77*Field Biomass, r2 = 0.91, n = 28, RSE =1.81Kg/m2. 

Fig. 16.9. The JERS (LHH), b. ERS (CVV) c. Radarsat (CHH) and d. Landsat 7 images (Red = 

(NIR, 0.75 - 0.90 mm), Green = (Red, 0.63 - 0.69 mm), Blue= (Green, 0.525 - 0.605 mm) over the 

Boguchany site. 

Fig. 16.10. The JERS (LHH), b. Radarsat (CHH) and c. Landsat 7 images (Red = (NIR, 0.75 - 0.90 

mm), Green = (Red, 0.63 - 0.69 mm), Blue= (Green, 0.525 - 0.605 mm) over the Priangar’e site.  

ERS data was not available for this site. 

Fig. 16.11. (A) Fireweed growing on a burn site at Boguchany (B) Aftermath of Logging in 

Boguchany Area  (C) Trees (fir and pine) killed by Siberian silkworm (Dendrolimus sibericus) 

outbreak  (D) insect damaged forest at Priangar’e seen from air. 
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Figure 16.12:  Mean and standard deviation backscatter coefficient for land cover classes at a.)  

Boguchany burn scar site and b.) Priangar’e Insect Damage site.  

Figure 16.13:  Means and standard deviations of Landsat 7 spectral digital numbers (DN) for land 

cover classes at a) Boguchany burn scar site and b.) Priangar’e Insect Damage site. 

Fig. 16.14. At their first campsite, the team assembles for a group photo in front of one of the 

not-yet-inflated rafts. Back row from left to right: Guoqing Sun, Ross Nelson, Slava Kharuk, Jon 

Ranson, Mukhtar Naurzbaev, and Sergei Im. Front row from left to right: Pasha Oskorbin and Paul 

Montesano. 

Fig. 16.15. In steady rain, a Russian M-8 helicopter drops the scientists off on the banks of the 

Kotuykan River (70o41’34”N, 105o38’46”E) in northern Siberia. In the foreground, scientists 

cover gear with plastic. This is the first campsite of the expedition, and it will not be a soft one. The 

beach is covered with marble- to microwave-sized stones. 

Fig. 16.16. Bands 7 (red), 4 (green) and 2 (blue) of Landsat TM image acquired on July 23, 2009. 

Fig. 16.17. The low reach of Kotuy River seen from the helicopter, near Khatanga.   

Fig. 16.18. A nice spot for lunch, overlooking the Kotuy River. The mountains, the Siberian Traps, 

were formed from basaltic lava flows during massive eruptions about 250 million years ago. The 

freeze/thaw cycle cracks and crumbles the rocks. The weather and the river have eroded the 

mountains into spectacular formations and sheer drop-offs. 

Fig. 16.19. A view of the campsite taken from across the Kotuykan River. In the background are 

the flat-topped mountains known as the Siberian Traps. The slope in the foreground is littered with 

basaltic rocks formed from lava flows about 250 million years ago. The campsite was originally 

set up next to the riverbank. It is now on high ground; the river dropped about 2 meters overnight. 
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Fig. 16.20. Tundra on the top of the mountains with few trees. 

Fig. 16.21. The harsh climate of Siberia is a challenging one for Larch trees. The photo shows the 

fates of several trees. A tree without bark or branches leans across the center of the photo. This tree 

died centuries ago, but the frigid climate has kept it from decaying. In the foreground, a tree that 

broke at the trunk and toppled managed to survive: a side branch grew into a vigorous new tree. In 

front and to the right of the “reborn” tree is a small dead tree that still has branches and bark. It is an 

ancient tree that died recently. In its last years, it put energy into making seed. Pinecones from the 

previous two years still cling to its branches. 

Fig. 16.22. Forest ecologist Slava Kharuk called this a photo of Siberia’s “bones and flesh.” The 

“bones” are the skeletons of fossil trees that died in the extremely frigid climate of the Little Ice 

Age, during the 14th to 18th centuries. Although they died hundreds of years ago, the frigid 

climate has prevented them from decaying. The “flesh” is the new trees that are colonizing the area 

as the climate warms. These trees are growing above the “fossil” tree line, which is evidence that 

the current warming trend is very strong. Scientists will use data on the ages of both old and new 

trees—the bones and flesh—to create a timeline of climate change in this part of Siberia. 

Fig. 16.23. Mosaic of PALSAR L-Band HV images (7 scenes) of the study site. The SRA data 

were acquired during the summer of 2008. Tiny red crosses show the places the team collected 

data. 

Fig. 16.24. Classification of Landsat images: larch forests with three levels of densities - bright 

green, green, and dark green; grassy tundra - yellow, wet tundra – maroon, bare surface - pink, and 

water body - blue. 

Fig. 16.25. NDVI image derived from Landsat data: red – from TM on July 23, 2009; green – from 
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ETM+ on June 26, 2002, and blue – from MSS on July 23, 1973. 

Fig. 16.26. The comparison of GLAS predicted timber volume with field data: Bpred = 4.26 + 0.75 

Bfield, R2 = 0.75, RSE = 4.89 M3/ha. F-statistic: 159 on 1 and 52 degrees of freedom, the p-value is 

0. 

Fig. 16.27. GLAS footprints overlaid on a false image from PALSAR data: red – HH, green – HV, 

and blue – the ratio of HV to HH.  
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