THE NEAR-EARTH OBJECT HUMAN SPACE FLIGHT ACCESSIBLE TARGETS STUDY (NHATS) LIST OF NEAR-EARTH ASTEROIDS: IDENTIFYING POTENTIAL TARGETS FOR FUTURE EXPLORATION. P. A. Abell¹, B. W. Barbee², R. G. Mink³, D. R. Adamo⁴, C. M. Alberding², D. D. Mazanek⁵, L. N. Johnson⁶, D. K. Yeomans⁷, P. W. Chodas⁷, A. B. Chamberlin⁷, L. A. M. Benner⁸, B. G. Drake⁹, and V. P. Friedensen¹⁰, ¹Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058, paul.a.abell@nasa.gov. ²Navigation and Mission Design Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771. ³Mission Systems Engineering Services & Advanced Concepts Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771.⁴Aerospace Consultant, Houston, TX 77059. ⁵Space Mission Analysis Branch, NASA Langley Research Center, Hampton, VA 23681. ⁶Planetary Science Division, NASA Headquarters, Washington, DC 20546. ⁷Solar System Dynamics Group, Jet Propulsion Laboratory, Pasadena, CA 91109. ⁸Planetary Radar Group, Jet Propulsion Laboratory, Pasadena, CA 91109. ⁸Planetary Radar Group, Jet Propulsion Laboratory, TX 77058. ¹⁰Human Exploration and Missions Office, NASA Johnson Space Center, Houston, TX 77058. ¹⁰Human Exploration and Operations Mission Directorate, NASA Headquarters, Washington, DC 20546.

Introduction: Much attention has recently been focused on human exploration of near-Earth asteroids (NEAs). Detailed planning for deep space exploration and identification of potential NEA targets for human space flight requires selecting objects from the growing list of known NEAs. NASA therefore initiated the Near-Earth Object Human Space Flight Accessible Target Study (NHATS), which uses dynamical trajectory performance constraints to identify potentially accessible NEAs.

Accessibility Criteria: Future NASA human space flight capability is being defined while the Orion Multi-Purpose Crew Vehicle and Space Launch System are under development. Velocity change and mission duration are two of the most critical factors in any human spaceflight endeavor, so the most accessible NEAs tend to be those with orbits similar to Earth's. To be classified as NHATS-compliant, a NEA must offer at least one round-trip trajectory solution satisfying purposely inclusive constraints, including total mission change in velocity ≤ 12 km/s, mission duration ≤ 450 days (with at least 8 days at the NEA), Earth departure between Jan 1, 2015 and Dec 31, 2040, Earth departure $C_3 \leq 60$ km²/s², and Earth return atmospheric entry speed ≤ 12 km/s.

Monitoring and Updates: The NHATS list of potentially accessible targets is continuously updated as NEAs are discovered and orbit solutions for known NEAs are improved. The current list of accessible NEAs identified as potentially viable for future human exploration under the NHATS criteria is available to the international community via a website maintained by NASA's NEO Program Office (http://neo.jpl.nasa.gov/nhats/). This website also lists predicted optical and radar observing opportunities for each NHATS-compliant NEA to facilitate acquisition of follow-up observations.

Conclusions: This list of NEAs will be useful for analyzing robotic mission opportunities, identifying optimal round trip human space flight trajectories, and highlighting attractive objects of interest for future ground-based observation opportunities.

THE NEAR-EARTH OBJECT HUMAN SPACE FLIGHT ACCESSIBLE TARGETS STUDY (NHATS) LIST OF NEAR-EARTH ASTEROIDS: IDENTIFYING POTENTIAL TARGETS FOR FUTURE EXPLORATION. P. A. Abell¹, B. W. Barbee², R. G. Mink², D. R. Adamo³, C. M. Alberding², D. D. Mazanek⁴, L. N. Johnson⁵, D. K. Yeomans⁶, P. W. Chodas⁶, A. B. Chamberlin⁶, L. A. M. Benner⁷, B. G. Drake⁸, and V. P. Friedensen⁹, ¹Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058, paul.a.abell@nasa.gov. ²Navigation and Mission Design Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771. ³Aerospace Consultant, Houston, TX 77059. ⁴Space Mission Analysis Branch, NASA Langley Research Center, Hampton, VA 23681. ⁵Planetary Science Division, NASA Headquarters, Washington, DC 20546. ⁶Solar System Dynamics Group, Jet Propulsion Laboratory, Pasadena, CA 91109. ⁷Planetary Radar Group, Jet Propulsion Laboratory, Pasadena, CA 91109. ⁸NASA Johnson Space Center, Houston, TX 77058. ⁹Human Exploration and Operations Mission Directorate, NASA Headquarters, Washington, DC 20546.

Introduction: Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs [1, 2], and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system [3]. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official *National Space Policy of the United States of America* as of June 28, 2010 [4].

Detailed planning for such deep space exploration missions and identifying potential NEAs as targets for human spaceflight requires selecting objects from the ever growing list of newly discovered NEAs. Hence NASA developed and implemented the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Target Study (NHATS), which identifies potential candidate objects on the basis of defined dynamical trajectory performance constraints.

Dynamical Assessment: The current near-term NASA human spaceflight capability is in the process of being defined while the Multi-Purpose Crew Vehicle (MPCV) and Space Launch System (SLS) are still in development. Hence, those NEAs in more accessible heliocentric orbits relative to a minimal interplanetary exploration capability will be considered for the first missions beyond the Earth-Moon system [5]. Note that the NHATS only considered NEAs and not near-Earth comets since the latter have higher eccentricities and longer orbital periods that make them more difficult to rendezvous with and have active surfaces that could present a hazardous environment to both vehicle and crew.

Given that velocity change and mission duration are the most critical factors in any human spaceflight endeavor, the most accessible NEAs are those that have orbits similar to Earth's (i.e., semi-major axis near ~1 AU, low eccentricity, and low ecliptic inclination). If total mission durations for the first voyages to NEAs are to be kept to less than one year, with minimal velocity changes, then NEA rendezvous missions ideally will take place within 0.1 AU of Earth (~15 million km or 37 lunar distances) [6].

Accessibility Criteria: The NHATS algorithm computes all possible direct round-trip trajectory solutions to each NEA and compares the results to a set of intentionally inclusive dynamical trajectory performance constraints. In order to "pass the NHATS filter," a NEA must offer at least one round-trip trajectory solution that satisfies these constraints, which are total mission change in velocity ≤ 12 km/s, mission duration \leq 450 days (of which at least 8 days must be spent at the NEA), Earth departure date between Jan 1, 2015 and Dec 31, 2040 (inclusive), Earth departure C₃ $\leq 60 \text{ km}^2/\text{s}^2$, and atmospheric entry speed upon Earth return ≤ 12 km/s. The total change in velocity (Δv) includes the impulse required to depart a reference circular Earth parking orbit at 400 km altitude, the impulse required to match the NEA's orbit upon arrival, the impulse required to depart from the NEA's orbit at a later time, and the impulse required, if any, to limit the atmospheric entry speed at Earth return to no more than 12 km/s. These extremely inclusive performance constraints were purposely selected for the NHATS filter in order to provide a very broad view of the relative accessibility landscape for NEAs [7].

Monitoring and Updates: The NHATS list of potentially accessible targets is continuously updated as new NEO discoveries are made. Data from the International Astronomical Union (IAU) Minor Planet Center (MPC) is fed into the Small Body Data Base maintained by NASA's NEO Program Office at JPL, which keeps the catalogued list of NEOs and their orbits upto-date. New discoveries and existing objects with updated orbital parameters are then analyzed against the NHATS criteria on a daily basis. Any object that offers at least one viable trajectory for human spaceflight is added to the accessible target list. E-mail updates summarizing the latest processing results are also transmitted daily [7]. For reference, the current top 25 NHATS-compliant NEAs are listed in Table 1. NHATS-compliant NEAs are currently ranked according to the number of viable trajectory solutions offered, denoted as *n*. This parameter has been found to be useful for comparing NEAs when assessing relative accessibility.

Table 1: Brief Summary	Data for	the	Current	Тор
25 NHATS-Compliant N	EAs			

Designation	n	Estimated	
		Diameter (m)	
2000 SG ₃₄₄	3302638	27 - 85	
1991 VG	2737751	5 - 16	
2006 BZ ₁₄₇	1674416	20 - 63	
2001 FR ₈₅	1618888	30 - 96	
2008 EA ₉	1597844	7 - 22	
2010 VQ ₉₈	1580174	6 - 18	
2007 UN ₁₂	1443703	4 - 14	
2006 RH ₁₂₀	1283817	3 - 10	
2010 UE ₅₁	1242487	5 - 17	
2008 HU ₄	1227757	6 - 17	
2007 VU ₆	1186902	12 - 38	
2008 UA ₂₀₂	1114827	3 - 10	
2010 UJ	1082350	14 - 45	
2011 BQ ₅₀	1010896	5 - 16	
2004 QA ₂₂	1008597	6 - 20	
2001 GP ₂	980724	10 - 32	
2009 HE ₆₀	970582	18 - 56	
2010 JR ₃₄	960736	7 - 22	
2009 BD	936904	5 - 16	
2011 MD	936324	6 - 18	
2010 TE ₅₅	920319	6 - 20	
2008 JL ₂₄	904774	3 - 9	
2011 BL ₄₅	865199	9 - 28	
2007 YF	791134	27 - 85	
2010 JK ₁	773964	32 - 100	

Future Website Development: The most current list of accessible NEAs that have been identified as potentially viable for future human exploration under the NHATS criteria will be made available to the international community via a website. A beta version of the website is already under design and development at NASA. It is expected that the full version of the website will be available by mid-2012 and will be maintained by NASA's Near-Earth Object Program Office (http://neo.jpl.nasa.gov/) under the auspices of the Science Mission Directorate (SMD) and the Human Exploration and Operations Mission Directorate (HEOMD).

This promising list of NEAs will be useful for analyzing opportunities for robotic missions, identifying optimum round trip trajectories for human spaceflight targets, and highlighting potentially attractive objects of interest that may have future ground-based optical and radar observation opportunities for further characterization and/or orbit refinement. As such, the information contained on this website will be beneficial to planetary scientists, aerospace engineers, mission planners, astronauts, decision makers, and the general public as NASA and its international partners consider the possibilities for human exploration beyond the Earth-Moon system.

References:

[1] Mazanek D. D. et al., (2005) The Near-Earth Object Crewed Mission Concept Status, NASA Langley Research Center (Internal Constellation/ESMD Study). [2] Abell P. A. et al., (2009) Meteoritics & Planet. Sci., 44, 1825-1836. [3] Augustine Commission: Review of U.S. Human Spaceflight Plans Committee. Summary Report (2009) Washington: U.S. Government. [4] National Space Policy of the United States of America (2010) http://www.whitehouse.gov/sites/default/files/ national_space_policy_6-28-10.pdf. [5] Barbee B. W. et al., "A Comprehensive Ongoing Survey of the Near-Earth Asteroid Population for Human Mission Accessibility," (2010) Proceedings of the AIAA/AAS Guidance, Navigation, and Control Conference, (Toronto, Ontario, Canada), 2-5 August 2010. Paper 2010-8368. [6] Adamo D. R. et al., (2010) Journal of Spacecraft and Rockets, 47, 994-1002. [7] Barbee B. W. et al., "Methodology and Results of the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS)," (2011) Advances in the Astronautical Sciences, Vol. 142, pp.613-632, also AAS/AIAA Paper AAS 11-444 (2011).