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Abstract

We present new results related to the verification of the Timed-Triggered Ethernet (TTE) clock synchro-
nization protocol. This work extends previous verification of TTE based on model checking. We identify
a suboptimal design choice in a compression function used in clock synchronization, and propose an im-
provement. We compare the original design and the improved definition using the SAL model checker.
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1 Introduction

TTEthernet extends traditional IEEE 802.3 Ethernet networks with new services and protocols to support re-
liable, deterministic communication for real-time applications [1,18]. Several TTEthernet components have
been modeled and analyzed using the SAL model checker. This has resulted in a collection of disparate
models, each built for a specific protocol and for a specific type of analysis. Finite-state representations
of the startup protocol were used for model-based test generation [7, 17]. Other infinite models were de-
veloped for verifying timing properties of TTEthernet services such as the permanence and compression
functions [19], or compute the precision of the clock-synchronization service [20]. Thus, several important
pieces of TTEthernet have been the subject of extensive analysis using formal-method tools. Each of these
previous analyses relied on model checking technology and was applied to finite instances of TTEthernet
that consisted of a finite number of components and a fixed topology. How can we extend these piece-
wise verifications into a coherent and complete argument about the correctness and reliability of the whole
TTEthernet concept?

We do not yet have a full end-to-end correctness argument for TTEthernet, but we present recent work
on formalizing and verifying part of the clock-synchronization protocol of TTEthernet using the PVS in-
teractive theorem prover. We show that the current definition of the TTEthernet compression function is
suboptimal and we propose a simple fix. We present a revised model of the clock synchronization protocol
in SAL to examine the impact of the revised compression function on clock precision. We also describe
the current status of SRI’s Evidential Tool Bus (ETB), a framework intended to facilitate the integration of
several modeling and verification technology. Our long-term goal is to complete the TTEthernet modeling
and verification within the ETB.

In the remainder of this report, we first give an overview of TTEthernet in Section 2. We then present
the existing verification results obtained using the SAL model checker, and survey existing formalization
of fault-tolerant clock synchronization protocols that use the PVS theorem prover. We discuss the issues
encountered in our attempts to combine these past results, and we propose a variant formalization approach
intended to facilitate combined analysis using model checker such as SAL and interactive theorem provers
such as PVS. Section 4 summarizes the current status of a PVS formalization of the TTEthernet clock
synchronization protocol. Section 5 presents a (simplified) SAL model of the protocol that can be used to
estimate maximal clock skews between network components. This new model revises and extends previous
work on the quality of the clock-synchronization service presented in [20]. We then describe the ETB and
our plans for using it as an integration framework in combined PVS/SAL verification of TTEthernet. The
full SAL models and PVS theories discussed in this report can be found at http://www.csl.sri.
com/users/bruno/vvfcs.html.

2 TTEthernet

TTEthernet [23] is a communication infrastructure that enables the use of Ethernet in real-time, distributed
systems. TTEthernet is compatible with IEEE 802.3 switched Ethernet standards, and is designed to support
dataflows of mixed criticality on a single network. For traffic of the highest criticality, TTEthernet provides
a timed-triggered communication service with strong guarantees of low jitter and bounded latency. This is
achieved by maintaining a global time base across the network and by following a global communication
schedule that prevents contention. TTEthernet also provides a rate-constrained communication service for
traffic of intermediate criticality. For this traffic class, the worst-case transmission latency can be computed
offline but it may be much higher than for timed-triggered messages because rate-constrained messages
from different sources may queue up in the network switches. Finally, traffic of the lowest criticality is
transmitted using the standard, best-effort Ethernet approach with no guarantees on transmission delays or
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Figure 1. Example TTEthernet Network

message reception.

2.1 Topology

A TTEthernet network consists of end systems and switches, as depicted in Figure 1. The end systems are
connected to switches by bidirectional communication links. Switches may be connected to each other in
multihop network configurations. For fault tolerance, the network may be organized in disjoint, redundant
communication channels. Each channel consists of one or more switches that connect the end systems.
Distinct switches must belong to distinct channels so that a switch failure impacts only one channel.

2.2 Fault Tolerance

TTEthernet networks can be configured for different levels of fault tolerance. In a single-failure configura-
tion, the network can tolerate the failure of one component, which may be either an end system or a switch.
In a dual-failure configuration, the network can tolerate two component failures. The faulty devices may be
two switches, two end systems, or one switch and one end system.

In both configurations, switches are assumed to have an inconsistent omission failure mode. In the worst



case, a faulty switch may drop or fail to receive an arbitrary number of messages on one or several of its
ports, but it may not produce invalid messages. The failure may be asymmetric: some devices connected to
a faulty switch may receive data while others do not.

The fault model for end systems depends on the configuration. In a single-failure configuration, a faulty
end system may be Byzantine, that is, it may fail in an arbitrary manner. Failure of an end system may then
have an asymmetric manifestation or cause a “babbling idiot” behavior. In a dual-failure configuration, the
behavior of faulty end systems is assumed to be inconsistent omission.

2.3 Clock Synchronization Overview

The major goal of TTEthernet is to ensure that all nodes establish and maintain the common time base that is
necessary for timed-triggered operation. During normal operation, all nodes must be closely synchronized
and follow a global communication schedule that is computed offline. The common time base is a prereq-
uisite to ensuring that timed-triggered traffic is deterministic and to providing guarantees of low jitter and
latency. For safety-critical applications, synchronization must be maintained despite the possible failures of
switches or end systems.

To achieve these goals, TTEthernet includes a startup protocol that establishes synchronization after
power-up or restart, a clock synchronization protocol that maintains synchronization by correcting possible
clock drifts, and a clique detection and resolution service to recover from network-wide transient upsets.

All these protocols are described in detail in the TTEthernet standard [23]. We focus here on the clock-
synchronization protocol. In this protocol, each network device is assigned one of the following roles:

o Synchronization Master (SM). Synchronization masters trigger execution of the clock-synchronization
protocol by periodically broadcasting their local clock value within special Ethernet messages called
process control frames (PCFs).

o Compression Master (CM). A compression master receives clock values from the synchronization
masters and computes an average of the received values by applying a fault-tolerant compression
function. The compression master uses the average to correct its own local clock. It also broadcasts
the compression result to the network in a compression PCF.

e Synchronization Clients (SC). Synchronization clients are all nodes in the networks other than the
SMs and CMs. A synchronization client has a passive role during clock synchronization. It waits for
compression PCFs from the CMs and it computes a clock correction for its local clock by averaging
the compression values it receives. The same operation is also performed by the SMs. After broad-
casting their local clock value, the SMs wait for compression values from the CMs and use them for
correcting their local clock.

In typical networks, the SMs are end systems and the CMs are switches, although this is not strictly
required by the TTEthernet standard [23]. In any case, the fault assumptions for SMs and CMs are as
described previously for the end systems and switches:

e In a single-failure configuration, the protocol is designed to tolerate either the Byzantine failure of a
single SM, or the inconsistent-omission failure of a single CM.

e In a dual-failure configuration, the protocol can tolerate the inconsistent-omission failure of two com-
ponents (either two SMs, or two CMs, or one SM and one CM).

There are no significant assumptions on the failure of SCs since the SCs are passive during clock synchro-
nization. In a multihop topology, the protocol still requires enough nonfaulty components to ensure that
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messages can be routed through the network (i.e., that a sufficient number of independent channels are
operational).

The goal of the clock-synchronization protocol is to maintain a given network-wide clock precision, even
in the presence of faulty nodes. This ensures that all nodes agree on the current communication-schedule
slot and thus that timed-triggered traffic is conflict free: two timed triggered frames never contend for access
to a communication link.

More precisely, a global TTEthernet communication schedule is periodic. It consists of a cluster cycle
divided in a finite number integration cycles of equal nominal duration, as depicted in Figure 2. The timed-
triggered traffic consists of a number of message (or frames) that are routed from one source node to one or
more destination nodes through the serial links and switches. The communication schedule defines the time
when each frame should be transported across each link along its route. In other words, if a frame f must be
transported across a link /, then the schedule assigns a transmission interval [Ty, Uy,]| for that frame within
the cluster cycle. The schedule ensures that transmission of other timed-triggered frames over link [ does
not overlap with interval [Ty, Uy ]. More details on TTEthernet scheduling problem are presented in [16].

The clock-synchronization protocol is executed at the beginning of every integration cycle. By main-
taining the clocks synchronized, the protocol ensures that all nodes agree on when each integration cycle
starts and on when each timed-triggered frame should be transmitted. For example, if link / is between two
nodes i and j, then node 7 dispatches frame f at a time ¢; when its local clock C;(¢;) reads T, This time ¢;
must be close to the time ¢; when node j’s clock reaches T’ ;. More generally, the goal of the protocol is to
ensure that the clocks C; and C; reach a schedule point 7" at approximately the same real times ¢; and ¢;:

VT :Ci(t:) =T A Cj(t)) =T = |t; —t;] <A

where A is the clock precision.

Our goals are to develop a rigorous proof that the clock synchronization protocol actually satisfies this
property, for both the single-failure and dual-failure configurations, and to establish sufficient conditions on
the protocol parameters— such as the number of SMs and CMs, and the length of the integration cycles—
under which correct synchronization can be achieved.



3 Toward Combining Multiple Formalizations

Verification of fault-tolerant clock-synchronization protocols using formal-method techniques is not new.
We summarize some of existing work in this domain, and we survey previous verifications of parts of
TTEthernet. We then explain difficulties we encountered when trying to combine and reuse this existing
work and apply it to the full TTEthernet clock-synchronization protocol.

3.1 Generic Clock-Synchronization Proofs

Several protocols from the literature have been verified using the PVS theorem prover and its predeces-
sor, EHDM. Rushby and von Henke formalized and verified Lamport and Meliar-Smith’s protocol using
EHDM [13]. The formalization uncovered subtle imprecisions and flaws in Lamport and Meliar-Smith’s
original proof [8]. In subsequent work, Shankar [15] used EHDM to verify a generic Byzantine clock
synchronization protocol due to Schneider [14]. Miner [11] later improved and extended Shankar’s for-
malization, and instantiated the generic proof to an algorithm and hardware implementation related to the
Welch-Lynch clock-synchronization protocol [9].

Similar proofs have been developed using other theorem provers such as Isabelle/HOL [2] or the Boyer-
Moore theorem prover [24].

More recently, Miner et al. [10] developed a unified model for fault-tolerant algorithms, and showed that
Byzantine clock synchronization can be seen as an instance of this generic scheme. The unified model was
formalized and verified using PVS, and was applied to show correctness of SPIDER’s clock-synchronization
algorithm [22].

Most of these existing verifications have a similar formalization style, which is close to the traditional
mathematical presentation found in the literature on clock-synchronization algorithms [8,9, 14]. A clock
is typically modeled a mathematical functions C' that maps real time to clock time (i.e., C(t) is the clock
value of C at time #)! and assumptions on clock drifts are expressed as constraints on the increase rate
of these functions. For each protocol participant, the synchronization is modeled as a sequence of clocks
Cy, C1, . .., each of them used for a finite time interval. The protocol rules define how C} 1 is constructed
from preceding C';s and specify when each component should switch over from clock C; to clock Cjy1.
Correctness proofs require bounding the difference between the clock functions of distinct components,
which typically requires induction on the sequence of clocks and time intervals.

3.2 Existing TTEthernet Formalizations

TTEthernet itself has been the focus of significant formal modeling and verification. TTEthernet’s design
has been guided by extensive analysis of variant protocols and algorithms, using state-machine models and
model checking [21]. In particular, the startup protocol was designed and extensively tested using the SAL
model checker. A fixed-size instance of the protocol was modeled as a composition of finite-state machines,
and other modules were used to model faults. On such a finite model, bounded model checking showed that
the startup protocol successfully brings all nodes from an unsynchronized to a synchronized state, even in
the presence of two component failures. This analysis also determined the worst-case startup or restart time
from different clique scenarios.

Using a different modeling approach, based on the SAL infinite-state bounded model checker, we have
also verified correctness properties of two TTEthernet functions that are used by the synchronization pro-
tocol [19]. The permanence function is a simple method for controlling jitter in protocol frames. This
mechanism makes it look as if all protocol frames have maximal latency but low jitter, that is, the variation

!"The reverse convention is used too. A clock can be modeled as a function ¢ from clock time to real time, with the interpretation
that ¢(T") is the real time at which clock c has value T'.



in transmission delays appears very small to the frames’ consumers. Low jitter is important for synchroniza-
tion as it determines how accurately one node can estimate the clock of another node in the network. The
permanence function is implemented by keeping track of the actual transit delay experienced by a frame,
and artificially adding more delay at the destination node before delivering the frame to the higher levels in
the protocol stack.

The SAL model used in this work builds upon the timeout and calendar automata framework described
in [5,6]. This model is inspired by the event calendar (or even lists) commonly used in discrete-event
simulation, and has proved useful for analyzing several types of timed systems with SAL [3,4]. In the
TTEthernet context, the calendar and timeout automata model enables us to capture clock drift, delays
in message transmission, and protocol mechanisms such as timers. The resulting SAL models are not
finite since some of the model variables are real-valued (e.g., they encode delays and timeouts), however
such systems are still amenable to verification using sal-inf-bmc, the SAL bounded model checker for
infinite state systems. This bounded model checker relies on modern SMT solvers such as Yices that can
decide the satisfiability of logical formulas involving arithmetic, Booleans, and other useful theories. In this
framework, correctness properties can be established by k-induction. Proofs are not always fully automatic
and may require human guidance in the form of auxiliary invariants and lemmas. But this typically is much
less effort-intensive than developing full correctness proofs using interactive theorem provers such as PVS.

The compression function implemented by the CMs has been modeled and analyzed using the calendar-
automata framework [19]. The models includes a single CM, receiving frames from N SMs, out of which
k may be faulty. Several properties of the compression functions have been verified on such models, but
scalability issues limited the analysis to N < 7.

A more recent example of analysis focused on bounding the quality of the clock synchronization in
TTEthernet for a network with two CMs and five SMs, and for different fault assumptions [20]. This
analysis did not model the CMs clocks, but it focused on bounding the worst-case difference between the
clocks of two SMs in the network, under different fault scenarios. As discussed previously, the verification
relied on sal-inf-bmc and Yices, and required very little human guidance. A single invariant was added
to improve scalability of the verification.

3.3 An Attempt at Combining Verification Results

Our goal when starting this work was to combine relevant verification results that were available, and build
a coherent end-to-end proof of correctness of the TTEthernet clock-synchronization protocol. Our plan
was to use SRI’s ETB to support this combination. We intended to build upon a general model of fault-
tolerant clock synchronization such as the PVS specification of the unified algorithm defined in [10], and
cast the TTEthernet protocol as an instance of this generic scheme. We hoped to be able to discharge the
proof obligations resulting from this instantiation using either PVS or SAL. These proof obligations amount
to showing that the convergence functions implemented by TTEthernet satisfy assumptions made by the
generic scheme.

However, we encountered several difficulties. First, the ETB is still being developed and is constantly
being revised and improved. Previous prototype implementations of ETB do exist but they appear to be
too limited for our purpose. The current status of the ETB development and an overview of its current
architecture and design are presented the Appendix (A).

Another difficulty is that TTEthernet is not a simple protocol, and we did not manage to map it cleanly
into an instance of the unified fault-tolerant algorithm [10]. One significant difficulty is that the TTEthernet
clock synchronization is not divided into a succession of rounds, one of the key underlying assumption of
the unified algorithm. Superficially, it may look like the TTEthernet clock synchronization is a two-round
protocol: in round 1, SMs transmit PCFs to CMs; in round 2, CMs send compressed PCFs to all nodes.
However, the compression function is actually more complicated than this would suggest. The compression



function is executed by a CM based on the PCFs it receives from SMs, but the function is independent of the
CM’s local clock. As a consequence, it may be possible in some scenarios for one CMs to execute multiple
instances of the compression function in one integration cycle, and this may potentially result in several
compression PCFs being sent by the same CM during one integration cycle.

Although this kind of behavior should not happen under normal circumstances (i.e., when the nodes are
synchronized), it is dangerous to rule it out a priori. We should prove that multiple compressed PCFs per
round can’t occur if the network is synchronized, rather than building a model in which multiple compressed
PCFs cannot occur and use this model to prove that the clock synchronization works.

A further issue is the mismatch between the mathematical modeling used in the existing proofs of clock-
synchronization protocols developed in PVS (or other theorem provers), and the state-machine model re-
quired for analysis with SAL. There may be abstraction techniques or other approaches to bridging the gap
between abstract, mathematical models of clock synchronization developed in PVS and the more concrete
and operational, state-machine models that are specified in SAL. However, we have not found such a bridge
yet.

3.4 Toward Unified State-Machine Models

As clearly illustrated by the existing SAL models of TTEthernet fragments, state-machine models are ex-
tremely useful. They can be quickly analyzed using model checkers or other methods such as simulation.
They can be used to guide the design of complex protocols. A state-machine description is a good match for
most distributed protocols, and state machines can be used for automated test generation.

However, state-machine verification using model checking has well known limitations. Typically, a
state-machine model must be limited to finite (and usually small) protocol instances. We can’t expect current
model-checking techniques to deliver a full, general proof of the correctness of TTEthernet clock synchro-
nization. In addition, even if we are interested in only a fixed set of instances, model checking still suffers
from the state-explosion problem or other scalability issues. Ultimately, any full formal proof of correctness
for protocols as complex as the TTEthernet clock synchronization requires interactive theorem proving.

Our plan is to develop state-machine models that can be conveniently analyzed with model checking
tools such as SAL, possibly for only partial verification, but can also be easily translated to PVS specifica-
tions in a form that enables full-correctness. In future work, we hope to support a common state-machine
notation supported by the ETB with appropriate conversions to enable analysis using a variety of verification
tools.

As a first step toward this goal, we are currently exploring a new approach for specifying and verifying
the TTEthernet clock synchronization protocol as a state machine in PVS. We outline the results we have
obtained so far.

4 A New PVS Formalization of TTEthernet

As discussed previously, our goal is to develop a PVS model of the TTEthernet clock-synchronization
protocol that is based on a state-machine paradigm. We want to model the CMs, SMs, and SCs as state
transition systems, so that their specification stays close to what can be analyzed using SAL. Building and
verifying state-machine models of distributed systems is very common in interactive theorem proving, but it
is usually applied to discrete systems. Adding real time, transmission delays, node failure, and clock drifts
significantly increases the model complexity.

Our main challenge is to obtain a model that remains amenable to PVS verification without excessive
effort. The verification effort required should not be worse than what was required for the existing more
axiomatic specifications that exits in PVS.



4.1 Modeling Approach

The modeling approach we are currently exploring builds on the timeout and calendar automata concepts that
were originally intended for SAL, and have been successfully applied to various distributed timed systems,
including TTEthernet [19,20] and other timed-triggered protocols [5].

Both timeout and calendar automata are discrete state-transition systems, where some real-valued state
variables are used to model time progress and specify timing constraints. In general, a state-transition system
is a triple of the form (S, I, —), where S is a set of states, I C S is the set of initial states, and — is a binary
relation on S called the transition relation. We assume that the state space S is built from a collection
of state variables: each state o of .S is a mapping that assigns a value of an appropriate type to each of the
system’s state variables. For example, if z is a state variable and o is a state of the system, then o (z) denotes
the value of variable z in state o.

A timeout automaton is a traditional state-transition system equipped with a finite set 1" of special-
purpose variables that model timeouts. The system also includes a dedicated state variable ¢ that stores
global time. The initial states and transition relation must satisfy the following requirements:

e In any initial state o, we have o(t) < o(x) forall x € T

e If o is a state such that o(t) < o(x) for all z € T then the only transition enabled in o is a time
progress transition. It increases ¢ to min(o(7")) = min{o(x) | + € T} and leaves all other state
variables unchanged.

e Discrete transitions ¢ — ¢’ are enabled in states such that o(¢t) = o(x) for some x € T and satisfy
the following conditions

- o/(t) =o(t)
- forally € T we have o’ (y) = o(y) or o’(y) > o’ (¢)
— thereis € T such that o(x) = o(t) and o’(z) > o'(t).

In all reachable states, a timeout = never stores a value in the past, that is, the inequality o(t) < o(z) is
an invariant of the system. A discrete transition can be taken whenever the time ¢ reaches the value of one
timeout . Such a transition must increase at least one such z to a time in the future, and if it updates other
timeouts than x their new value must also be in the future. Whenever the condition Vx € T : o(t) <
o(x) holds, no discrete transition is enabled and time advances to the value of the next timeout, that is, to
min(o (7). Conversely, time cannot progress as long as a discrete transition is enabled.

Discrete transitions are instantaneous since they leave ¢ unchanged. Several discrete transitions may be
enabled in the same state, in which case one is selected nondeterministically. Several discrete transitions
may also need to be performed in sequence before ¢ can advance, but the constraints on timeout updates
prevent infinite zero-delay sequences of discrete transitions.

In typical applications, the timeouts control the execution of n real-time processes p1, . . ., pn. A timeout
x; stores the time at which the next action from p; must occur, and this action updates x; to a new time,
strictly larger than the current time ¢, where p; will perform another transition. For example, we have used
timeout-based modeling for specifying and verifying Fischer’s mutual exclusion algorithm [6].

Calendar automata extend the previous timeout automata model with support for modeling communi-
cation between processes, including constraints on message latency and other delays. This is achieved by
adding event calendars to the transition system.

A calendar is a finite set (or multiset) of the form C' = {(ey,t1), ..., (e, ts)}, where each e; is an event
and ¢; is the time when event e; is scheduled to occur. All ¢;s are real numbers. We denote by min(C') the
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smallest number among {t1,...,%,} (with min(C) = +oo if C is empty). Given a real u, we denote by
Ev,(C) the subset of C that contains all events scheduled at time wu:

EVU(C) = {<€iati> | ti=u N <€iati> S C}
As before, the state variables of a calendar-based system M include a real-valued variable ¢ that denotes the
current time and a finite set 7" of timeouts. In addition, one state variable ¢ stores a calendar. These variables
control when discrete and time-progress transitions are enabled, according to the following rules:
e In all initial state o, we have o(t) < min(o(7")) and o(t) < min(o(c)).
e In a state o, time can advance if and only if o(t) < min(o(T")) and o(t) < min(o(c)). A time
progress transition updates ¢ to the smallest of min(o(7")) and min(o(c)), and leaves all other state

variables unchanged.

e Discrete transitions can be enabled in a state o provided o(t) = min(c (7)) or o(t) = min(o(c)),
and they must satisfy the following requirements:

o(t) =o'(t)

forall y € T we have o’ (y) = o(y) or o’(y) > o’ (¢)

if o(t) = min(o(c)) then Evgr (4 (0”'(c)) € Evgy (o(c))

we have Ev,/(y(0’(c)) C Evgy(o(c)), or there is 2 € T such that o(x) = o(t) and o'(z) >
a'(t).

These constraints ensure that o(t) < min(o(7")) and o(t) < min(o(c)) are invariants: timeout values and
the occurrence time of any event in the calendar are never in the past. Discrete transitions are enabled when
the current time reaches the value of a timeout or the occurrence time of a scheduled event. The constraints
on timeout are the same as before. In addition, a discrete transition may add events to the calendar, provided
these new events are all in the future. To prevent instantaneous loops, every discrete transition must either
consume an event that occurs at the current time or update a timeout as discussed previously.

Calendars are useful for modeling communication channels that introduce transmission delays. An event
in the calendar represents a message being transmitted and the occurrence time is the time when the message
will be received. The action of sending a message m to a process p; is modeled by adding the event “p;
receives m’” to the calendar, which is scheduled to occur at some future time. Message reception is modeled
by transitions enabled when such event occurs, and whose effects include removing the event from the
calendar. From this point of view, a calendar can be seen as a set of messages that have been sent but have
not been received yet, with each message labeled by its reception time.

The PVS model we are developing for TTEthernet is largely based on the calendar automata formalism.
However, we are planning to extend the notion of calendar (i.e., a state variable that stores future events)
into a more general model, where both past and future events are part of the system state. Thus, the system
model includes a general event set that includes both all events that have occurred in the past (i.e., similar
to a history or trace-based model) and events that are scheduled to occur in the future (i.e., pending events
such as message reception). We believe keeping track of past events as part of the system state will facilitate
formalization and verification of timing properties, as all potentially relevant events are part of the state and
labeled with the time at which they occur.
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4.2 Current Status

The whole PVS theories that we have developed for modeling TTEthernet are available at http://www.
csl.sri.com/vvics.html. The developments so far have focused on defining and proving several
properties of the TTE compression function. This required developing supporting theories, that define sev-
eral variants of orderings and sorting functions, including sorting of finite sets and finite vectors.

The most notable result we have proved so far is the fact that the TTE compression function has the
expected convergence property, except in a somewhat surprising special case. Relevant fragments of the
PVS formalization are shown in Figure 3. The core of the compression algorithm is the function compress
shown in the figure. This function takes a finite vector v of values as input, and computes an average of the
vector components. The actual averaging operation applied depends on the size of the vector. For example,
if v contains three, four, or five elements, compress returns the median of these elements.

A CM applies this compress function to a set of PCFs it receives from SMs. This requires first sorting
these PCFs and computing clock differences. The details of the full procedure are not shown in the figure.?
The operation is denoted by comp_correction (B) in Figure 3, where B is a finite set of PCF frames.

The convergence result is proposition similar_synchronized_convergence in Figure 3. Infor-
mally, this result states that the compression function makes clocks get closer together. If two compression
masters apply the compression function to two distinct sets of PCFs C1 and C2 that come from approxi-
mately synchronized SMs, then the resulting compression values are close (no more than a bound equal to
half the precision A plus a small error term). Thus the compression function essentially reduces the clock
skew by half. This property holds under various constraints about the number of good values included in C1
and C2, in relation to K, the number of faulty SMs to tolerate.

What is somewhat surprising is that convergence is not guaranteed if both C1 and C2 contain exactly
five PCFs. This is a consequence of the definition of compress. If both C1 and C2 have five elements, the
compression function will pick the median in both sets. If there is a Byzantine faulty SM, then C1 and C2
contain four good PCFs and one other input from the faulty SM. Depending on where the Byzantine values
liein C1 and C2, the medians may be different and, in the worst case, the clock skew does not improve.

In the next section, we examine how this special case affects the quality of the clock synchronization
between CMs. This analysis is based on a SAL model of the protocol. As can be anticipated, the fact that
convergence does not always hold has an impact on the worst-case clock skew between CMs. The net-
work remains globally synchronized in the sense that the worst-case clock difference between two network

components is bounded, but the maximal clock skew is worst for the CMs than for the SMs.
We also note that a simple change to the compression function will get rid of this issue, namely, replacing
the median by a fault-tolerant midpoint for m=5:

compress (m) (v: cvector(m)): clock_time =

m =5 ->avg(v(l), v(3)),

S SAL Analysis of the Compression Function

The PVS verification helped us uncover a possible flaw in the compression function used by TTEthernet.
We now investigate the impact of this flaw and the proposed fix on the quality of the clock synchronization.
For this purpose, we build a (simplified) SAL model of the resynchronization protocol and we compute
bounds on the worst-case clock drift between different network components. This SAL model generalizes a
previous formalization presented in [20], which focused on bounding the clock drift between distinct SMs.

’See http://www.csl.sri.com/users/bruno/vvEcs.html for the full PVS specifications.
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Compression function for a vector v
- v must have at least one element

o o° o° o

m: VAR posnat
compress (m) (v: cvector(m)): clock_time =
COND
m=1-> v(0),
m= 2 —> avg(v(0), v(1)),
% for m = 3, 4, 5: result = median
m=3 ->v(l),
m=4 -> avg(v(l), v(2)),
m=5->v(2),
% for m>5: result =
% average of (k+1l)-th smallest and (k+1)-th largest elements
ELSE -> avg(v(K), v(m-K-1))
ENDCOND
comp_correction(B): clock_time = compress (card(B)) (clock_diffs(B))

cm_compressed_pit (B): clock_time =
start_perm(B) + max_observation_window + calculation_overhead + comp_correction (B)

Main result: if Cl and C2 contain readings from good SMs form I,
and the cardinality constraints below are satisfied then
| comp_pit(Cl) - comp_pit (C2) | <= precision/2 + 1 + eps

Because of the non-uniform definition for ml = 5 or m2 = 5,
we don’t get convergence if both are equal to 5.

o0 o° o o° d° o° o° o

similar_synchronized_convergence: PROPOSITION
similar(Cl, C2, I, eps)
AND synchronized(Cl, I, precision) AND synchronized(C2, I, precision)
AND card(Cl) = ml AND card(C2) = m2 AND card(I) = n
AND n >= 2 « K+ 1 AND n >> ml - K AND n >= m2 - K
AND ml /= 5 AND m2 /= 5
IMPLIES abs (cm_compressed_pit (Cl) — cm_compressed_pit (C2)) <= precision/2 + 1 + eps

Figure 3. Compression Function in TTEthernet
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CM[1] CM[2] e CM[M]

N /

Faut Model + Interconnect

SM[1] SMJ2] e SM[N]

Figure 4. SAL Model Structure

The SAL model used then represented the CMs as stateless components and did not include CM clocks. The
new formalization represents both SMs and CMs as state machines with real-valued clocks, which enables
us to bound the clock difference between two CMs and between a CM and an SM. We have also revised
significant parts of the SAL specifications to increase modularity, and we use a simpler formalization of the
compression function.

5.1 SAL Model

In our model of the TTEthernet clock synchronization protocol, all the participants (i.e., CMs and SMs)
are modeled as SAL state machines. Each state machine has a real-valued state variable that models the
component’s local clock. We decouple behavior and fault modeling by following the abstraction suggested
by Pike et al. [12]:

e All components are modeled as if they were fault free.
e All faults are represented as communication faults.

Under this abstraction, all components behave correctly, but faults affect the ability of components to trans-
mit data. This abstraction is general enough to capture typical fault assumptions, since a fault is typically
characterized by its manifestation on a component’s interface (cf. [12]).

More concretely, the SAL model is the composition of independent processes that represent the CMs
and SMs, and an interconnect module that specifies how the output from each process is received by other
processes (Fig. 4). Faults are then modeled in the interconnect. If a source process is nonfaulty, then its
output is received unchanged by all recipients. Otherwise, the recipients may see different input depending
on the source’s fault. For example, if the source has an inconsistent-omission fault, then some recipients
receive the data as sent while others receive nothing.
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POSREAL: TYPE = { x:REAL | x > 0 };
max_drift: POSREAL;

CLOCK: TYPE = REAL;

oe

o\

N = number of Synchronization Masters (SMs)

% M = number of Compression Masters (CMs)
%

N: NATURAL = 5;

M: NATURAL = 2;

SM_ID: TYPE = [1 .. NJI;

CM_ID: TYPE

Il
[l
=<
=

~

Figure 5. SAL Types and Parameters

5.1.1 Types and Parameters

Figure 5 shows several types and parameters used in our SAL formalization. The constant max drift
represents the maximal drift that a clock can experience in one integration cycle. We model clocks as
real-valued variables (of type CLOCK). The model is a fixed TTEthernet instance that consists of N synchro-
nization masters and M compression masters. The particular instance shown in Figure 5 has five SMs and
two CMs. Each SM is identified by an index of type SM_ID (i.e., an integer between 1 and N). Similarly,
each CM is identified by an index of type CM_ID between 1 and M.

5.1.2 Synchronization Master

The SAL model of a synchronization master is shown in Figure 6. Each SM is assumed to receive one
compression message from each CM. This is modeled as an input variable compression, which is an
array of M clock values. The main output is the SM’s clock variable. An SM cycles through three
successive states: sm_send, sm_correct, and sm_drift. The first two states correspond to the two-
phase synchronization protocol of TTEthernet that is executed at the beginning of every integration cycle.
In state sm_send, the SM transmits its clocks to the two CMs; in state sm_correct, the SM reads one
compression value from each CM and corrects its clock by computing the average of the two values.

State sm_drift abstracts the rest of an integration cycle. In this state, the SM’s clock drifts from real
time by some amount bounded by the max_drift parameter. The variable clock is then the positive or
negative drift of the SM’s clock relative to real time. This encoding based on drift instead of absolute clock
time is similar to the one used in [20].

5.1.3 Compression Master

The SAL model of compression masters is similar to the SM model. A CM cycles through three successive
states representing three different phases of an integration cycle. In state cm_receive, a CM reads inputs
from the SMs and outputs a compression value. In state cm_correct, the CM applies a clock correc-
tion: it resets its clock to the compression value computed in the previous state. Then in state cm_drift,
the CM clock drifts from real time by some amount bounded by max_drift.

Since we are interested in scenarios involving faulty SMs, we must take into account the possibility
that clock values received by a CM may be incorrect or missing. For this purpose, we model the input to a
CM as two variables: sm_reading and sm_valid. Variable sm_reading is an array of N clock values

15



SM_STATE: TYPE = { sm_send, sm_correct, sm_drift };

SM: MODULE =
BEGIN
INPUT
compression: ARRAY CM_ID OF CLOCK

OUTPUT
state: SM_STATE,
clock: CLOCK

INITIALIZATION
state = sm_send;
clock = 0;
TRANSITION
[ state = sm_send ——>
state’ = sm_correct;
[] state = sm_correct —--—>
state’ = sm_drift;
clock’ = (compression[l] + compression([2])/2; % correction

[] state = sm_drift -->
clock’” IN { x : CLOCK
state’ = sm_send;

| clock - max_drift <= x AND x <= clock + max_drift };

END;

Figure 6. SAL Model of a Synchronization Master
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and sm_valid is an array of N Boolean values. Given an SM index i, variable sm_valid[i] specifies
whether or not a message was received from SM 1, and, if sm_valid[i] istrue, sm_reading[i] isthe

value in this message.

Defining the compression function in SAL is not as easy as in PVS, as the definition requires sorting the
clock readings in increasing order. SAL supports recursive definition, so in principle it is possible to define
a sort function in SAL. However, any recursive definitions of a sort function is very expensive for SAL to
process. A better approach is to define a sort predicate as follows:

sort (c: ARRAY SM_ID OF CLOCK, p: ARRAY SM_ID OF SM_ID): BOOLEAN =

(FORALL (i: SM_ID): i<N => c[p[i]] <= c[pl[i+1]])
AND (FORALL (i, j: SM_ID): pl[i] = p[j] => i = J);

This definition specifies that sort (c, p) is true if the array p is a permutation of the SM indices in
{1,..., N}, and the sequence c[p[1]], ..., c[p[N]] is increasing. This specification trick was
introduced in [19]. It works well as long as the number of clock readings to sort is equal to the parameter
N. In our new SAL model, we must deal with a more complex situation. Some clock readings are marked
as invalid (i.e., missing) and the compression function requires sorting the array of valid clock readings in
increasing order, while ignoring the invalid elements. In the SAL model used in [20], we defined a separate
predicate for partial sort to deal with the case where one input was missing. This resulted in a relatively
complicated SAL specification involving two different sort predicates and extra logic and variables to select
between both. This approach was also hard to extend to other scenarios such as two missing clock readings.
We are now using a more uniform and simpler specification, which relies on the following definition.

sort (c: ARRAY SM_ID OF CLOCK, v: ARRAY SM_ID OF BOOLEAN,
n: [0 .. N], p: ARRAY SM_ID OF SM_ID): BOOLEAN =
(FORALL (i: SM_ID): i<n => c[p[i]] <= c[pl[i+1]])
AND (FORALL (i: SM_ID): v[p[il] <=> (i <= n))
AND (FORALL (i, j: SM_ID): pl[i] = p[j] => i = J);

In this definition, c is an array of N clock values, and v is a Boolean array that indicates which clock values
are valid. The extra parameter n is intended to denote the number of valid elements in ¢ (or, equivalently,
the number of t rue elements in v). Then, the definition states that predicate sort (¢, v, n, p) holds
if the following conditions are satisfied:

e There are exactly n valid values in ¢

e p is a permutation of the SM indices in {1,..., N}

e The sequence p[1], ..., pln] lists the valid value indices (i.e., v(p[1]],...,vIpI[n]]
arealltrueand v[p[n+1]], ..., v[p[N]] areall false).
e The sequence of clock values c [p[1]],...,c[p[n]] is increasing.
In other words, the sequence p[1], ..., p[n] enumerates the valid elements of c in increasing order.

Using this definition, we can define the compression function as shown in Figure 7. The CM module
includes an auxiliary state variable perm (intended to store a permutation of the SM indices) and different
guarded commands define the compression values based on the number of valid clock readings. For
example, the case where five good values are received is specified as:

[] state = cm_receive AND sort (sm_reading, sm_valid, 5, perm’) —-->
state’ = cm_correct;
compression’ = sm_reading[perm’ [3]];

This definition is possible because SAL allows us to refer to perm’ (that is, the value of perm in the next
state) in the guard. This definition is simpler, more general, and more concise than the one we used in [20].
It also improves SAL performance as it reduces the number of state variables and does not require as much
case analysis.
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CM_STATE: TYPE = { cm_receive,

CM: MODULE =
BEGIN
INPUT

cm_correct, cm_drift };

sm_reading: ARRAY SM_ID OF CLOCK,
sm_valid: ARRAY SM_ID OF BOOLEAN

LOCAL

perm: ARRAY SM_ID OF SM_ID

OUTPUT
state: CM_STATE,
clock: CLOCK,
compression: CLOCK

INITIALIZATION
state = cm_receive;
compression = 0;
clock = 0;
DEFINITION

perm IN { p: ARRAY SM ID OF SM_ID | TRUE };

TRANSITION
[ state = cm_receive AND sort (sm_reading, sm_valid, 3, perm’) -->
%% received 3 clock readings (i.e., two faulty SMs)
state’ = cm_correct;
compression’ = sm_reading[perm’ [2]];
[] state = cm_receive AND sort (sm_reading, sm_valid, 4, perm’) ——>
%% received 4 clock readings
state’ = cm_correct;
compression’ = (sm_reading[perm’ [2]] + sm_reading[perm’ [3]1])/2;
[] state = cm_receive AND sort (sm_reading, sm_valid, 5, perm’) —-->
%% received 5 clock readings
state’ = cm_correct;
compression’ = sm_reading[perm’ [3]];
[l state = cm_correct
clock’ = compression;
state’ = cm_drift;
[] state = cm_drift —--—>

clock’” IN { x

state’ = cm_receive;

END;

clock - max_drift <=

x AND x <= clock + max_drift };

Figure 7. SAL Model of a Compression Master
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5.1.4 Interconnect and Fault Model

The rest of the SAL model defines assumptions about faulty components and communication. We first
define a function status that indicates which components may be faulty and the type of faults they may
suffer. For example, in a scenario with one Byzantine faulty SM out of five, we could write:

STATUS: TYPE = { good, omissive, byzantine };

sm_status(i: SM_ID): STATUS = IF i=3 THEN byzantine ELSE good ENDIF;

In this particular example, we have assumed that SM[ 3] is faulty. Any other choice of index for the faulty
SM makes no difference to the analysis, and it’s also possible to assert that one SM is faulty without speci-
fying which one (but this makes the analysis slightly less efficient).

Based on the sm_status function defined above, we use an interconnect module that specifies how
the output value from each SM is received by each CM. The interconnect module is shown in Figure 8.
The input to this module is an array of NV clock values, namely, the clock variables of each SM. The inter-
connect’s output consists of two arrays sm_reading and sm_value of dimension M: sm_reading[j]
and sm_valid[j] are the two input to module CM[ j]. They are themselves arrays of N elements. In
other words, the element sm_reading[J] [1] is the clock value received by CM[ j] from SM[1i], and
sm_valid[j] [1] indicates whether this value is valid or missing. The fault model is then expressed by
the following rules:

e If SM[i] is nonfaulty then

sm.reading[j] [i] = sm.clock[i] and sm_.valid[]J][i] = true

e If SM[1i] omissive® faulty then

sm_.reading[j] [i] = sm_clock[i] and sm_valid[]] [i] can be either true or false.

e If SM[1i] is Byzantine then

both sm_reading[j] [1] and sm_valid[]j] [i] are arbitrary.

These rules are written in the SAL syntax in Figure 8.

5.2 Properties and Analysis

The complete SAL models we have used for analyzing the compression function are available at http:
//www.csl.sri.com/users/bruno/vvfcs.html. Three variant models are included:

e The baseline model uses the compression function as defined in the TTEthernet standard. It describes
a configuration with five synchronization masters and two compression masters, with the assumption
that one synchronization master is Byzantine faulty.

e A variant model also uses the standard’s compression function but examines a different configuration
and fault scenario. This model includes six synchronization masters and two compression masters,
and assumes that two synchronization masters are omissive faulty.

e The last model uses the same configuration and fault assumption as the baseline—five SMs, two CMs,
one Byzantine faulty SM— but the compression function uses the fix we propose in Section 4. When
a CM receives five valid readings, it computes the compression value as the average of the second and
fourth value instead of taking the median.

3Here omissive means “follows the inconsistent omission fault model”.
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Connection: MODULE =
BEGIN
INPUT
sm_clock: ARRAY SM_ID OF CLOCK
OUTPUT
sm_reading: ARRAY CM_ID OF ARRAY SM_ID OF CLOCK,
sm_valid: ARRAY CM_ID OF ARRAY SM_ID OF BOOLEAN

DEFINITION
%% sm_valid[j][i] is true if i is GOOD
sm_valid IN { B: ARRAY CM_ID OF ARRAY SM_ID OF BOOLEAN |
FORALL (j: CM_ID, i: SM_ID):
sm_status (i) = good => B[J][1] };

o

%% sm_reading[j][i] is equal to sm_clock[i] unless 1 is Byzantine
sm_reading IN { A: ARRAY CM_ID OF ARRAY SM_ID OF CLOCK |
FORALL (j: CM_ID, i: SM_ID):
sm_status (i) /= byzantine => A[J][i] = sm_clock[i] };
END;

Figure 8. Interconnect Module

In each model, we want to bound the maximal clock drift between network components. We illustrate how
this can be done in the next section, where we establish the worst-case clock drift between two synchro-
nization masters. We then summarize the bounds we have obtained in each model for the different types of
components.

5.2.1 Analysis Method

Since the model assumes that the compression masters are not faulty (and makes other simplifying assump-
tions), it is easy to see that the SMs are closely synchronized with each other. The following invariant holds
in all three SAL models:

sm_clock_distance: LEMMA
TTE |- G(FORALL (i, Jj: SM_ID): sm_clock[i] - sm_clock[]] <= 2 x max_drift);

Because individual clocks can drift from real time by £max_drift during each integration cycle, the
bound 2 » max_drift is the best that can be achieved in the models. We can easily check this in SAL
by showing that the following stronger property does not hold:

sm_clock_distance_strict: LEMMA
TTE |- G(FORALL (i, j: SM_ID): sm_clock[i] - sm_clock[]] < 2 % max_drift);

A counterexample to the latter property can be found by sal-inf-bmc, using a command such as

sal-inf-bmc -v 4 tte_synchro sm_clock_distance_strict -it

This invokes sal-inf-bmc to search for counterexamples to the property using iterative deepening (indi-
cated by option —it). The command-line argument —v 4 sets the “verbosity level” and is optional. With
these options, sal-inf-bmc finds a counterexample trace of length three.

Using a similar command, we can check that there are no counterexamples to sm_clock_distance.
But we can also obtain a proof that sm_clock_distance is satisfied. The proof is by k-induction and
relies on simple auxiliary invariants. First, we can prove the following three lemmas:

phasel: LEMMA TTE |-

G(FORALL (i: SM_ID, Jj: CM_ID):
sm_state[i] = sm_send <=> cm_state[]j] = cm_receive);
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phase2: LEMMA TTE |-
G(FORALL (i: SM_ID, Jj: CM_ID):
sm_state[i] = sm_correct <=> cm_state[j] = cm_correct);

phase3: LEMMA TTE |-
G(FORALL (i: SM_ID, Jj: CM_ID):
sm_state[i] = sm_drift <=> cm_state[j] = cm_drift);

These three invariants show that all modules are in lock step. Each of them can be proved as follows:
sal-inf-bmc -v 4 -1 -d 2 tte_synchro phasel

This commands sal-inf-bmc to perform a proof by induction at depth d = 2, which succeeds. Then,
using one of the three above lemmas, the bound on clock drift between SMs can be established by induction
at depth d = 2:

sal-inf-bmc -v 4 -1 -d 2 tte_synchro sm_clock_distance -1 phasel

Thus, we have proved that the worst-case clock skew between two synchronization masters is twice
the maximal drift parameter max_drift. The proof was given above for the baseline model (in file
tte_synchro.sal) but it works for the other two SAL models.

5.2.2  Analysis Results

By using the general approach outlined previously, we have proved the properties listed in Figure 9 for the
two SAL models that use the standard TTEthernet compression function. The figure shows six properties,
organized in three groups of two lemmas. The first lemma in each pair is true and has been proved with
sal-inf-bmc; it establishes an upper bound on the difference between the clocks of two components.
The second lemma is false; counterexamples can be found using sal-inf-bmc, which shows that the
upper bound given by the first lemma is precise.

In both models, the synchronization masters are synchronized within a bound equal to twice the maximal
drift. The synchronization bound for the two compression masters is four times the maximal drift, and the
difference between the clock of an SM and the clock of a CM is three times the maximal drift. It is interesting
to note that the flaw in the compression function affects clock precision even in a scenario without Byzantine
faults: the achievable precision in a scenario with six SMs, two of which are omissive faulty is the same as
the precision with five SMs, one of which is Byzantine faulty.

The last SAL model relies on the revised compression function discussed previously, and the analysis
confirms that this new compression function improves clock precision. The clocks of the two compression
masters are guaranteed to be within 3 max_drift of each other. and the worst case clock difference
between an SM and a CM is now 2.5 max_drift. The corresponding SAL properties are listed in
Figure 10.

6 Conclusion

We have presented our work on formal analysis of the TTEthernet clock synchronization protocol using
both PVS and SAL. Although this verification does not yet constitute a full end-to-end correctness proof, it
enabled us to identify a suboptimal design choice in part of the current TTE standard, and to demonstrate
how a simplex fix would improve clock precision.

In future work, we plan to develop a full PVS model that builds upon the calendar automata formal-
ism. We hope this approach will allow us to develop of full correctness proof while relying on a modeling
approach that is close to what can be verified using model checkers such as SAL.
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sm_clock_distance: LEMMA
TTE |- G(FORALL (i, j: SM_ID): sm_clock[i] - sm_clock[]] <= 2 % max_drift);

sm_clock_distance_strict: LEMMA

TTE |- G(FORALL (i, j: SM_ID): sm_clock[i] - sm_clock[]j] < 2 % max_drift);
cm_clock_distance2: LEMMA

TTE |- G(FORALL (i, Jj: CM_ID): cm_clock[i] - cm_clock[]j] <= 4 x max_drift);
cm_clock_distance2_strict: LEMMA

TTE |- G(FORALL (i, Jj: CM_ID): cm_clock[i] - cm_clock[]] < 4 » max_drift);

sm_cm_clock_distance: LEMMA

TTE |- G(FORALL (i: SM_ID, j: CM_ID):
sm_clock[i] - cm_clock[]j] <= 3 % max_drift AND
cm_clock[j] - sm_clock[i] <= 3 x max_drift);

sm_cm_clock_distance_strict: LEMMA

TTE |- G(FORALL (i: SM_ID, j: CM_ID):
sm_clock[i] - cm_clock[]] < 3 % max_drift AND
cm_clock[j] - sm_clock[i] < 3 % max_drift);

Figure 9. Clock Precision Achieved using TTE’s Compression Function

sm_clock_distance: LEMMA
TTE |- G(FORALL (i, Jj: SM_ID): sm_clock[i] - sm_clock[]j] <= 2 x max_drift);

sm_clock_distance_strict: LEMMA

TTE |- G(FORALL (i, Jj: SM_ID): sm_clock[i] - sm_clock[]] < 2 * max_drift);
cm_clock_distance2: LEMMA

TTE |- G(FORALL (i, j: CM_ID): cm_clock[i] - cm_clock[]] <= 3 x max_drift);
cm_clock_distance2_strict: LEMMA

TTE |- G(FORALL (i, j: CM_ID): cm_clock[i] - cm_clock[]] < 3 * max_drift);

sm_cm_clock_distance: LEMMA

TTE |- G(FORALL (i: SM_ID, Jj: CM_ID):
sm_clock([i] - cm_clock[]] <= 5/2 % max_drift AND
cm_clock[J] — sm_clock[i] <= 5/2 % max_drift);

sm_cm_clock_distance_strict: LEMMA

TTE |- G(FORALL (i: SM_ID, Jj: CM_ID):
sm_clock[1] - cm_clock[]] < 5/2 % max_drift AND
cm_clock[J] — sm_clock[i] < 5/2  max_drift);

Figure 10. Clock Precision Achieved with the Revised Compression Function
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Appendix A

The Evidential Tool Bus

The Evidential Tool Bus (ETB) is a framework for composing diverse inference tools in order to produce
reproducible evidence supporting formal claims. The inference tools include theorem provers, SAT/SMT
solvers, computer algebra systems, model checkers, code generators, and static and dynamic analyzers.
Many formal demonstrations exploit a combinations of these tools. For example,

1.

Counterexample-guided abstraction refinement (CEGAR) where a finite-state approximation (abstrac-
tion) of a system is analyzed by means of a model checker and counterexamples, if any, are used to
refine the abstraction.

Concolic execution uses symbolic evaluation with a SAT or SMT solver to generate test inputs that
drive a program along previously unexplored paths.

. Bounded model checking employs a SAT or SMT solver to explore bounded length executions of a

transition system.

Simplification using a computer algebra system such as REDUCE or QEPCAD to solve equations
and perform quantifier elimination.

. Proof obligation generation for pre/post-condition specifications and refinement steps using the PVS

type checker.

. Invariant generation using a range of techniques such as static analysis, templates, dynamic analysis,

k-induction.

. Combining a verification condition generator with a range of deductive techniques for discharging

proof obligations.

. Using a high-performance automated theorem prover to find an unsatisfiable core of input formulas

that can then be checked with a proof-generating theorem prover.

The key benefit of ETB is to make it possible to rapidly prototype workflows that combine different
analysis tools in order to generate claims that are accompanied by replayable evidence for an assurance
case. The ETB merely serves as a bus for managing the flow of data and claims between different tools. It
does not interpret any of the data or the claims. The ETB offers an interface for adding

1.

2.

3.

4.

New forms of data such as formulas, graphs, contexts, files, and test cases.
New judgement forms for making claims about the data.
Rules of inference for deriving claims from other claims.

New tools and tool interfaces.

The ETB can be used by itself to build and save proofs of claims built using the inference rules and tools
mentioned above. It can also be employed as a back-end to other tools. In what follows, we examine the
architecture of the ETB for managing data, claims, and rules, and for integrating analysis tools. While the
ETB is focused on formal claims, the architecture can be adapted to other scenarios for tool integration.
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Our first ETB prototype was built using XSB Prolog. The lessons learned from this exercise have been
used in building a prototype using the Python scripting language. We outline a design for the architecture,
API, and applications of ETB that is based on these experimental prototypes. In this design, scripts can be
arbitrary code integrating multiple tools that deliver replayable proof scripts employing the available rules
of inference and tool interfaces. Scripts can also employ backward and forward chaining through the rules
of inference. For example, a procedure for generating an inductive invariant for a transition system produces
an assertion that holds in the initial state and is preserved by each transition. Such a procedure might tie
together multiple static and dynamic analysis tools, but once an invariant has been found, its inductivity can
be checked by means of a simple proof script.

A.1 Data

Data in the ETB can be in the form of programs, transition systems, formulas, files, contexts, models, test
cases, analysis results, The ETB processes data using external tools but has no built-in interpretation of the
data. Many of the tools in the ETB are translators from one data representation to another. For example, an
ETB tool can translate PVS or SAL formulas to the representation used by the Yices SMT solver. The data
can either be represented as abstract syntax in XML or as part of a file. Some of the data might be handles
that are understood by the component programs.

ETB data is either simple, e.g., integers or Booleans, or represented as a blob which is just a SHA-1
hash of the data. The data might have associated information that is kept in a hash table. This information
indicates the kind of data, e.g., PVS formula, Yices context, or SAL module, as well as the file handle, or
the abstract syntax representation. The ETB can be extended with new kinds of data.

A.2 Claims

The notion of a claim is central to ETB. The whole point of ETB is to produce a replayable proof script for
a claim. This proof script incorporates calls to external tools. Claims are given in the form of judgements
that are applied to data. Examples of judgements used to make claims include:

1. PisaPVS formula

2. Y is a Yices formula

3. Y is the Yices translation of PVS formula P

4. C is a counterexample for Y’

5. I is a k-inductive property of machine M

6. (@ is a Yices context representing the declarations D.

7. Bis a CUDD BDD representation of Yices formula Y

8. (@ is an unsatisfiable Yices context

9. A s the predicate abstraction of P with respect to the predicates I1

The labels B, I, P, Y, @), and C range over data blobs. files or handles. Data that is handled within
the toolbus itself will be in JSON or XML form. The tool bus has no built-in semantic interpretation of the
claims. The ETB has an API for adding new claim forms. Each tool API is itself constitutes a claim. For
example, checking the claim that P has type 7" in PVS context () is done by invoking the PVS type checker.
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A.3 Rules

The ETB rules of inference are based on Datalog, which is a simple form of logic programming developed
for expressing database rules and queries. Datalog programs are logic programs where the terms are either
variables or constants. In our case, the constants represent blobs and simple values such as Booleans,
scalars, and integers, as well as, JSON arrays and objects. Some Datalog predicates correspond to specific
tool invocations. We also associate names with individual rules in order to represent proofs.

For example, the claim of the invariance of an assertion P for a SAL module M using Yices for the
inductivity check, is represented by the rules

1. SallnvariantWithYices:

sallnvariant(M, P) if
salModule(M),
sal2Yices(M, M'),
sal2Yices(P, P')
yicesInductive(M', P")

An invariant property for a SAL transition system module can be checked by converting both the
model and the property to a Yices state machine definition which is then verified using a rule shown
below for checking state machine invariants.

2. YicesInductivity:

yicesInductive(M, P), if
yicesInitially(M, P),
yicesConsecution(M, P)

The rule for using Yices to check an invariant P for a state machine M reduces to checking that P
holds initially and is preserved by each transition of M.

3. YicesPredicateAbstract:

yicesPredicateAbstraction(V, S, P, A) if
yicesNegation(P, Q),
yicesConjunction(S, @, SQ),
yicesAIISMT (V, SQ, B),
yicesNegation(B, A)

The predicate abstraction of P with respect to a set of Boolean variables V' that are mapped to pred-
icates in S is constructed as A, by invoking an AIISMT interface for Yices on the negation of P and
then negating the resulting Boolean formula.

The above rules contain calls to external tools for translating SAL transition systems to Yices state
machines, and for invoking various Yices functions that are defined as part of the integration of Yices into
the tool bus. Some of the ETB claims, such as those for checking the initiality and consecution of an
invariant are themselves defined by further Datalog rules.
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A.4 ETB Architecture

The ETB architecture consists of a claim table, a rule table, and Python scripts. Each row in the claim table
consists of a partially instantiated claim with entries for

1. The status of the claim, i.e., if it is open, pending with subgoal claims, or closed (i.e., all subgoal
claims are also closed).

2. The rule used to derive the claim from its subclaims.
3. The list of subgoals.

The claim table must satisfy the invariant that the claim must unify with the consequent of the rule, and
the subgoal claims must be the corresponding instances of the antecedents of the rule. If the claim is closed,
then the subgoal claims must also be closed. A closed claim must be fully instantiated, i.e., grounded.

The ETB API allows a range of operation on the claim table that preserve the invariant.

1. Open goal claims can be added. Claims can also be removed as long as there are no claims that depend
on them.

2. Subgoal claims can be generated and added from goal claim by invoking a rule.

3. Goal claims corresponding to external calls can be executed. These external calls can also generate
subclaim goals.

4. Proofs, both partial and completed, can be saved and reloaded.

A.5 Scripts in the ETB

By restricting the ETB core to the management of claims and (possibly partial) proofs, we can be flexi-
ble about what constitutes a script. Essentially, scripts manipulate the claims table while preserving the
invariant. In particular, any program that produces a replayable proof in the claim table can be used as a
script. Several scripts can be written by forward and backward chaining on the rules. For example, the rule
YicesPredicateAbstract for predicate abstraction above can be directly used with backward chaining. On the
other hand, an independent invariant generator can be used to produce an inductive invariant that is checked
with the YicesInductivity rule.

In the earlier prototype, XSB Prolog was used as the scripting language, but this turned out to be quite
awkward for writing scripts that involved simple iteration. Though XSB Prolog offers an excellent environ-
ment for prototyping, the kind of scripts we have in mind are more easily expressed in a dedicated scripting
language like Python. For example, one such script for iterative bounded model checking searches for the
smallest & such that a given assertion is k-inductive. The initiality check is a bounded model checking query
to see if the invariant is violated in the initial k steps of the execution of a transition system. The consecu-
tion condition checks that if the assertion holds in a k-step execution sequence, than it is not violated in the
(k + 1)th step. Inductivity, as captured by the rule YicesInductivity is 0-inductivity. The script iterates from
k = 0 upwards, which is quite easily expressed in Python but somewhat cumbersome to describe in Prolog.

A.6 Adding New Tools to the ETB

The basic way of invoking a tool or a tool API from ETB is by means of a goal claim. For example,
yicesUnsat(P), can be associated with the invocation of the Yices SMT solver on the Yices formula P.
Goal claims can contain variables. For example, the goal claim yicesNegation(P, Q) when invoked on a
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