EFFECTS AND RESPONSES TO SPACEFLIGHT IN THE MOUSE RETINA

Susana B. Zanello^{1,2}, Corey Theriot², Christian Westby^{1,2} and Richard Boyle³

¹Universities Space Research Association, ²NASA-Johson Space Center, ³NASA-Ames Research Center

Does spaceflight represent a hazard to the eye?

- Space radiation promotes cataract development (Cuccinota et al, Rad Res 2001)
- Vision alterations associated with globe flattening, chorodial folds and papilledema shown in some crew members returning from long duration missions (Mader et al 2011)
- Scarce evidence from animal flight experiments showing cell loss in retina of rat neonates aboard STS-72 (Tombran-Tink & Barnstable, Gravit Space Biol Bull 2005) and cell disruption in retina of rats aboard Cosmos 782 and 936 (Philpott et al, ASEM 1978, ASEM 1980)

Objective

 To better understand the ocular health risks associated with spaceflight, this study investigates the impact of spaceflight on the biology of the mouse retina

Oxidative stress-DNA damage

ELISA (enzyme immunoanalysis)

IH (immunohistochemistry)

Oxidative stress-DNA damage

FLT R+1 (#13) 1.14 pg 8OHdG/ng DNA

FLT R+5 (#35) 4.81 pg 8OHdG/ngDNA

FLT R+7 (#52) 1.02 pg 8OHdG/ng DNA

VIV R+5 (#19) 5.14 pg 8OHdG/ng DNA

FLT R+5 (#34) 1.65 pg 8OHdG/ng DNA

AEM R+5 (#2) 1.14 pg8OHdG/ng DNA

Gene Expression Oxidative stress response

FLT

O AEM

 Δ VIV

Apoptosis

FLT R+1 (#13)

Activated caspase-3 immunoreactivity (red-brown, green arrows) in retina sections of mice aboard STS133 and ground controls, on R+1.

VIV R+1 (#2)

Gene Expression

0 AEM FLT Δ VIV

Summary of results and conclusions

- Spaceflight induces DNA damage in the retina which is partially repaired after return to Earth.
- Oxidative stress induced-DNA damage in flight retina is tends to localize to RGC (vivarium samples localize oxidative stress to ONL)
- Cell death prevails in the INL and RGC in flight, and in ONL in vivarium samples
- Oxidative stress response gene expression tends to correlate with the oxidative stress damage observed by immunostaining
- Damage (oxidative and inflammatory) and cellular stress response seem to be correlated, elevated in flight but reversible after return to Earth.
- These results represent pilot data. No statistical analysis was possible due to small sample size.
- Further research is needed to investigate whether these pilot data indicate that stress induced by spaceflight in the retina may be of clinical significance.

Acknowledgements

- Rich Boyle and the experimental team at KSC
- Corey Theriot
- Chris Westby
- James Fiedler
- Biomedical Research Core Lab, Radiation Lab
- Paula Pierce (Excalibur Pathology)
- HRP

- Tissue collection
- RNA isolation
- 80HdG ELISA
- Gene expression plots
- Confocal microscope, real time qPCR instrument
- Immunohistochemistry
- Funding