
NASA Tech Briefs, April 2012 11

Software

In Situ Mosaic Brightness 
Correction 

In situ missions typically have point -
able, mast-mounted cameras, which are
capable of taking panoramic mosaics
comprised of many individual frames.
These frames are mosaicked together.
While the mosaic software applies radio-
metric correction to the images, in many
cases brightness/contrast seams still exist
between frames. This is largely due to er-
rors in the radiometric correction, and
the absence of correction for photomet-
ric effects in the mosaic processing
chain. The software analyzes the overlaps
between adjacent frames in the mosaic
and determines correction factors for
each image in an attempt to reduce or
eliminate these brightness seams. 

Two related methods of correcting
brightness differences at seams between
frames in a mosaic of in situ images work
on the same general principle. The over-
lapping areas between adjacent frames
in a mosaic are analyzed, and statistics
are gathered. These statistics are then
used in a bundle-adjustment style proce-
dure to derive correction parameters for
each image that minimize the brightness
seams across the mosaic. 

The older method consists of two pro-
grams: marsint, which gathers overlap
statistics, and marsbias, which deter-
mines correction parameters. The newer
system adds additional capabilities, in-
cluding simultaneous brightness and
contrast correction, better overlap statis-
tics, improved image labels, and stan-
dard XML file formats. The overlap
analysis functionality is embedded in the
mosaic program marsmap, while the cor-
rection parameters are determined by
the program marsbrt. 

In both cases, the correction parame-
ters are input to the mosaic program of
interest (marsmap, marsmos, marsm-
cauley) to be applied to the mosaic. Cor-
rection parameters are constant additive
or multiplicative factors applied to the
entire input image; no nonlinear correc-
tions are applied. 

The software is part of the OPGS (Oper-
ational Product Generation Subsystem)
software suite. While the algorithms be-
hind this suite are not particularly unique,
what makes the programs useful is their in-
tegration into the larger in situ image pro-
cessing system via the PIG library and the

mosaic programs. They work directly with
space in situ data, understanding the ap-
propriate image metadata fields and up-
dating them properly. 

This work was done by Robert G. Deen and
Jean J. Lorre of Caltech for NASA’s Jet Propul-
sion Laboratory. For more information, con-
tact iaoffice@jpl.nasa.gov. NPO -47726

Simplex GPS and InSAR 
Inversion Software 

Changes in the shape of the Earth’s
surface can be routinely measured with
precisions better than centimeters.
Processes below the surface often drive
these changes and as a result, investiga-
tors require models with inversion
methods to characterize the sources.
Simplex inverts any combination of GPS
(global positioning system), UAVSAR
(uninhabited aerial vehicle synthetic
aperture radar), and InSAR (interfero-
metric synthetic aperture radar) data si-
multaneously for elastic response from
fault and fluid motions. It can be used
to solve for multiple faults and parame-
ters, all of which can be specified or al-
lowed to vary. The software can be used
to study long-term tectonic motions and
the faults responsible for those motions,
or can be used to invert for co-seismic
slip from earthquakes. Solutions involv-
ing estimation of fault motion and
changes in fluid reservoirs such as
magma or water are possible. Any arbi-
trary number of faults or parameters
can be considered.

Simplex specifically solves for any of
location, geometry, fault slip, and expan-
sion/contraction of a single or multiple
faults. It inverts GPS and InSAR data for
elastic dislocations in a half-space. Slip
parameters include strike slip, dip slip,
and tensile dislocations. It includes a
map interface for both setting up the
models and viewing the results. Results,
including faults, and observed, com-
puted, and residual displacements, are
output in text format, a map interface,
and can be exported to KML. The soft-
ware interfaces with the QuakeTables
database allowing a user to select exist-
ing fault parameters or data. Simplex
can be accessed through the QuakeSim
portal graphical user interface or run
from a UNIX command line. 

This work was done by Andrea Donnellan,
Jay W. Parker, and Gregory A. Lyzenga of

Caltech, and Marlon E. Pierce of Indiana
University for NASA’s Jet Propulsion Labora-
tory. For more information, contact iaoffice
@jpl.nasa.gov. 

This software is available for commercial li-
censing. Please contact Daniel Broderick of the
California Institute of Technology at
danielb@caltech.edu. Refer to NPO-48233.

Virtual Machine Language 2.1 
VML (Virtual Machine Language) is

an advanced computing environment
that allows spacecraft to operate using
mechanisms ranging from simple, time-
oriented sequencing to advanced, multi-
component reactive systems.

VML has developed in four evolution-
ary stages. VML 0 is a core execution ca-
pability providing multi-threaded com-
mand execution, integer data types, and
rudimentary branching. VML 1 added
named parameterized procedures, ex-
tensive polymorphism, data typing,
branching, looping issuance of com-
mands using run-time parameters, and
named global variables. VML 2 added
for loops, data verification, telemetry re-
action, and an open flight adaptation ar-
chitecture. VML 2.1 contains major ad-
vances in control flow capabilities for
executable state machines.

On the resource requirements front,
VML 2.1 features a reduced memory
footprint in order to fit more capability
into modestly sized flight processors,
and endian-neutral data access for
compatibility with Intel little-endian
processors. Sequence packaging has
been improved with object-oriented
pro gramming constructs and the use of
implicit (rather than explicit) time tags
on statements. Sequence event detec-
tion has been significantly enhanced
with multi-variable waiting, which al-
lows a sequence to detect and react to
conditions defined by complex expres-
sions with multiple global variables.
This multi-variable waiting serves as the
basis for implementing parallel rule
checking, which in turn, makes possi-
ble executable state machines.

The new state machine feature in VML
2.1 allows the creation of sophisticated au-
tonomous reactive systems without the
need to develop expensive flight software.
Users specify named states and transi-
tions, along with the truth conditions re-
quired, before taking transitions. Transi-


