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The CFD General Notation System (CGNS)—a general, portable, and extensible standard for the storage
and retrieval of computational fluid dynamics (CFD) analysis data—has been in existence for more than a
decade (Version 1.0 was released in May 1998). Both structured and unstructured CFD data are covered
by the standard, and CGNS can be easily extended to cover any sort of data imaginable, while retaining
backward compatibility with existing CGNS data files and software. Although originally designed for CFD, it is
readily extendable to any field of computational analysis. In early 2011, CGNS Version 3.1 was released, which
added significant capabilities. This paper describes these recent enhancements and highlights the continued
usefulness of the CGNS methodology.

Glossary of Terms

ADF CGNS Advanced Data Format, http://www.grc.nasa.gov/www/cgns/CGNS docs current/adf
API Application Programming Interface
CGIO CGNS low-level library, http://www.grc.nasa.gov/www/cgns/CGNS docs current/cgio
CHLone CGNS special purpose C library (for HDF5 files only), http://chlone.sourceforge.net
CGNS CFD General Notation System, http://cgns.org
CGNSTalk CGNS user forum, https://lists.nasa.gov/mailman/listinfo/cgnstalk
CMake Cross-platform build system, http://cmake.org
CPEX CGNS Proposals for Extension, http://cgns.sourceforge.net/Proposals.html
GNU UNIX-style operating system, http://gnu.org
HDF5 Hierarchical Data Format, http://hdfgroup.org/HDF5
I/O Input/Output
MAP Special purpose module in pyCGNS, http://pycgns.sourceforge.net/MAP
MLL CGNS Mid-Level Library, http://www.grc.nasa.gov/www/cgns/CGNS docs current/midlevel
MPI Message Passing Interface, http://mcs.anl.gov/mpi
MPI4py MPI library for Python, http://code.google.com/p/mpi4py
NumPy Scientific computing package for Python, http://numpy.scipy.org
pyCGNS CGNS Python package, http://pycgns.sourceforge.net
Python Programming language, http://python.org
SIDS CGNS Standard Interface Data Structures, http://www.grc.nasa.gov/www/cgns/CGNS docs current/sids
Tcl/Tk Tool Command Language and Toolkit, http://tcl.sourceforge.net
UNIX R© Computer operating system, http://unix.org
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I. Overview of CGNS

The CFD General Notation System (CGNS) originated in 1994 as a joint effort between Boeing and NASA, and
has since grown to include many other contributing organizations worldwide. It is an effort to standardize CFD
input and output, including grid (both structured and unstructured), flow solution, connectivity, boundary conditions,
and auxiliary information. CGNS is an AIAA Recommended Practice.1 In 1999, control of CGNS was completely
transferred to a public forum known as the CGNS Steering Committee. This Steering Committee is made up of
international representatives from government and private industry. All CGNS software is completely free and open
to anyone (open source, under the zlib/libpng licensea).

All CGNS documentation is on-line. This is because each is considered as a “living document” and is kept up-
to-date as the software and methodology expands. Every so often, referenceable documents concerning CGNS are
published as well.1–9 However, the up-to-date on-line documentation is the best way to learn the system and remain
current. The main website address for CGNS is http://cgns.org, and all CGNS documentation is accessible via that
site. The reader is also referred to the Glossary of Terms (above) for website addresses of particular documents and
applications, current as of the writing of this paper.

CGNS is easily extensible, and allows for user-inserted comments. It creates binary files that are portable across
computer platforms, employing either the Advanced Data Format (ADF, part of the standard CGNS software release)
or the Hierarchical Data Format (HDF5, available separately) as a data layer. CGNS also provides a layer of software
known as the CGIO Interface, which allows access to these files at a low-level, and a second layer of software known
as the Mid-Level Library (MLL), which standardizes and simplifies the implementation of CGNS into existing CFD
codes. A Python mid-level access, pyCGNS, is also available separately.

The CGNS “standard” is described by the Standard Interface Data Structured (SIDS). The SIDS is the heart of
CGNS; it defines the standards or conventions for what is meant by a grid point, flow solution, etc., and also describes
how to organize the information in the file. The SIDS “file mappings” in turn map the SIDS conventions onto either
an ADF or HDF5 file. Fig. 1 outlines the various ways that a user code or application can currently access a CGNS
ADF or HDF5 file. Any application can read or write an ADF or HDF5 file directly via ADF or HDF5 libraries,
as indicated by the dashed arrows in the figure. Alternatively, the new CGIO interface improves upon this low-level
access, because it has the same functionality but is independent of the file type (ADF or HDF5). When using ADF,
HDF5, or CGIO libraries, it is up to the individual application to adhere to the SIDS standard. On the other hand, the
mid-level access software “understands” the SIDS file mapping, so use of MLL or pyCGNSb insures full compliance
with the SIDS. The fact that multiple implementations are possible is evidence of the flexibility of the CGNS standard
and its mappings.

A CGNS file (sometimes referred to as a database) is an entity that is organized into a set of “nodes” in a tree-like
structure, in much the same way as directories are organized in the UNIX R©environment. An example of a CGNS
tree-like structure is shown in Fig. 2. The top-most node is referred to as the “root node.” Each node below the root
node is defined by both a name and a label, and may or may not contain information and/or data. Each node can also
be a “parent” to one or more “child” nodes. A node can also have as a child node a link to a node elsewhere in the file
or to a node in another CGNS file. Links are transparent to the user in that the data and any child nodes are accessed
in the same way as standard nodes.

Two sample layouts for a structured and unstructured version of the same grid are given in Figs. 3(a) and (b). (In
Fig. 3(b) the CoordinateY and CoordinateZ nodes have been omitted for clarity.) Note that CGNS allows a
grid to be made up of both structured and unstructured zones in the same file (i.e., a mixed type), if desired. Additional
details about the fundamental aspects of CGNS, including usage of many of the basic MLL routines, can be found in
the User’s Guide to CGNS.2

CGNS uses an extension process called CPEX, to allow any user to propose extensions to the standard. The CPEX
process includes review by the CGNS Steering Committee. If accepted, the extension is subsequently integrated into
the SIDS and the MLL.

II. Utilization of CGNS

Since its inception, CGNS has been actively adopted by many groups world-wide. Although it has typically oper-
ated unfunded over the last 10 years, the CGNS Steering Committee has remained an active organization, overseeing

ahttp://opensource.org/licenses/zlib-license.php, cited: 11/3/2011.
bAs will be mentioned later in the Python Mapping section, pyCGNS can also make use of CHLone (not shown in the figure). CHLone is a

recently-developed special-purpose CGNS library, available separately for use with HDF5.
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the direction and activities of the CGNS definitions, software development, and maintenance. CGNS tutorial sessions
were held in conjunction with AIAA meetings in San Francisco in 2006 and in Orlando in 2010, and also at a European
Conference for Aero-Space Sciences (EUCASS) meeting in Paris in 2009. Tutorials are also available on the CGNS
website. The current membership of the CGNS Steering Committee is shown in Table 1.

Table 1. CGNS Steering Committee members as of November 2011.

Organization Representative

ADAPCO Steve Feldman
Airbus Renaud Sauvage
ANSYS-CFX Richard Hann
ANSYS-ICEM CFD Simon Pereira
Boeing Commercial Will Stoffers
Computational Engineering Solutions Bruce Wedan
Concepts NREC Mark Anderson
Intelligent Light Earl Duque
NASA Glenn Tony Iannetti
NASA Langley Chris Rumsey
ONERA Marc Poinot
Pointwise, Inc. John Chawner
Pratt & Whitney Bob Bush
Rolls-Royce Allison Leigh Lapworth
Stanford University Juan Alonso
Stony Brook University Xiangmin Jiao
Tecplot, Inc. Scott Imlay
TTC Technologies Ken Alabi
University of Colorado Thomas Hauser (current Chair)
US Air Force / AEDC Greg Power

CGNS is supported primarily by its users, through a self-help e-mail exchange of information called CGNSTalk.
As of November 2011, the cite had nearly 350 registered users from 22 different countries. CGNS has been imple-
mented in many different software packages, listed on the CGNS website.

CGNS has also proved to be very useful for the productive and rapid exchange of CFD grids at the AIAA Drag
Prediction series of workshops10 and at the AIAA High Lift Prediction Workshop.11 ONERA (the French Aerospace
Lab) has adopted CGNS as a key data model for its CFD-based workflow process.12 In fact, CGNS is now the main
file format used for large simulation data exchange of most of ONERA’s CFD projects. As described in the reference
listed, the five reasons for ONERA moving toward the CGNS hierarchical data format were its: (1) tree structure, (2)
numerical-simulation-aware middleware, (3) portability, maintainability, compatibility, (4) availability (open system),
and (5) trustworthiness and support.

III. Recent Enhancements to CGNS

Recent enhancements to CGNS are described below. Referring to Fig. 1, the following sections are organized
from the bottom up. First, changes at the file level are described, followed by changes in low-level access, SIDS, and
mid-level access. Finally, new applications are described.

A. File-Level Changes

1. Official Adoption of HDF5

CGNS was originally built using the ADF file format. This format was based on a common file format system
previously in use at McDonnell Douglas. The ADF has worked extremely well and has required little repair, upgrade,
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or maintenance over the last decade.
However, ADF does not have parallel I/O or data compression capabilities, and lacks the support and tools that

the HDF5 storage format offers. HDF5 has rapidly grown to become a world-wide standard for storing scientific data.
HDF5 has parallel I/O capability as well as a broader support base than ADF.

Therefore, the CGNS Steering Committee made the decision to adopt HDF5 as the default (official) data storage
mechanism. However, because it is possible to easily support both ADF and HDF5 formats simultaneously (ensuring
backward compatibilityc as well as giving the user a choice), both will continue to be supported indefinitely. CGNS
now handles HDF5 and ADF transparently through the new CGIO interface. See the CGIO Interface section below.

If the user links to HDF5d when compiling CGNS Version 3.1 or later, then by default the software will write
HDF5 files, although the user can force the writing of ADF files instead if desired. The software will automatically
read either format without the user having to do anything.

To summarize: the CGNS Steering Committee considers HDF5 to be its official, recommended storage format.
However, ADF will continue to be available for use, with the CGNS mid-level library capable of (1) using either
format and (2) translating back and forth between the two.

2. 64-Bit Integer Capability

A major change in CGNS Version 3.1 is the capability to use 64-bit integers. This is necessary because many indexing
arrays associated with CFD grids approaching hundreds of millions or more of points or elements exceed the 32-bit
integer limit, and could not be written with the earlier software. The 64-bit integer capability is handled through the
introduction of the data type cgsize t, which is a 64-bit integer when building 64-bit code and a 32-bit integer
otherwise.

The configuration options and building of CGNS are now supported by both CMake and GNU configure scripts.
Some of the new options with both methods allow building 64-bit code (where applicable) and support for legacy
code. Legacy refers to 32-bit CGNS versions prior to version 3.1.

A CGNS file written in 64-bit mode will only be readable by the version 3.1 software or later. A 32-bit compilation
of version 3.1 will be able to read a 64-bit CGNS file, but will fail gracefully if the dimensions exceed those that can be
handled by a 32-bit integer. With a 32-bit mode legacy compilation of version 3.1, the ADF and HDF5 interfaces are
unchanged; and thus the CGNS files will be readable by earlier versions. Regardless of how the version 3.1 software
is compiled, it is always backward compatible with earlier version CGNS files.

3. 64-Bit Portability

For C-portability between 32 and 64-bit compilation modes, new code should use the cgsize t data type. If support
for CGNS versions prior to 3.1 (where cgsize t is not defined) is desired, then the following code (or something
similar) should also be used:

#if CGNS VERSION < 3100
#define cgsize t int
#endif
Existing C-code that uses int will not work with a CGNS 3.1 library compiled in 64-bit mode. In this case, if the

code is not modified to use cgsize t, the following should be added to the code:
#if CGNS VERSION >= 3100 && CG BUILD 64BIT
#error does not work in 64 bit mode
#endif
In Fortran, all integer arguments in the interface are taken to be integer*4 in 32-bit mode and integer*8 in

64-bit mode. If one uses default or implicit integers, a Fortran code should port to 64-bit mode by simply turning on
the compiler option that promotes implicit integers to integer*8. However, if the integers are explicitly defined as
integer*4, then a Fortran code will not work in 64-bit mode.

The cgnslib f.h header file has been modified to explicitly define all integer values based on the CGNS library
compilation mode: integer*8when compiled in 64-bit mode and integer*4 otherwise. A new integer parameter
has also been added to the header, CG BUILD 64BIT, which will be set to 1 in 64-bit mode and 0 otherwise. A user
may use this parameter to check if the CGNS library has been compiled in 64-bit mode or not, as in:

cBackward compatibility—meaning that CGNS software can always read old files from earlier versions—is one of the core policies adopted by
the CGNS Steering Committee. However, files that are written with newer versions are not necessarily readable by earlier versions of the software;
i.e., forward, or upward, compatibility is not guaranteed.

dHDF5 version 1.8 or later is required for support of links.
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if (CG BUILD 64BIT .ne. 0) then
stop ’CGNS will not work in 64-bit mode’

endif
If using a CGNS library prior to version 3.1, this parameter will not be defined.

B. Low-Level Access Change: CGIO Interface

The new CGIO routines provide low-level access to the underlying file manager (ADF or HDF5) and are used to
store and retrieve the data. These routines are patterned along the lines of the original ADF core routines but work
transparently to the user for both ADF and HDF5.

Like the MLL calls, the new CGIO calls are available in both C and Fortran. They can be divided into several
categories:

• File-Level Routines

• Data Structure Management Routines

• Link Management Routines

• Node Management Routines

• Data I/O Routines

• Error Handling and Messages

• Miscellaneous Routines

CGIO calls are very basic (at a lower level than the MLL calls), and have no inherent knowledge of the SIDS. For
example, cgio create node creates an empty node, cgio set label sets its label, cgio set dimensions
sets its data type and dimensions, and cgio write all data writes its data. Details are not given here; they can
be found in the on-line documentation for CGIO.

C. Standard Interface Data Structures Changes

1. Unstructured Polyhedral Elements Capability

Examples were given earlier for writing both structured and unstructured grids in CGNS. Typically for unstructured
grids, the elements are explicitly defined (although possibly mixed) shapes such as hexahedra, tetrahedra, pyramids,
pentahedra, etc. However, there are applications that require the use of general polyhedra of completely arbitrary
shape. These arbitrary polyhedral elements can now be written in CGNS. When describing general polyhedra, two
Elements t nodes are required: one (with ElementType = NGON n) to define the connectivity of the individual
faces of all the polyhedral elements, and another (with ElementType = NFACE n) to define how the faces connect
to form the polyhedra.

As an example, consider Fig. 4, which is a very simple grid made up of 6 nodes and 3 tetrahedral elements. Nat-
urally, this grid can be described most easily with one Elements t node in which ElementType = TETRA 4,
ElementRange = [1,3], ElementConnectivity = (1,2,3,4), (2,5,3,6), (2,6,3,4). However, it can also be de-
scribed in terms of 3 general polyhedra, as follows. There are 10 unique faces, each defined in this case by 3 nodes: the
connectivity for each of these would be described in an Elements t node of type NGON n. Then, the connectivity of
the faces making up the volume elements (in this case 4 faces for each of the 3 volume elements) would be described
in an Elements t node of type NFACE n. In this particular case, faces (1,2,3,4) make up element 1, faces (5,6,7,8)
make up element 2, and faces (8,9,10,3) make up element 3. Note that by convention, face normals point outward
from the element; for faces with inward-pointing normals the face numbers must be given a negative number. This
example is illustrated in the tree below.

CGNSBase t
Zone t Zone1

GridCoordinates t GridCoordinates
Elements t Elementfaces

ElementType = NGON n
ElementRange = [1,10]
ElementConnectivity =

(3,1,3,2), (3,1,2,4), (3,2,3,4), (3,3,1,4),
(3,2,3,5), (3,2,5,6), (3,5,3,6), (3,3,2,6),
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(3,2,6,4), (3,6,3,4)
Elements t Elementvolumes

ElementType = NFACE n
ElementRange = [11,13]
ElementConnectivity =

(4,1,2,3,4), (4,5,6,7,8), (4,-8,9,10,-3)

2. Time-Dependent Connectivities

Time-dependent connectivities, i.e., how different grid zones connect, interact, or overlap with each other, has under-
gone a minor enhancement as of CGNS Version 3.1. Previously, only one ZoneGridConnectivity t node was
allowed per zone. So, for time-dependent solutions, connectivity had to remain fixed.

In the new implementation (defined on-line as CPEX 0027) multiple instances of ZoneGridConnectivity t
are now allowed. Furthermore, under ZoneIterativeData t, an optional DataArray ZoneGridConnect-
ivityPointers was added for associating the various connectivities with particular times. This fixes the earlier
limitation, and now allows for time-dependent connectivity information.

An example tree is given below for a situation with one stationary zone and one zone with rigid grid motion. The
connection information between the two zones varies with time, so multiple ZoneGridConnectivity t nodes
are necessary in each zone.

CGNSBase t
BaseIterativeData t

NumberOfSteps = N
TimeValues = time1, time2, ... , timeN

Zone t StationaryZone
GridCoordinates t GridCoordinates
ZoneBC t ZoneBC
ZoneGridConnectivity t Con1
ZoneGridConnectivity t Con2
...
ZoneGridConnectivity t ConN
FlowSolution t Soln1
FlowSolution t Soln2
...
FlowSolution t SolnN
ZoneIterativeData t

ZoneGridConnectivityPointers = Con1, Con2, ... , ConN
FlowSolutionPointers = Soln1, Soln2, ... , SolnN

Zone t MovingZone
GridCoordinates t GridCoordinates
ZoneBC t ZoneBC
RigidGridMotion t Rig1
RigidGridMotion t Rig2
...
RigidGridMotion t RigN
ZoneGridConnectivity t Con1
ZoneGridConnectivity t Con2
...
ZoneGridConnectivity t ConN
FlowSolution t Soln1
FlowSolution t Soln2
...
FlowSolution t SolnN
ZoneIterativeData t

RigidGridMotionPointers = Rig1, Rig2, ... , RigN
ZoneGridConnectivityPointers = Con1, Con2, ... , ConN

FlowSolutionPointers = Soln1, Soln2, ... , SolnN
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3. General SIDS Improvements

General SIDS improvement involved several different changes, described on-line in CPEX 0031. Here, two of the
most significant changes are highlighted:

• Use of new FamilyBCDataSet t under FamilyBC t. Previous use of BCDataSet t was inconsistent;
the new FamilyBCDataSet t structure is more appropriate. Its intended use is for simple boundary-condition
types (Dirichlet and Neumann data), where the equations imposed do not depend on local flow conditions.

• Exclusive use of PointRange or PointList. These indexing names are now used to define the range or
list of vertices, edges, faces, or cells (elements) within FlowSolution t, DiscreteData t, and BC t.
They are also used in the new ZoneSubRegion t node, as described in the next section below. The indexing
names ElementRange and ElementList are no longer used, but can still be read by the MLL software
(the software automatically switches to the new usage when the old usage is detected).

For the latter change in FlowSolution t and DiscreteData t, The PointRange and PointList refer
to vertices, edges, faces, or cells (elements), depending on the value assigned to GridLocation, as shown in Table
2. For the change in BC t, the PointRange and PointList list the vertices, edges, or faces according to Table 3.
In these tables, *FaceCenter stands for the possible types: IFaceCenter, JFaceCenter, KFaceCenter, or
FaceCenter.

Table 2. GridLocation meanings for FlowSolution t or DiscreteData t data.

CellDimension GridLocation

Vertex EdgeCenter *FaceCenter CellCenter

1 vertices - - cells (line elements)
2 vertices edges - cells (area elements)
3 vertices edges faces cells (volume elements)

Table 3. GridLocation meanings for BC t data.

CellDimension GridLocation

Vertex EdgeCenter *FaceCenter

1 vertices - -
2 vertices edges -
3 vertices edges faces

4. Regions

The new capability of Regions (described on-line as CPEX 0030) had been identified as a need in CGNS for some
time. Previously, CGNS only allowed flowfield or other information associated with the grid to be given over the entire
grid. Regions now adds the ability to give flowfield or other information over a subset of the entire zone in a CGNS
file. This subset may be over a boundary, a portion of a boundary, or a portion of the volume. The region is defined
via the new node specification ZoneSubRegion t, which is a child node of Zone t.

An example of a typical use of the new Regions capability is shown in Fig. 5. The additional ZoneSubRegion t
and its children are located under Zone t. In this particular example, it is desired to store a subregion of boundary
temperatures at specific boundary elements only. Because the subregion is only on the boundary of a 3-D dataset, it is a
topologically 2-D surface region with RegionCellDimension = 2. The GridLocation specification of FaceCenter
indicates that the PointRange is referring to the face centers of the 2-D boundary elements (i.e., the temperature is
stored at the face centers of elements numbered 2561–2688, inclusive). GridLocation meanings for Regions are
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summarized in Table 4. The option to inherit the boundary information (list length and element list) from an existing
BC t node is also allowed, by specifying the name of the node under RegionName (Descriptor t).

Regions can be used to store any type of 1-D, 2-D, or 3-D data that users may deem necessary or useful for
their application. For instance, users at ONERA make use of ZoneSubRegion t for data storage at the connectivity
level; in this case the use of Regions allows a more formal mechanism for storing additional non-abutting interpolation
information, instead of requiring the use of generic UserDefined data in the connectivity node.

Table 4. GridLocation meanings for ZoneSubRegion t data.

Cell- Region- GridLocation

Dimension CellDimension Vertex EdgeCenter *FaceCenter CellCenter

1 1 vertices - - cells (line elements)
2 1 vertices edges - -
2 2 vertices edges - cells (area elements)
3 1 vertices edges - -
3 2 vertices edges faces -
3 3 vertices edges faces cells (volume elements)

D. Mid-Level Access Changes

1. New MLL Functions

Many new MLL functions have been added to the CGNS library recently. These are summarized in Table 5.

2. Parallel CGNS MLL

Also new with CGNS Version 3.1 is the alpha version of the parallel CGNS MLL library. The “alpha” indicates avail-
ability for testing and preliminary use, but it is not fully integrated or supported. Although not currently integrated
within the CGNS library, it provides the initial framework for testing and further developing these capabilities. Pre-
vious work in this area has been done by Hauser and Pakalapati.6, 13 In an effort to improve performance and better
integrate the parallel extension into the CGNS MLL, new routines were written that access HDF5 directly and take
full advantage of the collective I/O support in HDF5 version 1.8—see Hauser and Horne.9 The parallel extension is
meant to be a supplement of the CGNS MLL. A single process should create the layout and structure of the CGNS file.
Then the parallel library can be used to write the three-dimensional grids, solution, and other data arrays in parallel.
An overview of the API interface for the parallel extension is given in Table 6. To improve performance and address
shortcomings in the HDF5 API, an I/O queuing approach has also been implemented, which queues the I/O until a
flush function is called, at which point the write commands are analyzed and executed with HDF5 calls. This provides
MPI-IO sufficient data to effectively recognize the collective and continuous nature of the data being written.

3. Python Mapping

Python is now widely used for high performance computing numerical simulations as a user interface and steering
language for multi-physics simulations.14 The Python programming language has recently been implemented as a
SIDS physical representation via CGNS mapping concepts. The use of Python facilitates the modification of existing
programs during a complex simulation setup. The language is easy to extend. The CGNS/Python mapping adds the
required common logical representation of data as well as a common way to exchange complex data structures at
runtime. As a result, creating interoperability between simulation codes is straightforward.
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Table 5. Recent MLL additions.

cg elements partial write write a subpart of an elements array
cg save as save the open CGNS file
cg set file type set default file type
cg get file type get file type for open CGNS file
cg error handler set CGNS error handler
cg set compress set CGNS compression mode
cg get compress get CGNS compression mode
cg set path set the CGNS link search path
cg add path add to the CGNS link search path
cg boco gridlocation read read boundary condition location
cg boco gridlocation write write boundary condition location
cg sol ptset read read a point set FlowSolution t node
cg sol ptset write create a point set FlowSolution t node
cg sol ptset info get info about a point set FlowSolution t node
cg sol size get the dimensions of a FlowSolution t node
cg discrete ptset read read a point set DiscreteData t node
cg discrete ptset write create a point set DiscreteData t node
cg discrete ptset info get info about a point set DiscreteData t node
cg discrete size get the dimensions of a DiscreteData t node
cg nsubregs get number of ZoneSubRegion t nodes
cg subreg info get info about a ZoneSubRegion t node
cg subreg ptset read read point set data for a ZoneSubRegion t node
cg subreg ptset write create a point set ZoneSubRegion t node
cg subreg bcname read read the BC t node name for a ZoneSubRegion t node
cg subreg bcname write create a ZoneSubRegion t node that references a BC t node
cg subreg gcname read read GridConnectivity t node name for a ZoneSubRegion t node
cg subreg gcname write create ZoneSubRegion t node that references GridConnectivity t

cg cell dim get the cell dimension for the CGNS base
cg index dim get the index dimension for the CGNS zone
cg nzconns get number of ZoneGridConnectivity t nodes
cg zconn read read ZoneGridConnectivity t node
cg zconn write create ZoneGridConnectivity t node
cg zconn set set the current ZoneGridConnectivity t node
cg zconn get get the current ZoneGridConnectivity t node
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Table 6. API of the Parallel CGNS MLL as implemented in pcgnslib.c and declared in pcgnslib.h. Software using the library to
access CGNS files in parallel must use the routines listed here.

General File Operations
cgp open Open a new file in parallel
cgp base read Read the details of a base in the file
cgp base write Write a new base to the file
cgp nbases Return the number of bases in the file
cgp zone read Read the details of a zone in the base
cgp zone type Read the type of a zone in the base
cgp zone write Write a zone to the base
cgp nzones Return the number of zones in the base

Coordinate Data Operations
cgp coord write Create the node and empty array to store coordinate data
cgp coord write data Write coordinate data to the zone in parallel

Unstructured Grid Connectivity Operations
cgp section write Create the nodes and empty array to store grid connectivity for an unstructured mesh
cgp section write data Write the grid connectivity to the zone in parallel for an unstructured mesh

Solution Data Operations
cgp sol write Create the node and empty array to store solution data
cgp sol write data Write solution data to the zone in parallel

General Array Operations
cgp array write Create the node and empty array to store general array data
cgp array write data Write general array data to the zone in parallel

Queued I/O Operations
queue slice write Queue a write operation to be executed later
queue flush Execute queued write operations
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A CGNS/Python mapping sets a CGNS node as a Python list, with a node name, a node value (a NumPy array), a
list of children, and a CGNS type:

<CGNS/Python-node> = [ <node-name:string>,

<node-value:NumPy array>,

[ <children: ListOf<CGNS/Python-node> ],

<node-sidstype:string>

]
For example, below is an example of a boundary condition definition with a CGNS/Python mapping:

BC1= [’Wall’, array([’B’, ’C’, ’W’, ’a’, ’l’, ’l’], dtype=’|S1’),

[ [’PointRange’, array([[ 1, 37],[ 1, 1],[ 1, 2]], dtype=int32),

[], ’IndexRange t’]],

’BC t’]
A complete CGNS tree can be defined as a Python list of lists with only raw Python types and NumPy arrays. A
CGNS user can define the CGNS data tree with completely open source libraries (Python and NumPy) and can define
the interface to a Python module using this mapping. The use of this Python mapping can be illustrated with three
examples:

1. Partial CGNS tree manipulation: Parallel multi-physics simulations often handle very large data—most of the
time within a specific tool in the workflow—on a process or in a thread that needs access to a part of a complete
CGNS tree. The CGNS/Python mapping allows loading or saving a part of the tree while still having a compliant
structure. For this purpose we use the pyCGNS Python package. It has a MAP module that has only two
functions: the load and the save. The first reads a part of a CGNS HDF5 file and creates the corresponding
CGNS/Python mapping while the second performs a save of a part of a CGNS/Python tree in a CGNS HDF5
file. The pyCGNS.MAP module uses CHLone, which accesses a node only when the application requires it.
For example, in a rigid motion of a block, the connectivity may change. Then the application adds the new
“connected-to” zone to its CGNS/Python tree without also loading the coordinates of the zone points. This
dynamic approach leads to manipulation of partial trees with the minimum possible memory footprint.

2. Interoperability and code-coupling: There are three main strategies for data interoperability at runtime: pass
information between codes with (1) a file, (2) a network connection, or (3) a shared memory. File interop-
erability is insured by the CGNS HDF5 mapping. Both network and memory interoperability of data can be
insured by using CGNS/Python. Two codes can inter-operate in the same Python script by passing a complete
CGNS/Python tree in memory. The codes can be either C or Fortran software, and a memory chunk repre-
senting an actual array in memory is shared (as far as the two codes have a shared memory service available).
The NumPy API allows the passing of direct pointers to memory instead of copying the data. The array even
has a so-called “fortran” flag that gets triggered if the memory chunk is coming from a Fortran column-major
software as opposed to a C row-major software. This makes it possible to create an array in Python, pass it
to a Fortran solver, retrieve it again in Python, and finally pass it to a C code for post-processing. The Python
objects, including NumPy arrays, have serialization/de-serialization functions in order to pass information to the
network (or MPI for example). A whole CGNS/Python tree can be exchanged from one code to another with a
simple call to an MPI Python library such as MPI4py. This can be used to provide data interoperability using
the network.

3. Easy pre/post-processing: The ease of use of Python and the powerful set of NumPy functions allow for fast and
concise pre- and post-processing of numerical simulation data. The NumPy has vectorized functions working
the actual array memory. This, together with recursive parsing of the tree structured CGNS/Python mapping,
leads to short, reusable, and maintainable sets of CGNS pre- or post-processing utilities (such as block splitting
and scatter/gather, data on-the-fly extraction, use of network communication script between codes, etc.). As
the main data used in the simulation workflow is a CGNS/Python tree, any application uses SIDS to get or
set the data in the tree that goes from one code to another with the same data model and a common physical
representation.

Although CGNS/Python is not well-fitted for time-consuming computations, it is extremely useful for simulation
software assembly in multi-physics workflow processes. Currently, it is possible to conduct large high-performance
multi-physics simulations with a Python management of workflow, data, and combinations of C/C++/Fortran codes.15
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E. New Applications

CGNSview is a relatively new tool in the CGNS software package. It is a CGNS file viewer and editor based on Tcl/Tk.
CGNSview replaces a previous tool known as ADFviewer, and is now based on the CGIO interface which reads both
ADF and HDF5 files. The graphical user interface allows access to any node in the file using a collapsible node
tree. Nodes and data may be added, deleted, and modified. Several other utilities may be accessed from CGNSview,
including:

• CGNSplot - for displaying the mesh, etc.
• CGNScalc - a calculator using data in the CGNS file
• cgnscheck - a CGNS file validator
• cgnsversion - changes the version number for any CGNS file
• import, export, data conversion, and subset extraction and interpolation utilities

An example screen shot of the CGNSview interface is shown in Fig. 6. Its look is essentially the same as the old
ADFviewer tool.

IV. Concluding Remarks

CGNS is a standard for storing CFD grids and simulation data. This paper has described recent enhancements to
this standard and the supporting software ecosystem. Over the years, CGNS has proved to be long-lasting and stable,
yet readily extensible to handle new types of data. In particular, with its policy of always maintaining backward-
compatibility, CGNS has established a trustworthiness in its longevity as a storage medium.

The recent upgrade to allow the use of 64-bit integers has extended CGNS’s capability to handle grids of any prac-
tical size in today’s working environment. With 32-bit integers, grid sizes were previously limited to the 10s or 100s
of millions of grid elements, depending on the type of elements. In addition to the usual structured and unstructured
elements, the CGNS methodology now allows for the storage of arbitrary unstructured polyhedral elements.

CGNS capabilities continue to grow. As more people adopt it and its support base is enhanced, additional func-
tionality required for large multi-physics simulations can be incorporated. Already, CGNS has been useful not only
for individuals (providing a stable and descriptive CFD storage method), but also for groups and workflows where
collaboration and rapid exchange of CFD grids and solutions helps to foster a competitive advantage.
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Figure 1. Overview of CGNS access levels to ADF and HDF5 files. Green lines indicate access from the user code or application, red lines
indicate mid-level access calls (that make use of SIDS file mapping), and black lines indicate low-level access calls. *Note that HDF5 and
pyCGNS (and related software) are not part of the standard CGNS software release, but are available separately.
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Figure 2. Example CGNS tree-like structure.

13 of 16

American Institute of Aeronautics and Astronautics



root node

Name=CGNSLibraryVersion
Label=CGNSLibraryVersion_t
Data=(version number)

Name=Base
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=Zone 1
Label=Zone_t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=GridCoordinates
Label=GridCoordinates_t
Data=MT

Name=CoordinateZ
Label=DataArray_t
Data=z(1,1,1) to z(21,17,9)

Name=CoordinateX
Label=DataArray_t
Data=x(1,1,1) to x(21,17,9)

Name=CoordinateY
Label=DataArray_t
Data=y(1,1,1) to y(21,17,9)

(a) structured grid

root node

Name=CGNSLibraryVersion
Label=CGNSLibraryVersion_t
Data=(version number)

Name=Base
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=Zone 1
Label=Zone_t
Data=VertexSize=3213,

CellSize=2560,
VertexSizeBoundary=0

Name=ZoneType
Label=ZoneType_t
Data=Unstructured

Name=GridCoordinates
Label=GridCoordinates_t
Data=MT

Name=CoordinateX
Label=DataArray_t
Data=x(1) to x(3213)

Name=Elem
Label=Elements_t
Data=ElementType=HEXA_8,

ElementSizeBoundary=0

Name=ElementRange
Label=IndexRange_t
Data=1,2560

Name=ElementConnectivity
Label=DataArray_t
Data=ielem(1,1) to ielem(8,2560)

other children
(not pictured)

(b) unstructured grid

Figure 3. Examples showing layout of CGNS file structure.
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Figure 4. Simple example grid made up of 3 tetrahedra. Circled numbers indicate grid nodes.

Name = Zone 1
Label = Zone_t
Data = VertexSize=3213,

CellSize=2560,
VertexSizeBoundary=0

Name = Region 1
Label = ZoneSubRegion_t
Data = 2 (RegionCellDimension)

Name = GridLocation
Label = GridLocation_t
Data = FaceCenter

Name = PointRange
Label = IndexArray_t
Data = 2561, 2688

Name = Temperature
Label = DataArray_t
Data = list of data at face center

element numbers 2561-2688
inclusive

other children
(not pictured)

Figure 5. Example of typical Regions usage: surface subregion for a 3-D unstructured grid.
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Figure 6. Example screen shot of CGNSview utility.
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