
Louis M. Handler
Glenn Research Center, Cleveland, Ohio

Space Telecommunications Radio System (STRS)
Compliance Testing

NASA/TM—2011-217266

December 2011

STRS-ATP-00001

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientifi c and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientifi c and

technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to help@

sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 443–757–5803

• Telephone the NASA STI Help Desk at
 443–757–5802

• Write to:

 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320

Louis M. Handler
Glenn Research Center, Cleveland, Ohio

Space Telecommunications Radio System (STRS)
Compliance Testing

NASA/TM—2011-217266

December 2011

STRS-ATP-00001

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 1 of 46

NASA/TM—2011-217266 1

Space Telecommunications Radio System
(STRS) Compliance Testing

PREPARED BY:

 __ ______________________
Software Lead Date
Louis M. Handler

APPROVED BY:

 __ ______________________
Systems Lead Date
Richard C. Reinhart

 __ ______________________
Project Manager Date
Karen L. Tuttle

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 2 of 46

NASA/TM—2011-217266 2

Change Record

Revision Effective
Date

Description of Change

1.02 May 31, 2011 Baseline

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 3 of 46

NASA/TM—2011-217266 3

Intentionally left blank

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 4 of 46

NASA/TM—2011-217266 4

Contents

1.0 INTRODUCTION ... 6
1.1 Identification ... 6
1.2 System Overview .. 8
1.3 Document Overview ... 8

2.0 APPLICABLE DOCUMENTS ... 9
2.1 Reference Documents ... 9

3.0 TEST CONFIGURATIONS .. 9
3.1 Hardware Configuration ... 9
3.2 Software Configuration ... 10
3.3 Other Pretest Preparations... 11

4.0 TEST DESCRIPTIONS ... 11
4.1 Requirements Being Tested .. 12
4.2 Test Instructions .. 12
4.3 STRS Compliance Testing .. 12

4.3.1 Prerequisite Conditions, Assumptions, and Constraints 13
4.3.2 Test Procedure for STRS Application Automated Testing 13
4.3.3 Test Procedure for STRS Infrastructure Automated Testing 16
4.3.4 Test Procedure for STRS Infrastructure Testing Using WFCCN 18
4.3.5 Test Procedure for STRS Configuration File Testing .. 21
4.3.6 Test Procedure for STRS Application Manual Code Testing 23
4.3.7 Test Procedure for STRS Infrastructure Manual Code Testing 25

APPENDIX A —Glossary and Acronyms ... 27
A.1 Definitions .. 27
A.2 Acronyms .. 28

APPENDIX B —Traceability to SWE–114 of NPR 7150.2A ... 29
APPENDIX C —Application Compliance Testing Tables .. 30
APPENDIX D —Infrastructure Compliance Testing Tables ... 32
APPENDIX E —Infrastructure Compliance Testing by WFCCN Tables .. 33
APPENDIX F —Compliance Testing by Requirement .. 36
APPENDIX G —Document Compliance Testing Guidelines .. 43

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 5 of 46

NASA/TM—2011-217266 5

Table of Figures

Figure 1 ‐ Operating Environment Compliance .. 6
Figure 2 ‐ Application Compliance ... 7
Figure 3 ‐ SDR‐3000 and Development Platform ... 10
Figure 4 ‐ General Automated Procedure with Manual Double‐Check .. 13

List of Tables

Table 1 ‐ Table of Documents .. 9
Table 2 ‐ Hardware Used ... 10
Table 3 ‐ Software Used ... 11
Table 4 ‐ STRS Application Test Automated Procedure .. 14
Table 5 ‐ STRS Infrastructure Test Automated Procedure .. 16
Table 6 ‐ STRS WFCCN Test Automated Procedure .. 18
Table 7 ‐ STRS Configuration Files Test Procedure ... 21
Table 8 ‐ STRS Application Test Manual Procedure ... 23
Table 9 ‐ STRS Infrastructure Test Manual Procedure ... 25
Table 10 ‐ Glossary .. 27
Table 11 ‐ Acronyms .. 28
Table 12 ‐ Traceability to SWE‐114 of 7150.2A ... 29
Table 13 ‐ Compliance Script Execution ... 30
Table 14 ‐ Compliance Script Web Page Output .. 31
Table 15 ‐ OE Compliance Script Execution .. 32
Table 16 ‐ OE Compliance Script Web Page Output .. 32
Table 17 ‐ WFCCN Configurable Data .. 33
Table 18 ‐ WFCCN tests in APP_RunTest .. 34
Table 19 ‐ Requirements Testing ... 36

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 6 of 46

NASA/TM—2011-217266 6

1.0 INTRODUCTION
The intended audience is anyone who wants to check whether their STRS application or STRS
infrastructure meets the STRS Architecture Standard. This includes platform providers, application
developers, application integrators, and NASA. As of May, 2011, only NASA Glenn Research Center
personnel have performed the STRS Compliance Testing.

1.1 Identification

The document describes the procedures for testing a software defined radio (SDR) implementation for
STRS compliance. STRS compliance is concerned with how well the delivered artifacts conform to the
STRS Architecture Standard. Broadly, STRS compliance may be categorized as either STRS application
compliance or STRS infrastructure (OE) compliance. Within those categories, STRS compliance may be
categorized as static or dynamic. Static STRS compliance is whether the code, configuration files, and
documentation conform to the STRS Architecture Standard. Dynamic STRS compliance is whether the
components execute properly together to become a functioning STRS radio. This document is mostly
concerned with static STRS compliance by inspecting code, configuration files, and documents.

STRS OE compliance is depicted in Figure 1:

Figure 1 - Operating Environment Compliance

For the STRS OE, compliance includes:
a. Implements required STRS infrastructure-provided APIs using standard “C” language interface
b. Provides necessary header files for application developers
c. Provides necessary run-time infrastructure to support STRS infrastructure-provided and STRS application-

provided APIs
d. Provides POSIX 1003.13 PSE51 conformant OS or a POSIX abstraction layer. Very small platforms can

provide the minimum subset of PSE51 required to support mission waveforms (with a waiver)
e. Verify configuration files, describing the platform resources, in XML, using the corresponding schema
f. Test vendor supplied XML transformation tools with sample file
g. Confirm documentation

i. Configuration files
ii. Flight computer

iii. Hardware Abstraction Layer (HAL) API

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 7 of 46

NASA/TM—2011-217266 7

iv. Hardware Interface Description (HID)
v. Firmware interface to platform-specific wrapper

vi. User’s Guide
vii. Reference Manual

viii. Test plan
h. Coding standards

For the STRS OE, compliance does not include:
a. Memory footprint
b. OE performance (Operations/second, interrupt response, etc.)
c. Size, weight, and power (SWaP)
d. Shake and bake, radiation tolerance
e. NASA flight software/hardware requirements

STRS application compliance is depicted in Figure 2:

Figure 2 - Application Compliance

For an STRS application, compliance includes:
a. Implements required STRS application-provided API per STRS Architecture Standard
b. Verify that the only external interfaces called by the STRS application are the STRS infrastructure-provided

APIs and allowed POSIX PSE51 APIs
c. Verify that STRS application does not call restricted functions documented in section 8.5.1 of the STRS

Architecture Standard
d. Verify dynamic behavior of STRS application

i. Application responds properly to STRS application-provided API
ii. Application exhibits proper state transition behavior

e. Verify that the STRS application uses the STRS predefined data
i. typedefs

ii. constants
iii. structs

f. Verify configuration files, describing the STRS application, in XML, using the corresponding schema
g. Test vendor supplied XML transformation tools
h. Verify FPGA wrapper provided (if platform has FPGA)
i. Verify documentation

i. Design
ii. Models

iii. Test plan
iv. User’s Guide
v. FPGA Wrapper

j. Model-based design

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 8 of 46

NASA/TM—2011-217266 8

k. Coding standards

For an STRS application, compliance does not include:
a. Memory footprint
b. Over the air behavior of waveform
c. Interoperability

i. Performance (BPS, BER, etc)
ii. Functional Requirements to meet missions objectives; other than being compliant with STRS

architecture
d. NASA flight software requirements

1.2 System Overview

Compliance testing determines to what degree the tested STRS application or STRS infrastructure in a
software defined radio (SDR) implementation meets the STRS Architecture Standard. The purpose of
having a standard architecture is to allow different companies to work together or separately, at the same
or different times, to create a software defined radio. STRS requirements may be verified by inspecting
documents, code, configuration files, and other artifacts, as well as observation. A component is
compliant when a subset of the features in the specification is implemented in accordance with the
architecture specification. A component is conformant when all the features in the architecture
specification are implemented in accordance with the specification.

There are four methods used to test for STRS compliance described in this document: automated
inspection, manual inspection, observation, and execution of an STRS application that tests the standard
STRS capabilities. Although most of the automated tests may be performed manually, validation of the
STRS OE, an STRS application, or STRS configuration file is facilitated by automated tools.
 Automated inspection uses a variety of tools to look for the required artifacts and lists those that are

problematic.
 Manual inspection is used to augment the automated inspection methods especially when the other

methods cannot be done.
 Observation is performed by the project verification and validation team.
 The insertion of an STRS application created by GRC (WFCCN) into the radio and execution of

that waveform application to test the capabilities of the radio can be used to exercise all the required
STRS application-provided methods beginning with “APP_” and STRS infrastructure-provided
methods beginning with “STRS_”.

1.3 Document Overview

The document contains an Introduction, Applicable Documents, Test Configurations, and Test Descriptions.
There is a table of all the requirements being tested, general test instructions, and test instructions associated
with 4 groups of semi-automated tests and 2 groups of manual tests. The groups are separated by
Infrastructure (OE) depicted in Figure 1 and Application (WF) depicted in Figure 2, as well as the available
automated procedures.

In the event of a conflict between the requirements in this document and the requirements in the STRS
Architecture Standard, the requirements in the STRS Architecture Standard shall take precedence over this
document.

The artifacts to be tested and the results of testing are often proprietary to NASA and the supplier of the
artifacts. The results of testing are used to inform the supplier of any deficiencies as well as providing lessons
learned to NASA.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 9 of 46

NASA/TM—2011-217266 9

2.0 APPLICABLE DOCUMENTS

2.1 Reference Documents

Table 1 lists the number and title of all documents referenced in this specification.

Table 1 - Table of Documents

Document number Document title

* Altova XPLSpy® Professional Edition Online Manual
http://manual.altova.com/XMLSpy/spyprofessional/

GLPR 7150.1 Glenn Research Center (GRC) Software Engineering Requirements

NPR 7150.2A NASA Software Engineering Requirements

GRC–TPLT–STPr Software Test Description Template
NASA/TM-2010-216809 Space Telecommunications Radio System (STRS)

Architecture Standard, STRS_AR_0002, Revision 1.02.1. See
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110002806_20
11001718.pdf

NASA/TM-2008-215445 Space Telecommunications Radio System (STRS)
Definitions and Acronyms. See
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090005977_20
09004914.pdf

STRS-OE-00002 Space Telecommunications Radio System (STRS)
Reference Implementation User’s Guide

* Tornado development environment documentation in TVL
* VxWorks operating system documentation in TVL
DOC-12067-ZD-00 VxWorks Programmers Guide 5.3.1 at

http://www-cdfonline.fnal.gov/daq/commercial/vxworks_guide.pdf

3.0 TEST CONFIGURATIONS

3.1 Hardware Configuration

The SDR-3000 development PC in the Technology Verification Lab (TVL) was used for these tests because
all the software (scripts, compiler, Subversion CM tool, GRC’s STRS reference implementation, Cygwin, etc.)
ran on it and the software to be tested was kept in Subversion CM tool accessible to the SDR-3000. The SDR-
3000 uses an Ethernet connection to store and obtain artifacts to/from the Subversion CM server. The SDR-
3000 and its development PC is shown in Figure 3. Other hardware platforms may work as well if the
appropriate software is loaded.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 10 of 46

NASA/TM—2011-217266 10

Figure 3 - SDR-3000 and Development Platform

Table 2 is used to record information about the hardware used for testing purposes.
Table 2 - Hardware Used

Name Part Model Serial
Number

Manufacturer Revision
Level

Calibration
Date

SDR-3000 Spectrum
Signal
Processing

VxWorks
5.5.1

NA

SDR-3000
Development
PC

800-00257 SS4903-
00132

Spectrum
Signal
Processing

Win2000
SP4

NA

3.2 Software Configuration

This paragraph describes the procedures necessary to prepare the item(s) under test and any related
software, including data, for the test. Reference may be made to published software manuals for these
procedures. The following information is to be provided, as applicable:

a) The specific software to be used in the test including version number and name

1. STRS Application Automated Testing

a. Windows batch file: STRS/Compliance/ComplianceTool.bat

b. Bourne shell script: STRS/Compliance/ComplianceTool.sh

c. STRS application files in Subversion to be tested

2. STRS Infrastructure Automated Testing

a. Windows batch file: STRS/Compliance/ComplianceToolOE.bat

b. Bourne shell script: STRS/Compliance/ComplianceToolOE.sh

c. STRS infrastructure files in Subversion to be tested

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 11 of 46

NASA/TM—2011-217266 11

3. STRS Infrastructure Testing Using WFCCN

a. STRS application source file CommandAndComplianceApplication.cpp

b. STRS application header file CommandAndComplianceApplication.h

c. VxWorks cross-compiler ccppc or equivalent

d. STRS infrastructure files in Subversion to be tested

4. STRS Configuration File Testing

a. XMLSpy or equivalent

b. STRS configuration files in Subversion to be tested

b) The storage medium of the item(s) under test (e.g., magnetic tape or diskette)

Hard disk

c) The storage medium of any related software (e.g., simulators, test drivers, or databases)

Hard disk

Table 3 is used to record information about the software used on the SDR-3000.

Table 3 - Software Used

Name of software Version number

ComplianceTool.bat (Windows batch file) SVN 1067 (12/4/2009)

ComplianceTool.sh (Bourne shell script) SVN 1118 (1/27/2010)

ComplianceToolOE.bat (Windows batch file) SVN 1069 (12/4/2009)

ComplianceToolOE.sh (Bourne shell script) SVN 1624 (7/13/2010)

CommandAndComplianceApplication.cpp (WFCCN) SVN 1099 (1/12/2010)

CommandAndComplianceApplication.h (WFCCN) SVN 1070 (12/4/2009)

ccppc gcc-2.96

Cygwin - GNU bash 2.05b.0(1)

Tortoise SVN 1.6.18415

XMLSpy Altova XMLSpy Professional 2011 (COTS)

3.3 Other Pretest Preparations

Find and copy the STRS application (WF) and/or infrastructure (OE) items being tested to the computer
on which the tests will be executed. For example, at GRC, enter the items to be tested into Subversion
using the SDR-3000 or other PC in the TVL and extract from Subversion to the SDR-3000.

4.0 TEST DESCRIPTIONS
There are multiple test procedures used to test for STRS compliance. The requirements are all shown in
Table 19 even though only certain tests have been automated and only certain tests can have detailed
descriptions of how to perform an inspection.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 12 of 46

NASA/TM—2011-217266 12

4.1 Requirements Being Tested

The full range of tests is listed in Table 19. To aid the tester, there are four types of semi-automated tests. Two
types of manual source code tests are also described.

1. For STRS Application Automated Testing, the requirements in Table 19 have the entry for OE/App as App
and the entry for Tested as Script.

2. For STRS Infrastructure Automated Testing, the requirements in Table 19 have the entry for OE/App as
OE and the entry for Tested as Script.

3. For STRS Infrastructure Testing Using WFCCN, the requirements in Table 19 have the entry for OE/App
as OE and the entry for Tested as WFCCN.

4. For STRS Configuration File Testing, the requirements in Table 19 have the entry for OE/App as App and
the entry for Tested as XMLSpy.

5. For STRS Manual Application Testing, the requirements in Table 19 have the entry for OE/App as App
and the entry for Tested as Inspect.

6. For STRS Manual Infrastructure Testing, the requirements in Table 19 have the entry for OE/App as OE
and the entry for Tested as Inspect.

4.2 Test Instructions

There are no general instructions for executing the test procedures. If there are any questions or problems that are
not resolved by this document or the referenced documents, email: STRS@lists.nasa.gov.

4.3 STRS Compliance Testing

STRS compliance testing is performed on software defined radio artifacts. Even when there is an
automated procedure, it is necessary to check any warnings or errors manually to be sure that the error or
warning does not indicate a false positive. The general procedure is shown in Figure 4.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 13 of 46

NASA/TM—2011-217266 13

Figure 4 - General Automated Procedure with Manual Double-Check

4.3.1 Prerequisite Conditions, Assumptions, and Constraints

The prerequisite conditions and assumptions are minimal:

a) For testing of code and configurations files, the PC containing those artifacts must be available and
turned on. For GRC’s testing, the STRS-3000 development PC must be available and turned on.

b) The test shell scripts are limited to testing method signatures, prototypes, constants, and typedefs that
appear entirely on a single line. Lines of code with errors or warnings are then tested with a manual
procedure, directly against the requirement.

c) Use a browser on the reviewer’s PC to access documents in eRoom or CMTS.

d) The artifacts to be tested and results of testing are to be considered proprietary to NASA and the
company submitting the artifacts.

e) It is assumed that everything works as described. For unusual situations, refer to the documentation in
Table 1 - Table of Documents.

f) Waivers or exceptions are the project responsibility, not STRS; however, they must be documented
and submitted to the STRS repository.

4.3.2 Test Procedure for STRS Application Automated Testing

A UNIX Bourne shell script named ComplianceTool.sh was written to test for the various STRS application-
provided method signatures beginning with “APP_” and STRS infrastructure-provided method signatures beginning
with “STRS_” as well as to search for deprecated methods, disallowed POSIX methods, and non-portable
QuicComm methods. The script also tests for “non-standard APP methods”, “extra APP methods”, and “extra STRS
methods”.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 14 of 46

NASA/TM—2011-217266 14

The compliance tool looks for the required artifacts in the source code and lists those that are problematic. The
number of required STRS application-provided methods beginning with “APP_” may vary depending on the
application. If the STRS application is a source of data supplied to the infrastructure, the standard requires the
STRS application to have an APP_Read method. If the STRS application is a sink that receives data from the
infrastructure, the standard requires the STRS application to have an APP_Write method. The STRS Architecture
Standard defines 43 distinct STRS infrastructure-provided methods beginning with “STRS_”. The maximum
number of required STRS application-provided methods beginning with “APP_” that an STRS application can have
is 11 and the minimum number is 9. The STRS application-provided methods beginning with “APP_” are described
in the STRS Architecture Standard.

The following terminology is used in the statistics. “Full signature” means a method declaration or definition as
described in the STRS Architecture Standard including the return type, name, and definition of the arguments.
“Non-standard APP methods” represent those STRS application-provided methods beginning with “APP_” that do
not contain a full signature as described in the STRS Architecture Standard. “Extra APP methods” represent those
methods that begin with “APP_” but are not defined in the STRS Architecture Standard. Although APP_SetBT is
included in the reference implementation, APP_SetBT is not standard and is included as an extra method. “Distinct
STRS methods out of 43” report how many of the Standard’s 43 methods occur. “Extra STRS methods” represent
those methods that begin with “STRS_” but are not defined in the STRS Architecture Standard.

The compliance tool was written for the Bourne shell (sh) and may be executed by any superset of sh such as the
Bourne-again shell (bash), which is available with Cygwin on the SDR-3000 (or OE1). Cygwin is a Linux-like
environment for Windows. For more information on Cygwin, see http://www.cygwin.com/ . There is also a MS
Windows batch file that may be used to execute ComplianceToolOE.sh by either double clicking on
ComplianceTool.bat or entering the file location in a DOS command window. ComplianceTool.bat is in the same
directory as ComplianceTool.sh.

The step-by-step procedure for performing these tests is shown in Table 4. A test operator should fill in the blank
columns and additional information following the table to show compliance.

Table 4 - STRS Application Test Automated Procedure
Step Require-

ment ID
Test Operator Action Expected Result Actual

Result
Pass
or

Fail
1 Find/obtain the compliance testing script(s) and

put into a common directory. The files are:
ComplianceTool.sh , ComplianceTool.bat , and
removeComments.awk ,which may be obtained
in the TVL from the Subversion configuration
management tool at directory:
 ComplianceToolScript/
or the files may be found in the CoNNeCT
eRoom at:
CoNNeCT > Principal Investigator > STRS >
Compliance >
Record the directory where the compliance
testing scripts are stored.

2 Find the STRS application source files to be
tested. Record the directory where the files are
stored.

3 Change directory to that containing the
compliance tools.

4 Start test by typing
 sh ComplianceTool.sh
in a UNIX (Cygwin, bash) command window or
double-clicking: ComplianceTool. The script
will display progress as it executes.

Compliance tool prompts
for source directory or file.
The prompt string is “Enter
directory or source file to
test for STRS compliance
(or Q, C, or ?):”.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 15 of 46

NASA/TM—2011-217266 15

5 Enter source directory or file to test. The file or
directory may be absolute or relative to the
directory containing the ComplianceTool
scripts. Summary of numbers of files and
methods found and errors is displayed. Enter an
upper or lower case Q to exit the script. Enter
an upper or lower case C to search for
directories containing files with extensions h, H,
c, C, cpp, and CPP; however, directories
containing /components/, /corba/, /public_tools/,
and /sca/ are eliminated. The C entry is not
usually used because it takes a long time and
still doesn’t necessarily look in the right places.

Output file web page
named
Complianceyyyymoddhhmn
ss.html is created for each
execution of the script
where yyyymoddhhmnss is
the date and time when the
script is invoked. For
example, see Table 13.

6 Display output file in a browser. For example, see Table 14.

7 STRS-10,
STRS-20,
STRS-23,
STRS-26,
STRS-29,
STRS-30,
STRS-31,
STRS-32,
STRS-33,
STRS-34,
STRS-35,
STRS-36,
STRS-37,
STRS-38,
STRS-39,
STRS-91

Errors are in red and warnings are in blue on the
web page output. Check errors and warnings
manually against requirements to eliminate false
positives. Record errors, potential problems,
and discrepancies. Note the associated
requirement, if appropriate.

8 To be sure that there are no additional problems,
a manual code inspection should be performed
based on the additional data following the
summary information. The additional output
displays the file name, line number, and actual
line where the problem or potential problem
occurred. These should be examined and the
errors corrected to attain compliance.

Verification (Pass/fail):___________

Comments: __

__

Test operator: _______________________________________ Date: _______________________

Product assurance: ___________________________________ Date: _______________________

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 16 of 46

NASA/TM—2011-217266 16

The Test Operator Action should provide enough detail to enable successful repetition of the test.

1. To halt or interrupt the test procedure, press Control-C

2. If the shell script does not execute properly, the test operator may obtain additional data reflecting the
execution of the shell script by adding the “xv” options to the script invocation; i.e., from

sh .\ComplianceTool.sh

to

sh -xv .\ComplianceTool.sh

4.3.3 Test Procedure for STRS Infrastructure Automated Testing

A UNIX Bourne shell script was written to test for the various STRS required files, typedefs, constants, and structs
required to be provided in the STRS infrastructure. The required typedefs, constants, and structs are described in the
STRS Architecture Standard. The shell script creates a web page named ComplianceOEyyyymoddhhmnss.html for
each execution of the script where yyyymoddhhmnss is the date and time when the script is invoked. The shell script
checks whether the typedefs, constants, and structs are defined in STRS.h or in a #include file referenced by STRS.h
contained in the same directory.

The OE compliance tool was written for the Bourne shell (sh) and may be executed by any superset of sh such as the
Bourne-again shell (bash), which is available with Cygwin on the SDR-3000 in the TVL. Cygwin is a Linux-like
environment for Windows. For more information on Cygwin, see http://www.cygwin.com/. There is also a MS
Windows batch file that may be used to execute ComplianceToolOE.sh by either double clicking on
ComplianceToolOE.bat or entering the file location in a DOS command window.

The step-by-step procedure for performing these tests is shown in Table 5. A test operator should fill in the blank
columns and additional information following the table to show compliance.

Table 5 - STRS Infrastructure Test Automated Procedure
Step Require-

ment ID
Test Operator Action Expected Result Actual

Result
Pass
or

Fail
1 Find/obtain the OE compliance testing

scripts. The files are
ComplianceToolOE.sh ,
ComplianceToolOE.sh , and
removeComments.awk , which may be
obtained in the TVL from the Subversion
configuration management tool at
directory: ComplianceToolScript/
or the files may be found in the
CoNNeCT eRoom at:
 CoNNeCT > Principal Investigator >
STRS > Compliance >
Record the directory where the OE
compliance testing scripts are stored.

2 Find the STRS infrastructure source files
to be tested including STRS.h. Record
the directory where the files are stored.

3 Change directory to that containing the
compliance tools.

4 Start test by typing
 sh ComplianceToolOE.sh
in a UNIX (Cygwin, bash) command
window or double-clicking:

Compliance tool prompts for
source directory or file. The
prompt string is “Enter directory
or STRS.h source file to test for

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 17 of 46

NASA/TM—2011-217266 17

ComplianceToolOE. The script will
display progress as it executes.

STRS OE source compliance
(or Q):”

5 Enter source directory containing
STRS.h or path to file STRS.h. The
directory may be absolute or relative to
the directory containing the
ComplianceToolOE scripts. Names of
files processed are displayed as well as a
summary of errors. Enter an upper or
lower case Q to exit the script. Enter an
upper or lower case C to search for
directories containing files STRS.h;
however, directories containing
/components/, /corba/, /public_tools/, and
/sca/ are eliminated. The C entry is not
usually used because it takes a long time
and doesn’t necessarily look in the right
places.

Output file web page named
ComplianceOEyyyymoddhhmns
s.html is created for each
execution of the script where
yyyymoddhhmnss is the date and
time when the script is invoked.
For example, see Table 15.

6 Display the output file in a browser. For example, see Table 16.

7 STRS-17,
STRS-89

Errors are in red on the web page output.
Check errors and warnings manually
against requirements to eliminate false
positives. Record errors, potential
problems, and discrepancies. Note the
associated requirement, if appropriate.

8 To be sure that there are no additional
problems, a manual code inspection
should be performed based on the
additional data following the summary
information. The additional output
displays the file name, line number, and
actual line where the problem or
potential problem occurred. Details are
displayed showing each individual
missing item. The STRS infrastructure-
provided method prototypes missing
from the OE are also displayed. These
should be examined and the errors
corrected to attain compliance.

9 The files containing the prototypes for
each STRS infrastructure-provided
method are displayed so that the proper
#include statements may be added to
STRS applications as necessary. See
section 4.3.4 below.

Verification (Pass/fail):___________

Comments: __

__

Test operator: _______________________________________ Date: _______________________

Product assurance: ___________________________________ Date: _______________________

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 18 of 46

NASA/TM—2011-217266 18

The Test Operator Action should provide enough detail to enable successful repetition of the test.

1. To halt or interrupt the test procedure, press Control-C.

2. If the shell script does not execute properly, the test operator may obtain additional data reflecting the
execution of the shell script by adding the “xv” options to the script invocation; i.e., from

sh .\ComplianceToolOE.sh

to

sh -xv .\ComplianceToolOE.sh

4.3.4 Test Procedure for STRS Infrastructure Testing Using WFCCN

Because of the complexity allowed in C/C++, a good way to verify that an STRS application and the STRS
infrastructure work together properly is by compiling, linking, and executing. To that end, GRC has developed an
STRS application that implements all the required STRS application-provided (APP_) methods and uses all the
STRS infrastructure-provided (STRS_) methods. This command and control application, WFCCN, is inserted into
the radio and executed to test the compliance of the STRS radio infrastructure to the STRS Architecture Standard
both statically in the porting process as well as dynamically in its execution. The WFCCN porting process including
compilation and linking should perform most of the STRS OE static checks as well as STRS application static
checks. Linking WFCCN demonstrates the existence of the necessary run-time infrastructure to support STRS
infrastructure-provided and STRS application-provided APIs.

The WFCCN execution performs many of the dynamic checks. The dynamic tests may be performed individually
by APP_RunTest except for the one that tests STRS_RunTest with a target of WFCCN, which would cause an
infinite loop. Any of the tests may be performed by APP_Start by specifying the appropriate value of
START_TESTS shown in Table 17. APP_Start may call each APP_RunTest except for the one that tests
STRS_Start with a target of WFCCN, which would cause an infinite loop. The dynamic tests executed by
APP_RunTest are shown in Table 18. When the value of the variable named START_TESTS is “YES”, APP_Start
performs all the tests shown in Table 18 in test ID order. Some of the tests with complex dependencies may return
errors without generating a non-conformance. The test ID values shown in Table 18 assume that
STRS_TEST_STATUS is zero and that STRS_TEST_USER_BASE is one, as defined in GRC’s reference
implementation. If that is not the case, zero would be replaced by the value of STRS_TEST_STATUS, one
would be replaced by the value of STRS_TEST_USER_BASE, two would be replaced by the value of
STRS_TEST_USER_BASE+1, etc. Note that there is one method missing from this list because it is not tested
independently. STRS_FileGetStreamPointer is tested when STRS_FileOpen is tested. STRS_FileGetStreamPointer
can only be tested when the file is open.

The step-by-step procedure for performing these tests is shown in Table 6. A test operator should fill in the blank
columns and additional information following the table to show compliance.

Table 6 - STRS WFCCN Test Automated Procedure
Step Require-

ment ID
Test Operator Action Expected Result Actual

Result
Pass
or

Fail
1 Find/obtain the OE compliance testing

command and control application, WFCCN.
The files are:
CommandAndComplianceApplication.cpp
and CommandAndComplianceApplication.h
which may be obtained in the TVL from the
Subversion configuration management tool at
directory WFCCN/ or the files may be found
in the CoNNeCT eRoom at:
 CoNNeCT > Principal Investigator > STRS >
Compliance > . Record the directory where
the files are stored.

WFCCN\
CommandAndComplianceAp
plication.cpp
and
WFCCN\
CommandAndComplianceAp
plication.h

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 19 of 46

NASA/TM—2011-217266 19

2 STRS-89 Find STRS infrastructure source files to test
including STRS.h. Record the directory
where the files are stored.

vendorOE\STRS.h

3 Create a directory in GRC’s reference
implementation for the compilation of
WFCCN for the particular OE being tested in
the same directory as
CommandAndComplianceApplication.cpp
and CommandAndComplianceApplication.h.

WFCCN\myOE\

4 Determine file names containing STRS
infrastructure prototypes. Record the
filenames and directory(s). This is facilitated
by the last step of the previous section (section
4.3.3, step 9).

vendorOE\prototypeName.h

5 Create a file named STRS_APIs.h containing
a #include statement for each STRS
infrastructure prototype file. This is
facilitated by the last step of the previous
section (section 4.3.3, step 9).

WFCCN\myOE\STRS_APIs.
h

6 Edit the makefile or set up the IDE to compile
CommandAndComplianceApplication.cpp,
using
CommandAndComplianceApplication.h; the
prototypes, constants, structs, and typedefs of
the infrastructure to be tested; and the
prototypes of step 5.

7 STRS-19,
STRS-40,
STRS-41,
STRS-42,
STRS-43,
STRS-44,
STRS-45,
STRS-46,
STRS-47,
STRS-48,
STRS-49,
STRS-50,
STRS-51,
STRS-52,
STRS-53,
STRS-54,
STRS-55,
STRS-56,
STRS-57,
STRS-58,
STRS-59,
STRS-61,
STRS-62,
STRS-63,
STRS-64,
STRS-65,
STRS-66,
STRS-67,
STRS-68,
STRS-69,

Compile
CommandAndComplianceApplication.cpp
and analyze compilation outputs manually.
Output errors and warnings indicate
discrepancies between WFCCN and the
infrastructure to be tested. Record errors,
potential problems, and discrepancies. Note
the associated requirement, if appropriate.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 20 of 46

NASA/TM—2011-217266 20

STRS-70,
STRS-71,
STRS-72,
STRS-73,
STRS-74,
STRS-75,
STRS-76,
STRS-78,
STRS-79,
STRS-80,
STRS-81,
STRS-83,
STRS-84,
STRS-85,
STRS-86,
STRS-87,
STRS-88,
STRS-89,
STRS-95

8 Determine whether WFCCN can be
configured and controlled to perform dynamic
testing. If WFCCN can be executed in the
infrastructure to be tested, continue;
otherwise, stop here.

Usually WFCCN cannot be
used to perform dynamic
testing and the process stops
here.

 NA

9 STRS-99,
STRS-100

Create WFCCN configuration file in XML as
described in documentation for the OE to be
tested. Determine values for all items in
Table 17 with START_TESTS set to YES.

WFCCN\myOE\WFCCN.xm
l

10 STRS-104 Transform to deployed form as described in
documentation for OE to be tested.

WFCCN\myOE\WFCCN.cfg

11 If needed by the OE, perform any additional
modifications of
CommandAndComplianceApplication.cpp,
CommandAndComplianceApplication.h, and
recompile. Need to recompile, for example,
when WFCCN must be compiled as part of
OS.

12 Start OE and WFCCN. Record errors,
potential problems, and discrepancies. Note
the associated requirement, if appropriate.

Verification (Pass/fail):___________

Comments: __

__

Test operator: _______________________________________ Date: _______________________

Product assurance: ___________________________________ Date: _______________________

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 21 of 46

NASA/TM—2011-217266 21

The Test Operator Action should provide enough detail to enable successful repetition of the test.

1. To halt or interrupt the test procedure in step 9, press Control-C.

2. If WFCCN does not execute properly, the test operator may obtain additional data reflecting the execution
of WFCCN using another IDE (e.g. Tornado) window.

3. STRS_APIs.h is the only file that should be changed (in step 2) to reflect the specific names of the
prototype files in the vendor’s OE.

4. CommandAndComplianceApplication.cpp and CommandAndComplianceApplication.h may be changed
(in step 8) if the infrastructure being tested dynamically has special start-up methods that must be
implemented or certain restrictions pertaining to output and logging in the infrastructure being tested.

4.3.5 Test Procedure for STRS Configuration File Testing

An area of both inspection and semi-automated testing is the STRS configuration file in XML and its
transformation. Although other products are available, GRC uses the COTS product XMLSpy to verify that the
XML schema matches the XML data. This test procedure is described for XMLSpy since that is what GRC used.

The step-by-step procedure for performing these tests is shown in Table 7. A test operator should fill in the blank
columns and additional information following the table to show compliance.

Table 7 - STRS Configuration Files Test Procedure

Step Requirement
ID

Test Operator Action Expected
Result

Actual
Result

Pass
or

Fail
1 STRS-100 Find the STRS platform integrator’s pre-deployed

application configuration file in XML.

2 STRS-101 Verify that the pre-deployed application
configuration file found in step 1 contains the
following application attributes and default values:
 Identification
 Unique STRS handle name for the application
 Class name (if applicable)
 State after processing the configuration file
 Required resources: memory in bytes or

number of gates or logic elements
 Configuration parameters containing the STRS

handle, names of files, devices, queues,
waveforms and services needed by the STRS
application

 Values and constraints for all operationally
configurable parameters

 Filename(s) of loadable images for resources

3 STRS-102 Find the STRS platform provider’s XML schema to
validate the format and data for pre-deployed STRS
application configuration files, including the order
of the tags, the number of occurrences of each tag,
and the values or attributes.

4 Verify that the pre-deployed application
configuration file found in step 1 contains a tag for
an XMLSchema-instance. Verify that the name of
the file matches the one found in step 4. An
example for GRC’s referenced implementation is:
<STRS

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 22 of 46

NASA/TM—2011-217266 22

xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="STRS.xsd">

5 Start up Altova XMLSpy.

XMLSpy
window
appears

6 Using file menu, open the pre-deployed
configuration files in XML and corresponding
schema definition files (XSD) using XMLSpy.

XMLSpy
window
displays files
(tabbed).

7 Using view menu, change to text view, if not
already there.

XMLSpy
window
displays text.

8 Check well-formedness by clicking on icon or
pressing F7.

XMLSpy
message
window
displays
check mark
in yellow
circle and
text: File X
is well-
formed.

9 Perform validation by clicking on icon or pressing
F8.

XMLSpy
message
window
displays
check mark
in green
circle and
text: File X
is valid.

10 STRS-98 Find the STRS platform provider’s documentation
of the necessary platform information to develop a
pre-deployed application configuration file in XML
(including a sample file).

11 STRS-99 Find the STRS application developer‘s
documentation of the necessary application
information to develop a pre-deployed application
configuration file in XML.

12 STRS-103 Use the STRS platform provider’s tools to
transform pre-deployed application configuration
file in XML into a deployed application
configuration file.

Check the pre-deployed application configuration
file found in step 1 for an xml-stylesheet to define a
transformation.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 23 of 46

NASA/TM—2011-217266 23

13 STRS-104 Find the STRS platform integrator’s deployed
STRS application configuration file for the STRS
infrastructure.

Verification (Pass/fail):___________

Comments: __

__

Test operator: _______________________________________ Date: _______________________

Product assurance: ___________________________________ Date: _______________________

4.3.6 Test Procedure for STRS Application Manual Code Testing

The automated testing described above leaves many areas untested. Manual code compliance includes inspection of
application artifacts to verify:
a. The usage of infrastructure-provided interfaces; i.e., that the only external interfaces called by the STRS

application are the STRS infrastructure-provided APIs and allowed POSIX PSE51 APIs (STRS-10, STRS-91).
b. That the application implements the appropriate functionality and exhibits proper state transition behavior.
c. That the application has the appropriate C++ class hierarchy, if written in C++.
d. That the application software artifacts have been submitted to the STRS application repository (STRS-12).
e. FPGA wrapper is provided if the platform has an FPGA (STRS-14).

The step-by-step procedure for performing these tests is shown in Table 8. A test operator should fill in the blank
columns and additional information following the table to show compliance.

Table 8 - STRS Application Test Manual Procedure
Step Requirement

ID
Test Operator Action Expected Result Actual Result Pass or

Fail
1 STRS-10,

STRS-91
Verify that the only external
interfaces called by the STRS
application are the STRS
infrastructure-provided APIs and
allowed POSIX PSE51 APIs.

2 STRS-12 Find application development
artifacts submitted to the NASA
STRS Repository. Find appropriate
license agreements. Verify that the
application development artifacts
include the following:
 High level system or

component software model
 Documentation of application

firmware external interfaces
(e.g. signal names and
descriptions, signal polarity
and format, timing constraints
of signals)

 Documentation of STRS
application behavior

 Application function sources

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 24 of 46

NASA/TM—2011-217266 24

(e.g. C, C++, header files,
VHDL, Verilog)

 Application libraries, if
applicable (e.g. EDIF, DLL)

 Documentation of application
development environment and
tool suite

 Test plan and results
documentation

 Identification of Flight
Software Development
Standards used

3 STRS-14 Verify that FPGA wrapper is
provided (if platform has FPGA)

4 STRS-16 Determine whether the STRS
Application-provided Application
Control API is implemented using
C or C++.

5 STRS-22 If the STRS Application-provided
Application Control API is
implemented in C++, verify that
the STRS application class is
derived from the
STRS_ApplicationControl base
class.

6 STRS-25 If the STRS Application-provided
Application Control API is
implemented in C++ AND the
STRS application provides the
APP_Write method, verify that the
STRS application class is derived
from the STRS_Sink base class.

7 STRS-28 If the STRS Application-provided
Application Control API is
implemented in C++ AND the
STRS application provides the
APP_Read method, verify that the
STRS application class is derived
from the STRS_Source base class.

8 STRS-60 Verify that the STRS applications
use the STRS infrastructure Device
Control methods to control the
STRS Devices.

9 STRS-77 Verify that the STRS applications
use the STRS Infrastructure
Messaging methods to send
messages between applications
and/or the infrastructure with a
single target handle ID.

10 STRS-82 Verify that any portion of the
STRS Applications on the GPP
needing time control uses the STRS
Infrastructure Time Control
methods to access the hardware
and software timers.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 25 of 46

NASA/TM—2011-217266 25

11 STRS-97 Verify that any STRS application
uses the STRS_Log and
STRS_Write methods to send
STRS telemetry set information to
the external system.

Verification (Pass/fail):___________

Comments: __

__

Test operator: _______________________________________ Date: _______________________

Product assurance: ___________________________________ Date: _______________________

4.3.7 Test Procedure for STRS Infrastructure Manual Code Testing

The automated testing described above leaves many areas of the infrastructure untested. Additional compliance
testing for the STRS OE may include:
a. Provides POSIX 1003.13 PSE51 conformant OS or a POSIX abstraction layer. Very small platforms can

provide the minimum subset of PSE51 required to support mission waveforms (with a waiver) (STRS-90)
b. Verify that the STRS predefined data for typedefs, constants, and structs is provided in header file STRS.h

(STRS-89)
c. Provides necessary header files for application developers (STRS-20, STRS-21, STRS-24, STRS-27)

The step-by-step procedure for performing these tests is shown in Table 9. A test operator should fill in the blank
columns and additional information following the table to show compliance.

Table 9 - STRS Infrastructure Test Manual Procedure
Step Require-

ment ID
Test Operator Action Expected Result Actual

Result
Pass or

Fail
1 STRS-18 Verify that the STRS Operating

Environment supports C or C++ language
interfaces for the STRS Application-
provided Application Control API at
compile-time.

2 STRS-21 Verify that the STRS platform provider
supplied an “STRS_ApplicationControl.h”
that contains the method prototypes and,
for C++, the class definition for the base
class STRS_ApplicationControl.

3 STRS-24 Verify that the STRS platform provider
supplied an “STRS_Sink.h” that contains
the method prototypes and, for C++, the
class definition for the base class
STRS_Sink.

4 STRS-27 Verify that the STRS platform provider
supplied an “STRS_Source.h” that
contains the method prototypes and, for
C++, the class definition for the base class
STRS_Source.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 26 of 46

NASA/TM—2011-217266 26

5 STRS-90 Verify that the STRS Operating
Environment supplies the interfaces
described in POSIX IEEE Standard
1003.13-2003 profile PSE51.

6 STRS-96 Verify that the STRS infrastructure uses
the STRS_Query method to service
external system requests for information
from an STRS application.

Verification (Pass/fail):___________

Comments: __

__

Test operator: _______________________________________ Date: _______________________

Product assurance: ___________________________________ Date: _______________________

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 27 of 46

NASA/TM—2011-217266 27

APPENDIX A—Glossary and Acronyms
This section should include an alphabetical listing of all acronyms, abbreviations, and their meanings as
used in this document and a list of terms and definitions needed to understand this document.

A.1 Definitions

The glossary in Table 10 contains an alphabetized list of definitions for special terms used in the
document; that is, the terms are used in a sense that differs from or is more specific than the common
usage for such terms. STRS-specific terms are defined in NASA/TM-2008-215445.

Table 10 - Glossary

Term Definition

Test case Same as a test procedure.

Test procedure A set of conditions or variables under which a tester will determine
whether an application or software system is working correctly or not.
Also referred to as test scripts.

Test suite A collection of test procedures.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 28 of 46

NASA/TM—2011-217266 28

A.2 Acronyms

Table 11 contains the definitions for the abbreviations and acronyms used in this document.

Table 11 - Acronyms

Acronym Definition

API Application Programmers Interface

BER Bit Error Rate

BIT Built-In Test

BPS Bits Per Second

FPGA Field-Programmable Gate Array

HAL Hardware Abstraction Layer

HID Hardware Interface Description

ID Identifier

OE Operating Environment = OS & STRS Infrastructure

OS Operating System

POSIX Portable Operating System Interface for Unix

SDR Software Defined Radio

STRS Space Telecommunications Radio System

TVL Technology Verification Lab at GRC

WDT Watchdog Timer

WF Waveform = STRS application

WFCCN Command and Control Application

XML Extensible Markup Language

XSD XML Schema Definition

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 29 of 46

NASA/TM—2011-217266 29

APPENDIX B—Traceability to SWE–114 of NPR 7150.2A
Table 12 - Traceability to SWE-114 of 7150.2A

Document Section(s) SWE–114 Requirement
 The STRS Compliance Test Procedures shall contain:

[SWE-114]
3.0 Test Configuration a. Test preparations, including hardware and software.
4.0 Test Descriptions b. Test descriptions, including:
4.3 STRS Compliance Testing 1. Test identifier.
4.1 Requirements Being Tested, Table 19,
Table 4, Table 5,
Table 6, Table 7,
Table 8, Table 9

2. System or CSCI requirements addressed by the
test case.

4.3.1 Prerequisite Conditions, Assumptions,
and Constraints

3. Prerequisite conditions.

Table 4, Table 5,
Table 6, Table 7,
Table 8, Table 9

4. Test input.

4.2 Test Instructions, Table 4, Table 5,

Table 6, Table 7, Table 8, Table 9

5. Instructions for conducting procedure.

Table 4, Table 5,
Table 6, Table 7,
Table 8, Table 9

6. Expected test results, including assumptions and
constraints.

Table 4, Table 5,
Table 6, Table 7,
Table 8, Table 9

7. Criteria for evaluating results.

Table 19 c. Requirements traceability.
3.0 Test Configuration d. Identification of test configuration.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 30 of 46

NASA/TM—2011-217266 30

APPENDIX C—Application Compliance Testing Tables

Table 13 is an example of the execution of the application compliance test using ComplianceTool.sh as described in
section 4.3.2 for the preliminary GRC/GSFC waveform in directory WFgsfc. Summary information is displayed
during execution of the script to indicate its progress and show the number of errors.

Table 13 - Compliance Script Execution
Enter directory or source file to test for STRS compliance (or Q, C, or ?): WFgsfc
Entered: WFgsfc
Process directory WFgsfc
Found 3 files to test.
APP_: 19
STRS_: 131
2 POSIX, 0 deprecated, and 0 QuicComm method errors.
0 APP methods missing and 9 APP methods found correctly and 0 extra APP methods.
1 non-standard APP method definitions.
 131 STRS methods and 0 extra STRS methods.
Need to address 2 errors.
POSIX strtok not allowed (consider strtok_r).
...
...
2 POSIX, 0 deprecated, and 0 QuicComm method errors.
0 APP methods missing and 9 APP methods found correctly and 0 extra APP methods.
1 non-standard APP method definitions.
131 STRS methods and 0 extra STRS methods.
Need to address 2 errors.

Table 14 is an example of the output of the application compliance test using ComplianceTool.sh as described in
section 4.3.2 saved as a web page so that color and formatting can be shown. From either type of output, one can
see that there were 2 POSIX method calls that are not allowed and there were 0 deprecated method calls used for a
total of 2 definite problems to address. The extra or non-standard methods used are probably not a problem but
rather an artifact of the simple method of testing that is being used. In the example output below, the missing STRS
include file was STRS.h which was in a #include within a #include file. This is a potential portability issue but not
currently a non-conformance. The web page looks like:

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 31 of 46

NASA/TM—2011-217266 31

Table 14 - Compliance Script Web Page Output

Directory WFgsfc/src
 Process directory WFgsfc/src

Occurrences Item Examined

2 POSIX methods not allowed

0 Deprecated methods

0 QuicComm methods

0 Missing STRS_TEST_STATUS from APP_RunTest

9 APP required methods found out of 9

0 APP required methods missing

1 Non-standard APP method definitions or invocations

0 Extra APP methods

131 STRS methods

10 Distinct STRS methods out of 43

0 Extra STRS methods

1 Missing STRS include files

2 Need to address 2 errors

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 32 of 46

NASA/TM—2011-217266 32

APPENDIX D—Infrastructure Compliance Testing Tables
Table 15 is an example of the execution of the infrastructure compliance test using ComplianceToolOE.sh as
described in section 4.3.3 for GRC’s reference implementation. Summary information is displayed to show the
number of errors and the progress of the execution of the script.

Table 15 - OE Compliance Script Execution
Enter directory or STRS.h source file to test for STRS OE source compliance
(or Q): STRS_ReferenceImplementation/OE
Entered: STRS_ReferenceImplementation/OE
Process directory STRS_ReferenceImplementation/OE
Found 4 files to test.
Process: STRS.h
Skip: stdlib.h
Process: Property.h
Process: Properties.h

0 typedefs missing and 24 typedefs found correctly.
0 constants missing and 26 constants found correctly.
0 structs missing and 2 structs found correctly.
0 files missing and 4 files found correctly out of 4.
Need to address 0 errors.

Table 16 is an example of the output of the application compliance test using ComplianceToolOE.sh as described in
section 4.3.3. The results are saved as a web page so that color and formatting can be shown. From either type of
output, one can see that there are no errors left in the NASA GRC STRS reference implementation. The web page
looks like:

Table 16 - OE Compliance Script Web Page Output

Directory STRS_ReferenceImplementation/OE

 Process directory STRS_ReferenceImplementation/OE

Occurrences Item Examined

0 typedefs missing

24 typedefs found correctly

0 constants missing

26 constants found correctly

0 structs missing

2 structs found correctly

0 files missing

4 files found correctly

The web page also displays a list of #include statements needed for the STRS infrastructure-provided methods. This
list may be used to create STRS_APIs.h in section 4.3.4 (WFCCN).

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 33 of 46

NASA/TM—2011-217266 33

APPENDIX E—Infrastructure Compliance Testing by WFCCN Tables
Table 17 shows the properties to be configured by WFCCN used to test for dynamic compliance as described in
section 4.3.4.

Table 17 - WFCCN Configurable Data
Item Name Description
1 ABORT_NAME Value is handle name of application to abort. This should not be

WFCCN.
2 ACCESS Value for file open may be: READ, WRITE, BOTH, or APPEND.
3 DEVICE_LOAD Value is file name to be loaded into Device. This is usually a bit file

produced as the result of VHDL processing.
4 DEVICE_NAME Value is handle name of Device.
5 FILE_NAME Value is file or directory name.
6 FILE_RENAME Value is file name to remove or rename to.
7 FILE_TYPE Value for file open may be: BINARY or TEXT.
8 HANDLE_NAME Value is a handle name to look up for STRS_HandleRequest.
9 IO_DATA Value is data for testing STRS_Log, STRS_Write, and STRS_Read.
10 MSG Value is data for testing for APP_Read.
11 PRIORITY Value of priority when creating a queue may be: LOW, MEDIUM, or

HIGH.
12 QUEUE_NAME Value is name of queue to create.
13 QUEUE_TARGET Value is name of subscriber queue.
14 QUEUE_TYPE Value of queue type may be: SIMPLE or PUBSUB.
15 READ_NAME Value is handle name of target for STRS_Read.
16 RELEASE_NAME Value is handle name of application to release.
17 START_TESTS Value is YES to start all APP_RunTests in APP_Start, NO to wait

and start individual tests when requested, or an individual test ID
number as shown in Table 18.

18 TEST_ID Value is the appropriate test ID number for testing STRS_RunTest or
STRS_GroundTest.

19 TIMER_DELTA Value is timer offset from base used by STRS_SetTime.
20 TIMER_KIND Value is kind of timer used for testing STRS_GetTime and

STRS_SetTime.
21 TIMER_NAME Value is handle name of timer.
22 TIMER_REF Value is kind of reference timer to synchronize to.
23 TIMER_TGT Value is kind of timer to synchronize.
24 USE Value is handle name of target.
25 WRITE_NAME Value is handle name of target for STRS_Write.

Table 18 associates a test ID with a test of each infrastructure-provided method and describes the data that is
configured to run the test. These tests are usually done multiple times; once en mass by configuring
START_TESTS=YES and then individually as needed.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 34 of 46

NASA/TM—2011-217266 34

Table 18 - WFCCN tests in APP_RunTest
Test ID Test API or other Description
0 STRS_TEST_STATUS Obtains state information.
1 STRS_IsOK Verifies for each type of error that the return value is valid.
2 STRS_GetErrorQueue Verifies for each matching constant error and error queue

that the handle ID of the error queue equals
STRS_GetErrorQueue(error).

3 STRS_InstantiateApp Configuration file is value(FILE_NAME).
4 STRS_Configure Target to configure is value(USE) with properties given for

APP_RunTest.
5 STRS_Query Target to query is value(USE) and property names are those

given for APP_RunTest, if there are any defined; otherwise,
no property names are given but the STRS_Properties
structure contains room for many to be queried.

6 STRS_RunTest Target to test is value(USE) with test ID specified as
value(TEST_ID) and properties given for APP_RunTest.

7 STRS_GroundTest Target to test is value(USE) with test ID specified as
value(TEST_ID) and properties given for APP_RunTest.

8 STRS_Initialize Target to initialize is value(USE).

9 STRS_Start Target to start is value(USE).

10 STRS_DeviceLoad Target Device to load is value(DEVICE_NAME) with file
specified as value(DEVICE_LOAD).

11 STRS_DeviceOpen Target Device to open is value(DEVICE_NAME).

12 STRS_DeviceReset Target Device to reset is value(DEVICE_NAME).

13 STRS_DeviceStart Target Device to start is value(DEVICE_NAME).

14 STRS_FileGetFreeSpace Target file system (if needed) is value(FILE_NAME).

15 STRS_FileOpen Target file is value(FILE_NAME), file access is
value(ACCESS), and file type is value(FILE_TYPE).

16 STRS_QueueCreate Name of queue to create is value(QUEUE_NAME), type of
queue is value(QUEUE_TYPE), and priority of queue is
value(PRIORITY).

17 STRS_Register Target to register as a publisher is value(QUEUE_NAME).
Target to register as a subscriber is
value(QUEUE_TARGET).

18 STRS_Log Target to write log to is value(USE) and data is
value(IO_DATA).

19 STRS_Write Target to write is value(WRITE_NAME) and data is
value(IO_DATA).

20 STRS_Read Target to read is value(READ_NAME) and size of data is
determined from value(IO_DATA).

21 STRS_Unregister Target to unregister is value(QUEUE_NAME) and
subscriber is value(QUEUE_TARGET).

22 STRS_QueueDelete Target to delete is value(QUEUE_NAME).

23 STRS_FileClose Target file to close is value(FILE_NAME).

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 35 of 46

NASA/TM—2011-217266 35

Test ID Test API or other Description

24 STRS_FileGetSize Target file is value(FILE_NAME).

25 STRS_FileRename File to rename is value(FILE_NAME) and file name to
rename it to is value(FILE_RENAME).

26 STRS_FileRemove Target file is value(FILE_RENAME).

27 STRS_DeviceStop Target Device to stop is value(DEVICE_NAME).

28 STRS_DeviceFlush Target Device to flush is value(DEVICE_NAME).

29 STRS_DeviceClose Target Device to close is value(DEVICE_NAME).

30 STRS_SetISR Target to set ISR is value(DEVICE_NAME).

31 STRS_DeviceUnload Target Device to unload is value(DEVICE_NAME).

32 STRS_Stop Target to stop is value(USE).

33 STRS_HandleRequest Obtains the handle ID for value(HANDLE_NAME).

34 STRS_ReleaseObject Target to release is value(RELEASE_NAME).

35 STRS_AbortApp Target to abort is value(ABORT_NAME).

36 STRS_GetNanoseconds Verifies a constant number of nanoseconds set in an
STRS_TimeWarp item.

37 STRS_GetSeconds Verifies a constant number of seconds set in an
STRS_TimeWarp item.

38 STRS_GetTimeWarp Verifies constants set in an STRS_TimeWarp item.

39 STRS_GetTime Target to get time from is value(TIMER_NAME) and kind
of timer is value(TIMER_KIND).

40 STRS_SetTime Target to set time is value(TIMER_NAME), kind of timer
is value(TIMER_KIND), and timer offset in seconds is
value(TIMER_DELTA).

41 STRS_Synch Target to synchronize is value(TIMER_NAME), kind of
timer to synchronize is value(TIMER_TGT) and kind of
timer to use as reference is value(TIMER_REF).

42 Predefined data This tests whether the constants, typedefs, and structs may
be used consistently.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 36 of 46

NASA/TM—2011-217266 36

APPENDIX F—COMPLIANCE TESTING BY REQUIREMENT
The following Table 19 shows which requirements are tested by STRS using manual inspection, observation,
scripts, or porting WFCCN as described in previous sections. Table 19 shows whether the requirement applies to
the OE, the platform, or the STRS application. The “OK?” column is added to use the table as a checklist. The
table numbers that appear within Table 19 are references to the tables in the STRS Architecture Standard.

Table 19 - Requirements Testing

Requirements Description OE/App Tested OK?

STRS-1 An STRS platform shall have a known state after
completion of the power-up process.

OE Observe

STRS-2 The STRS Operating Environment shall provide access to
platform module’s diagnostic information via the STRS
APIs.

OE Observe

STRS-3 Self diagnostic and fault detection data of a module shall be
accessible to the STRS Operating Environment for
collection.

OE Observe

STRS-4 The STRS platform provider shall describe in the HID
document, the behavior and capability of each major
functional device or resource available for use by
waveforms, services, or other applications (e.g. FPGA,
GPP, DSP, memory), noting any operational limitations.

Platform Inspect
document

STRS-5 The STRS platform provider shall describe in the HID
document, the reconfigurability behavior and capability of
each reconfigurable component.

Platform Inspect
document

STRS-6 The STRS platform provider shall describe in the HID
document, the behavior and performance of the RF modular
component(s).

Platform Inspect
document

STRS-7 The STRS platform provider shall describe in the HID
document, the interfaces that are provided to and from each
modular component of the radio platform.

Platform Inspect
document

STRS-8 The STRS platform provider shall describe in the HID
document, the control, telemetry, and data mechanisms of
each modular component (i.e. how to program or control
each modular component of the platform, and how to use or
access each device or software component, noting any
proprietary aspects).

Platform Inspect
document

STRS-9 The STRS platform provider shall describe in the HID
document, the behavior and performance of any power
supply or power converter modular component(s).

Platform Inspect
document

STRS-10 An STRS application shall use the infrastructure STRS API
and POSIX API for access to platform resources.

App Script &
Inspect

STRS-11 The STRS infrastructure shall use the STRS Platform HAL
APIs to communicate with application components on the
platform specialized hardware via the physical interface
defined by the platform provider.

OE No

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 37 of 46

NASA/TM—2011-217266 37

Requirements Description OE/App Tested OK?

STRS-12 Application development artifacts shall be submitted to the
NASA STRS Repository. The use will be subject to the
appropriate license agreements. The application
development artifacts shall include, as a minimum, the
following:

 High level system or component software model

 Documentation of application firmware external
interfaces (e.g. signal names and descriptions, signal
polarity and format, timing constraints of signals)

 Documentation of STRS application behavior
 Application function sources (e.g. C, C++, header files,

VHDL, Verilog)
 Application libraries, if applicable (e.g. EDIF, DLL)
 Documentation of application development

environment and tool suite
 Test plan and results documentation
 Identification of Flight Software Development

Standards used

App Inspect

STRS-13 If the STRS application has a component resident in an
SPM (e.g. FGPA firmware), then it shall accept
configuration and control commands from the STRS
Operating Environment.

App Observe

STRS-14 The STRS SPM developer shall provide a platform specific
wrapper for each user-programmable FPGA on the SPM,
which performs, as a minimum, the following functions

 Provides an interface for command and data from the
GPM to the waveform application

 Provides the platform specific pinout for the
application developer. This may be a complete
abstraction of the actual FPGA pinouts with only
waveform application signal names provided.

Platform Inspect
document &
code

STRS-15 The STRS SPM developer shall provide documentation on
the firmware interfaces of the platform specific wrapper for
each user-programmable FPGA on the SPM, which
describe, as a minimum, the following
 Signal names and descriptions
 Signal polarity and format
 Signal timing constraints of all signals
 Clock generation and synchronization methods
 Signal registering methods
 Identification of development tool set used

Platform Inspect
document

STRS-16 The STRS Application-provided Application Control API
shall be implemented using C or C++.

App Inspect

STRS-17 The STRS infrastructure shall use the STRS Application-
provided Application Control API to control STRS
applications.

OE Script

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 38 of 46

NASA/TM—2011-217266 38

Requirements Description OE/App Tested OK?

STRS-18 The STRS Operating Environment shall support C or C++
language interfaces for the STRS Application-provided
Application Control API at compile-time.

OE Inspect

STRS-19 The STRS Operating Environment shall support C or C++
language interfaces for the STRS Application-provided
Application Control API at run-time.

OE WFCCN

STRS-20 Each STRS application shall contain:
#include "STRS_ApplicationControl.h"

App Script

STRS-21 The STRS platform provider shall provide an
“STRS_ApplicationControl.h” that contains the method
prototypes and, for C++, the class definition for the base
class STRS_ApplicationControl.

OE Inspect

STRS-22 If the STRS Application-provided Application Control API
is implemented in C++, the STRS application class shall be
derived from the STRS_ApplicationControl base class.

App Inspect

STRS-23 If the STRS application provides the APP_Write method,
the STRS application shall contain
#include "STRS_Sink.h"

App Script

STRS-24 The STRS platform provider shall provide an
“STRS_Sink.h” that contains the method prototypes and,
for C++, the class definition for the base class STRS_Sink.

OE Inspect

STRS-25 If the STRS Application-provided Application Control API
is implemented in C++ AND the STRS application provides
the APP_Write method, the STRS application class shall be
derived from the STRS_Sink base class.

App Inspect

STRS-26 If the STRS application provides the APP_Read method,
the STRS application shall contain
#include "STRS_Source.h"

App Script

STRS-27 The STRS platform provider shall provide an
“STRS_Source.h” that contains the method prototypes and,
for C++, the class definition for the base class
STRS_Source.

OE Inspect

STRS-28 If the STRS Application-provided Application Control API
is implemented in C++ AND the STRS application provides
the APP_Read method, the STRS application class shall be
derived from the STRS_Source base class.

App Inspect

STRS-29 Each STRS application shall contain a callable
APP_Configure method as described in Table 8-3.

App Script

STRS-30 Each STRS application shall contain a callable
APP_GroundTest method as described in Table 8-4.

App Script

STRS-31 Each STRS application shall contain a callable
APP_Initialize method as described in Table 8-5.

App Script

STRS-32 Each STRS application shall contain a callable
APP_Instance method as described in Table 8-6.

App Script

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 39 of 46

NASA/TM—2011-217266 39

Requirements Description OE/App Tested OK?

STRS-33 Each STRS application shall contain a callable APP_Query
method as described in Table 8-7.

App Script

STRS-34 If the STRS application provides data to the infrastructure,
then the STRS application shall contain a callable
APP_Read method as described in Table 8-8.

App Script

STRS-35 Each STRS application shall contain a callable
APP_ReleaseObject method as described in Table 8-9.

App Script

STRS-36 Each STRS application shall contain a callable
APP_RunTest method as described in Table 8-10.

App Script

STRS-37 Each STRS application shall contain a callable APP_Start
method as described in Table 8-11.

App Script

STRS-38 Each STRS application shall contain a callable APP_Stop
method as described in Table 8-12.

App Script

STRS-39 If the STRS application receives data from the
infrastructure, then the STRS application shall contain a
callable APP_Write method as described in Table 8-13.

App Script

STRS-40 The STRS infrastructure shall contain a callable
STRS_Configure method as described in Table 8-14.

OE WFCCN

STRS-41 The STRS infrastructure shall contain a callable
STRS_GroundTest method as described in Table 8-15.

OE WFCCN

STRS-42 The STRS infrastructure shall contain a callable
STRS_Initialize method as described in Table 8-16.

OE WFCCN

STRS-43 The STRS infrastructure shall contain a callable
STRS_Query method as described in Table 8-17.

OE WFCCN

STRS-44 The STRS infrastructure shall contain a callable
STRS_ReleaseObject method as described in Table 8-18.

OE WFCCN

STRS-45 The STRS infrastructure shall contain a callable
STRS_RunTest method as described in Table 8-19.

OE WFCCN

STRS-46 The STRS infrastructure shall contain a callable STRS_Start
method as described in Table 8-20.

OE WFCCN

STRS-47 The STRS infrastructure shall contain a callable STRS_Stop
method as described in Table 8-21.

OE WFCCN

STRS-48 The STRS infrastructure shall contain a callable
STRS_AbortApp method as described in Table 8-22.

OE WFCCN

STRS-49 The STRS infrastructure shall contain a callable
STRS_GetErrorQueue method as described in Table 8-23.

OE WFCCN

STRS-50 The STRS infrastructure shall contain a callable
STRS_HandleRequest method as described in Table 8-24.

OE WFCCN

STRS-51 The STRS infrastructure shall contain a callable
STRS_InstantiateApp method as described in Table 8-25.

OE WFCCN

STRS-52 The STRS infrastructure shall contain a callable
STRS_IsOK method as described in Table 8-26.

OE WFCCN

STRS-53 The STRS infrastructure shall contain a callable STRS_Log
method as described in Table 8-27.

OE WFCCN

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 40 of 46

NASA/TM—2011-217266 40

Requirements Description OE/App Tested OK?
STRS-54 When an STRS application has a non-fatal error, the STRS

application shall use the STRS_Log method (Table 8-27)
with a target handle ID of constant
STRS_ERROR_QUEUE.

App WFCCN

STRS-55 When an STRS application has a fatal error, the STRS
application shall use the STRS_Log method (Table 8-27)
with a target handle ID of constant
STRS_FATAL_QUEUE.

App WFCCN

STRS-56 When an STRS application has a warning condition, the
STRS application shall use the STRS_Log method (Table 8-
27) with a target handle ID of constant
STRS_WARNING_QUEUE.

App WFCCN

STRS-57 When an STRS application needs to send telemetry, the
STRS application shall use the STRS_Log method (Table 8-
27) with a target handle ID of constant
STRS_TELEMETRY_QUEUE.

App WFCCN

STRS-58 The STRS infrastructure shall contain a callable
STRS_Write method as described in Table 8-28.

OE WFCCN

STRS-59 The STRS infrastructure shall contain a callable STRS_Read
method as described in Table 8-29.

OE WFCCN

STRS-60 The STRS applications shall use the STRS infrastructure
Device Control methods to control the STRS Devices.

OE Inspect

STRS-61 The STRS infrastructure shall contain a callable
STRS_DeviceClose method as described in Table 8-30.

OE WFCCN

STRS-62 The STRS infrastructure shall contain a callable
STRS_DeviceFlush method as described in Table 8-31.

OE WFCCN

STRS-63 The STRS infrastructure shall contain a callable
STRS_DeviceLoad method as described in Table 8-32.

OE WFCCN

STRS-64 The STRS infrastructure shall contain a callable
STRS_DeviceOpen method as described in Table 8-33.

OE WFCCN

STRS-65 The STRS infrastructure shall contain a callable
STRS_DeviceReset method as described in Table 8-34.

OE WFCCN

STRS-66 The STRS infrastructure shall contain a callable STRS_
DeviceStart method as described in Table 8-35.

OE WFCCN

STRS-67 The STRS infrastructure shall contain a callable STRS_
DeviceStop method as described in Table 8-36.

OE WFCCN

STRS-68 The STRS infrastructure shall contain a callable
STRS_DeviceUnload method as described in Table 8-37.

OE WFCCN

STRS-69 The STRS infrastructure shall contain a callable
STRS_SetISR method as described in Table 8-38.

OE WFCCN

STRS-70 The STRS infrastructure shall contain a callable
STRS_FileClose method as described in Table 8-39.

OE WFCCN

STRS-71 The STRS infrastructure shall contain a callable
STRS_FileGetFreeSpace method as described in Table 8-
40.

OE WFCCN

STRS-72 The STRS infrastructure shall contain a callable
STRS_FileGetSize method as described in Table 8-41.

OE WFCCN

STRS-73 The STRS infrastructure shall contain a callable
STRS_FileGetStreamPointer method as described in Table
8-42.

OE WFCCN

STRS-74 The STRS infrastructure shall contain a callable
STRS_FileOpen method as described in Table 8-43.

OE WFCCN

STRS-75 The STRS infrastructure shall contain a callable OE WFCCN

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 41 of 46

NASA/TM—2011-217266 41

Requirements Description OE/App Tested OK?
STRS_FileRemove method as described in Table 8-44.

STRS-76 The STRS infrastructure shall contain a callable
STRS_FileRename method as described in Table 8-45.

OE WFCCN

STRS-77 The STRS applications shall use the STRS Infrastructure
Messaging methods to send messages between applications
and/or the infrastructure with a single target handle ID.

App Inspect

STRS-78 The STRS infrastructure shall contain a callable
STRS_QueueCreate method as described in Table 8-46.

OE WFCCN

STRS-79 The STRS infrastructure shall contain a callable
STRS_QueueDelete method as described in Table 8-47.

OE WFCCN

STRS-80 The STRS infrastructure shall contain a callable
STRS_Register method as described in Table 8-48.

OE WFCCN

STRS-81 The STRS infrastructure shall contain a callable
STRS_Unregister method as described in Table 8-49.

OE WFCCN

STRS-82 Any portion of the STRS Applications on the GPP needing
time control shall use the STRS Infrastructure Time Control
methods to access the hardware and software timers.

App Inspect

STRS-83 The STRS infrastructure shall contain a callable
STRS_GetNanoseconds method as described in Table 8-50.

OE WFCCN

STRS-84 The STRS infrastructure shall contain a callable
STRS_GetSeconds method as described in Table 8-51.

OE WFCCN

STRS-85 The STRS infrastructure shall contain a callable
STRS_GetTime method as described in Table 8-52.

OE WFCCN

STRS-86 The STRS infrastructure shall contain a callable
STRS_GetTimewarp method as described in Table 8-53.

OE WFCCN

STRS-87 The STRS infrastructure shall contain a callable
STRS_SetTime method as described in Table 8-54.

OE WFCCN

STRS-88 The STRS infrastructure shall contain a callable
STRS_Synch method as described in Table 8-55.

OE WFCCN

STRS-89 The STRS platform provider shall provide an STRS.h file
containing the STRS predefined data shown in Table 8-56.

OE OE script &
WFCCN

STRS-90 The STRS Operating Environment shall provide the
interfaces described in POSIX IEEE Standard 1003.13-2003
profile PSE51.

OE Inspect

STRS-91 STRS Applications shall use POSIX methods except for the
unsafe functions listed in Table 8-57.

App Script

STRS-92 The STRS platform provider shall provide the STRS
platform HAL documentation. The HAL documentation
shall include, but not be limited to, the following
 For each method/function, its calling sequence, return

values, an explanation of its functionality, any
preconditions for using the method/function, and the
postconditions after using the method/function.

 Information required to address the underlying
hardware, including interrupt input and output, memory
mapping, and other configuration data necessary to
operate in the STRS platform environment.

Platform Inspect
document

STRS-93 The STRS infrastructure shall use the HAL APIs to
communicate with the specialized hardware via the physical
interface defined by the platform provider.

OE No

STRS-94 An STRS platform shall accept, validate, and respond to
external commands.

OE Observe

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 42 of 46

NASA/TM—2011-217266 42

Requirements Description OE/App Tested OK?

STRS-95 An STRS platform shall execute external application
control commands using the standardized STRS APIs.

OE WFCCN

STRS-96 The STRS infrastructure shall use the STRS_Query method
to service external system requests for information from an
STRS application.

OE Inspect

STRS-97 An STRS application shall use the STRS_Log and
STRS_Write methods to send STRS telemetry set
information to the external system.

App Inspect

STRS-98 The STRS platform provider shall document the necessary
platform information (including a sample file) to develop a
pre-deployed application configuration file in XML.

OE Inspect
document &
sample file

STRS-99 The STRS application developer shall document the
necessary application information to develop a pre-deployed
application configuration file in XML.

App Inspect
document

STRS-100 The STRS platform integrator shall provide a pre-deployed
application configuration file in XML.

OE Inspect &
check using
XMLSpy

STRS-101
The pre-deployed STRS application configuration file shall
identify, as a minimum, the following application attributes
and default values
 Identification
 Unique STRS handle name for the application
 Class name (if applicable)
 State after processing the configuration file
 Required resources
 Memory in bytes
 Number of gates or logic elements
 Configuration parameters containing the STRS handle,

names of files, devices, queues, waveforms and
services needed by the STRS application

 Values and constraints for all operationally
configurable parameters

 Filename(s) of loadable images for resources

App Inspect

STRS-102 The STRS platform provider shall provide an XML schema
to validate the format and data for pre-deployed STRS
application configuration files, including the order of the
tags, the number of occurrences of each tag, and the values
or attributes.

OE Inspect &
check using
XMLSpy

STRS-103 The STRS platform provider shall provide the tools and
documentation to transform pre-deployed application
configuration file in XML into a deployed application
configuration file.

OE Inspect
document &
tools

STRS-104 The STRS platform integrator shall provide deployed STRS
application configuration file for the STRS infrastructure to
place the STRS application in the specified state.

OE Inspect

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 43 of 46

NASA/TM—2011-217266 43

APPENDIX G—Document Compliance Testing Guidelines
The document review process is initiated by lead(s) being assigned. The lead(s) will find the deliverable documents
to be reviewed for STRS compliance and assign the documents to reviewers. If there is submission by more than
one company, it is recommended that reviewers look at similar documents for two companies to be able to compare
and contrast. If there are more documents than reviewers, the lead(s) may assign multiple short documents to a
reviewer or request additional reviewers. The lead(s) will create a spreadsheet or database in eRoom or something
equivalent for reviewers to enter their comments. The lead(s) will coordinate the review process specifying
deadlines, sending out reminders and answering questions.

Then the reviewers will review the documents and enter their comments into the spreadsheet or database. Some
comments may be STRS changes only and nothing fed back to company, or company comments only and no STRS
change. The reviewers should keep track of both compliances and non-compliances to be sure that all requirements
are addressed.

Once the reviewers have finished, the lead(s) will review the comments for clarity and completeness. Comments
pertaining to STRS Architecture only are reviewed by the STRS team for inclusion into the STRS Architecture
Standard with the resolution passed back to the lead(s) for inclusion into the spreadsheet or data base. The lead(s)
will then prepare company feedback.

Here is specific guidance to document reviewers for STRS compliance:
a. Look for meeting the requirements in the STRS Architecture Standard. Reviewers need to record when a

document satisfies the requirements for that document and not just the variances. The purpose is to be able to
see if they missed anything.

b. Look for common practices that might be standardized.
c. Look for misunderstandings.
d. For the FPGA wrappers, see what commonalities help future waveform developers and what is platform

specific.
e. Determine if we should have a common document format.
f. Look for items that contribute to waveform (firmware) portability that may become part of the standard.
g. For STRS, look at their description of their implementation. Did they interpret the APIs as intended? Do we

need more in our API descriptions, etc? Are there other aspects that should become part of the STRS standard?
h. For HIDs, see what types of resources are made available to waveform developers. Look for common

formatting, etc. Determine if we should have a common document format.

From STRS Architecture Standard version 1.02:

1. (STRS-4) The STRS platform developer shall describe in the HID document, the behavior and
capability of each major functional device or resource available for use by waveforms, services, or
other applications (e.g. FPGA, GPP, DSP, memory), noting any operational limitations.
Although not in the requirements, some things to look for are:
a. Identification

i. Manufacturer,
ii. Model number,

iii. Part number and any revision levels (if applicable).
iv. Device type

b. Performance capabilities:
i. Microprocessor clock speed(s) or MIPS

ii. Data I/O rate maximum in bits per second
iii. Memory size(s), type(s), and speed(s)
iv. Reconfigurable capacity

2. (STRS-5) The STRS platform developer shall describe in the HID document, the reconfigurability
behavior and capability of each reconfigurable component.

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 44 of 46

NASA/TM—2011-217266 44

3. (STRS-6) The STRS platform developer shall describe in the HID document, the behavior and
performance of the RF modular component(s).
Although not in the requirements, some things to look for are:
a. Receiver information:

i. Input impedance
ii. Center frequency

iii. Bandwidth(s)
iv. IF frequency(s)
v. IF input/output level(s)

vi. Signal to Noise Ratio (SNR), in dB
vii. Dynamic Range

viii. Receiver sensitivity
ix. Third Order Intermodulation Intercept Point (IP3)
x. Overall receiver Noise Figure, in dB

xi. AGC operational parameters
xii. Carrier frequency accuracy

xiii. Tuning frequency resolution
xiv. Selectivity in dBc

b. Transmitter information:
i. Output impedance

ii. Carrier center frequency
iii. Bandwidth(s)
iv. Operational frequency bandwidth
v. Intermediate frequencies

vi. IF input/output levels
vii. Local oscillator phase noise

viii. Signal to Noise Ratio in dB
ix. Output signal flatness over operating frequencies
x. Temperature vs. Power output

xi. 1dB compression point
xii. Tuning frequency resolution

xiii. Carrier frequency accuracy
xiv. Maximum reverse power at output connector
xv. Voltage standing wave ratio (VSWR) measured across operating frequency

4. (STRS-7) The STRS platform provider shall describe in the HID document, the interfaces that are
provided to and from each modular component of the radio platform.
Although not in the requirements, some things to look for are:
a. Electrical connection

i. Name
ii. Data type (serial/parallel, digital/analog)

iii. Bus width
iv. Timing diagram

b. Hardware
i. Describe conduction cooling paths, or specify air-flow capabilities, depending on the

intended operational environment
ii. Total heat dissipation limits, and dissipation limits for individual module slots, as

appropriate
iii. Thermal cooling requirements
iv. Operational and storage environmental constraints (temperature, humidity, etc.)

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 45 of 46

NASA/TM—2011-217266 45

v. Mechanical information required to build a module for the platform. This includes all
dimensions, mass, clearances, mounting method, and connector locations.

vi. Vibration loading limitations
c. Table 20 provides typical interface characteristics:

Table 20 – STRS Module Interface Characterization

STRS Module Interface Characterization Table

Parameter Description / Comments

Name Interface Name (data, control, DC power, RF, security, etc)
Interface type Point to point, point-multipoint, multipoint, serial, bus, other
Implementation level Component, module, board, chassis, remote node

Reference documents / Standards
Applicable documents for interface standards or description
of custom interfaces

Note / Constraints
Variances from standards, physical and logical functional
limitations

Transfer speed Clock speed, throughput speed
Signal definition Description of functionality and intended use

Physical Implementation
Technology e.g. GPP, DSP, FPGA, ASIC and description
Connectors Model number, pin out (incl. unused pins)
Data plane Width, speed, timing, data encoding, protocols

Control plane
Control signals, control messages or commanding, interrupts,
message protocol

Functional Implementation
Models Data plane model, control plane model, test bench model
Power Voltages, currents, noise, conducted immunity, susceptibility
APIs Custom or standard, particular to OS environment
Software Device drivers, development environment & tool chain

Logical Implementation
Addressing Method, schemes
Channels Open, close
Connection type Forward, terminate, test

5. (STRS-8) The STRS platform provider shall describe in the HID document, the control, telemetry, and

data mechanisms of each modular component (i.e. how to program or control each modular component
of the platform, and how to use or access each device or software component, noting any proprietary
aspects).
Although not in the requirements, some things to look for are:

i. Connector type
ii. Connector pinout (including unused pins)

iii. Electrical signaling specifications (logic standard, terminations, etc.)
iv. Signal timing (setup and hold times, clock rates, clock accuracy, etc.)
v. Electrical isolation

vi. Data encoding (Non-return to zero (NRZ), Manchester, etc.)
vii. Data transfer protocol

6. (STRS-9) The STRS platform developer shall describe in the HID document, the behavior and
performance of any power supply or power converter modular component(s).
Although not in the requirements, some things to look for are:

i. Minimum, maximum, and nominal voltages required
ii. Standby and maximum current availability and consumptions

Space Telecommunications Radio System (STRS) Compliance Testing
Date: May 31, 2011 Document No.: STRS-ATP-00001 Page 46 of 46

NASA/TM—2011-217266 46

iii. Connector type and pinout
iv. Voltage ripple tolerance

7. (STRS-92) The STRS platform provider shall provide the STRS platform HAL documentation that
includes the following:
 For each method/function, its calling sequence, return values, an explanation of its functionality,

any preconditions for using the method/function, and the postconditions after using the
method/function.

 Information required to address the underlying hardware, including interrupt input and output,
memory mapping, and the configuration data necessary to operate in the STRS platform
environment.

8. (STRS-12) Application development artifacts shall be submitted to the NASA STRS Repository.
Although these aren’t required until the final submittal, some things to look for are:

i. License agreements for software use and reuse.
ii. High level system or component software model

iii. Documentation of application firmware external interfaces (e.g. signal names and
descriptions, signal polarity and format, timing constraints of signals)

iv. Documentation of STRS application behavior
v. Description of application function sources

vi. Description of application libraries, if applicable
vii. Documentation of application development environment and tool suite

viii. Include application name, purpose, developer, version, and configuration specifics
ix. Include the hardware on which the application is executed, its OS, OS developer, OS

version, and OS configuration specifics
x. Test plan and results documentation

xi. Identification of Flight Software Development Standards used

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
01-12-2011

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Space Telecommunications Radio System (STRS) Compliance Testing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Handler, Louis, M.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 439432.04.07.01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
 REPORT NUMBER
E-18021

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITOR'S
 ACRONYM(S)
NASA

11. SPONSORING/MONITORING
 REPORT NUMBER
NASA/TM-2011-217266

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Categories: 17, 38, and 61
Available electronically at http://www.sti.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Space Telecommunications Radio System (STRS) defines an open architecture for software defined radios. This document describes
the testing methodology to aid in determining the degree of compliance to the STRS architecture. Non-compliances are reported to the
software and hardware developers as well as the NASA project manager so that any non-compliances may be fixed or waivers issued. Since
the software developers may be divided into those that provide the operating environment including the operating system and STRS
infrastructure (OE) and those that supply the waveform applications, the tests are divided accordingly. The static tests are also divided by
the availability of an automated tool that determines whether the source code and configuration files contain the appropriate items. Thus,
there are six separate step-by-step test procedures described as well as the corresponding requirements that they test. The six types of STRS
compliance tests are: STRS application automated testing, STRS infrastructure automated testing, STRS infrastructure testing by compiling
WFCCN with the infrastructure, STRS configuration file testing, STRS application manual code testing, and STRS infrastructure manual
code testing. Examples of the input and output of the scripts are shown in the appendices as well as more specific information about what to
configure and test in WFCCN for non-compliance. In addition, each STRS requirement is listed and the type of testing briefly described.
Attached is also a set of guidelines on what to look for in addition to the requirements to aid in the document review process.
15. SUBJECT TERMS
Telecommunications; Computer programming; Software engineering; Software development tools; Software reliability

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

51

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

a. REPORT
U

b. ABSTRACT
U

c. THIS
PAGE
U

19b. TELEPHONE NUMBER (include area code)
443-757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

