
Popular Summary 1 

FOREST BIOMASS MAPPING FROM LIDAR AND RADAR SYNERGIES 2 

Guoqing Sun1, K. Jon Ranson2, Z. Guo3, Z. Zhang4, P. Montesano5 and D. Kimes2 3 
 4 

1Dept. of Geography, University of Maryland, College Park, MD USA, guoqing.sun@gmail.com 5 
2Biospheric Sciences Branch, NASA’s Goddard Space Flight Center, Greenbelt, MD USA  6 

3State Key Laboratory of Remote Sensing, Institute of Remote Sensing Applications, Chinese Academy of Sciences, P. 7 
O. Box 9718, Beijing, 100101, China 8 

4School of Geography, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, P. R. China 9 
5Science Systems and Applications, Inc., 10210 Greenbelt Rd Lanham, MD 20706, USA 10 

 11 
Lidar and Radar sensors use transmitted and received electromagnetic radiation to measure forest canopies. The 12 

combined use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global 13 

scales is being considered for a future Earth Observation satellite missions.  Large footprint lidar makes a direct 14 

measurement of the distance of canopy scattering elements (i.e., leaves, branches, ground) within the illuminated area 15 

and can yield accurate information about the vertical profile of the canopy within these lidar. Synthetic Aperture Radar 16 

(SAR) is known to sense the forest canopy volume, especially at longer radar wavelengths and provides image data. 17 

Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed since neither 18 

can do the whole job individually. 19 

In this study, several issues were investigated using aircraft borne lidar and SAR data over Howland, Maine, USA. We 20 

used a stepwise regression technique and selected the lidar derived height indices rh50 and rh75 of the Laser Vegetation 21 

Imaging Sensor (LVIS) data for predicting field measured biomass with a R2 of 0.71 and RMSE of 31.33 Mg/ha. The 22 

above-ground biomass map generated from this regression model was considered to represent the true biomass of the 23 

area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the 24 

biomass map and the correlation between the sampled biomass and co-located SAR signature was analyzed. The best 25 

models obtained through these analyses were used to extend the biomass estimates from lidar samples into all forested 26 

areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that 27 

depending on the type of SAR data used (i.e,.quad-pol or dual-pol) the SAR data can predict the lidar biomass samples 28 

with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the 29 

study area calculated from the biomass maps generated by lidar- SAR synergy was within 10% of the reference biomass 30 

map derived from LVIS data. The results from this study are preliminary, but do show the potential of the combined use 31 

of lidar samples and radar imagery for forest biomass mapping.  Various issues regarding lidar/radar data synergies for 32 

biomass mapping are discussed in the paper. 33 

 34 
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Abstract 46 
 47 

The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales 48 

is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and 49 

Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated 50 

footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. 51 

Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides 52 

image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. 53 

In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, 54 

USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) 55 

data for predicting field measured biomass with a R2 of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass 56 

map generated from this regression model was considered to represent the true biomass of the area and used as a 57 

reference map since  no  better biomass map exists for the area. Random samples were taken from the biomass map and 58 

the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to 59 

extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be 60 

used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the 61 

SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 62 

200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 

was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but 64 

do show the potential of the combined use of lidar samples and radar imagery for forest biomass mapping. Various 65 

issues regarding lidar/radar data synergies for biomass mapping are discussed in the paper. 66 
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1. Introduction 68 

Above-ground biomass can not be directly measured by any sensor from space. Land cover stratification combined with 69 

ground sampling is the traditional method to inventory the biomass of a region. Remote sensing data are playing 70 

increasingly important roles in forest biomass estimation. For example, biomass data from field measurements (e.g., FIA 71 

– Forest Inventory and Analysis plots) (Blackard, J. A., et al. 2008) and lidar (GLAS – Geoscience Laser Altimeter 72 

System) (Baccini, A., et al. 2008; Nelson et al., 2009) and image data from LANDSAT, MODIS have been used 73 

together to perform regional biomass mapping.  74 

Large-footprint lidar systems (Blair et al., 1999) have been developed to provide high-resolution, geo-located 75 

measurements of vegetation vertical structure and ground elevations beneath dense canopies. Over the past decade, 76 

several airborne and space-borne large-footprint lidar systems have been used to make measurements of vegetation. The 77 

lidar waveform signature from large-footprint lidar instrument, such as the Scanning Lidar Imager of Canopies by Echo 78 

Recovery (SLICER) (Harding et al., 1995, 1998) and the Laser Vegetation Imaging Sensor (LVIS) (Blair et al., 1999) 79 

has been successfully used to estimate the tree height and forest above-ground biomass (Lefsky et al., 1999a, b; 80 

Dubayah and Drake, 2000; Hofton et al., 2002; Drake et al., 2002, 2003, Sun et al., 2008). The relationship between 81 

forest carbon storage and the vertical structure from lidar waveform is relatively unexplored. Further studies on the data 82 

properties, (e.g. the effects of multiple scattering and ground slope on lidar signatures) are needed to verify and improve 83 

the retrieval algorithms. One major limitation of current spaceborne lidar systems (i.e., ICESat GLAS) is the lack of 84 

imaging capabilities and the fact that they provide sparse sampling information on the forest structure. 85 

Radar, because of its penetration capability and sensitivity to water content in vegetation, is sensitive to the forest spatial 86 

structure and standing biomass. Radar data (both polarimetric and interferometric) have been used for forest biomass 87 

estimation (Ranson and Sun, 1996, Ranson et al., 1995, 1997a,b; Kasischke et al., 1995; Dobson et al., 1992, 1995; Le 88 

Toan et al., 1992; Kurvonen et al., 1999; Saatchi et al., 2007) and canopy height estimation (Hagberg et al, 1995; 89 

Treuhaft et al., 1996, 2004; Askne et al, 1997; Kobayashi et al, 2000; Kellndorfer et al., 2004; Simard, M., et al. 2006, 90 

2008). These applications require ground sampling data for both training and validation purposes.  91 

The signature from these two kinds of sensors bears commonality due to the biophysical and ecological nature of 92 

vegetation communities. The vertical distribution of the reflective surfaces revealed by lidar data implies the overall 93 

structure supporting the leaf distribution. The relative importance of microwave backscattering from various tree 94 

components (e.g. leaves, branches, trunks) depends on the vertical, as well as horizontal distributions of these 95 

components. Reflectance from vegetation canopy is controlled by canopy structure as well as the biochemical 96 
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composition of the canopy foliage. The use of lidar and radar instruments to measure forest structure attributes such as 97 

height and biomass are being considered for future Earth Observation satellite missions.  The first such mission to be 98 

flown within the next decade is called DESDynI, a combined lidar and radar mission designed to address scientific 99 

questions in terrestrial ecosystem structure as well as solid earth and ice dynamics (http://desdyni.jpl.nasa.gov/, 100 

Donnellan et al., 2008). In anticipation of this mission, methods for biomass mapping by combining lidar samples and 101 

radar imagery need to be investigated. 102 

Data fusion or synergy is required in remote sensing applications, especially for complex tasks such as mapping of forest 103 

structural parameters (Patenaude et al. 2005). Synergistic use of various data and approaches has been applied in various 104 

studies. For example, Anderson et al. (2008) used waveform lidar with hyperspectral imagery to estimate three common 105 

forest measurements - basal area, above-ground biomass and quadratic mean stem diameter in a northern temperate 106 

mixed conifer and deciduous forest. Results suggested that the integrated data sets of hyperspectral and waveform lidar 107 

provide improved outcomes over use of either data set alone in evaluating common forest metrics. Using Shuttle Radar 108 

Topographic Mission (SRTM) and ICESat/GLAS data, Simard et al. (2008) conducted 3D mapping of mangrove 109 

forests. Walker et al. (2007) developed the first-ever high-resolution map of canopy heights for the conterminous U. S. 110 

using an empirical InSAR-optical fusion approach.  In two investigations of radar-lidar synergy, in a North Carolina 111 

pine forest (Nelson et al. 2007) and a wildlife habitat analysis (Hyde et al. 2006), authors found that there was little to be 112 

gained or only marginal improvement by adding radar data to lidar data.  However, the current satellite lidar technology 113 

only samples the earth’s surface, whereas radar has the mapping capability required for continuous global biomass 114 

mapping.  For example Kellndorfer et al, 2010 combined ICESat GLAS, SRTM INSAR and Landsat imagery to make 115 

large area estimates of above ground woody biomass and Lefsky (2010) used MODIS and ICESat lidar data together to 116 

produce a global map of forest heights.  The ecosystem structure component in the DESDynI mission is to measure 3D 117 

structure of forests by taking advantage of the spatial continuity of SAR and the direct measurements from lidar samples 118 

(Donnellan et al. 2008). This presents a special case for lidar and radar data fusion for mapping forest biomass and other 119 

structural parameters globally. 120 

In this study, some issues of combined use of lidar and radar were investigated using data acquired near Howland, 121 

Maine, USA. The potential information on biomass from a lidar waveform and the required lidar samples for reliable 122 

biomass estimation were studied using field data. The best prediction model was used to generate a reference biomass 123 

map from the Laser Vegetation Imaging Sensor (LVIS) data. Random samples were then taken from the biomass map 124 

and the correlation between biomass and SAR signature was studied. Proper models were used to extend the biomass 125 
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from lidar samples into all forested areas in the study area. The new biomass map was compared with the reference 126 

biomass map derived from LVIS data. The results of the combined use of lidar samples and radar imagery for forest 127 

biomass mapping are presented. Biomass mapping was also performed using field data and SAR data to show that the 128 

biomass maps from lidar sample and SAR data were better. Various issues in the lidar/radar data fusion for regional 129 

biomass mapping are also discussed in this paper. 130 

2. Study site and data 131 

2.1. Site description and field data 132 

The test site for this project is the mixed hardwood and softwood forest of the Northern Experimental Forest (NEF), 133 

Howland, Maine (45o15’N, 68o45’W). This site, about 10 Km by 10 Km in size, is used for interdisciplinary forest 134 

research and experimental forestry practices.  The natural stands in this northern hardwood - boreal transitional forest 135 

consist of hemlock-spruce-fir, aspen-birch, and hemlock-hardwood mixtures. Topographically, the region varies from 136 

flat to gently rolling, with a maximum elevation change of less than 135 m within the study area. Due to the region's 137 

glacial history, soil drainage classes within a small area may vary widely, from excessively drained to poorly drained. 138 

Consequently, an elaborate patchwork of forest communities has developed, supporting exceptional diversity in forest 139 

structure (Ranson and Sun, 1994). While a significant part of forests were preserved for research purposes, various 140 

forest management and harvesting practices have changed the forest structure. Fig. 1 is a false color ASTER image of 141 

July 22, 2002 (15m pixel resolution) showing different types of forests in the study area. 142 

 143 

  <Fig. 1> 144 

 145 

A stem map (the larger rectangle in Fig. 1), identifying location, diameter at breast height (dbh) and species for every 146 

tree with a dbh greater than 3 cm in a 200 m by 150 m area, was collected in 1989 and again in 2003. This data set will 147 

be referred to as stem map data in this paper. This data set served well for model simulation and data analyses in 148 

previous studies (Ranson et al., 1997b; Kimes et al., 1997). A metal label was attached to every tree in 1989 to aid 149 

identification and re-measurement in 2003. The 2003 dataset includes those trees with dbh greater than 3 cm in 2003 150 

that were not measured in 1989. The canopy biomass can be calculated using dbh from allometric equations listed in 151 

Young et al (1980). The corners of the stem map were located using a Trimble differential GPS instrument with an 152 
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accuracy of less than 1 meter. Fig. 2 shows locations of trees and the LVIS footprints (circles) within the stem map. A 153 

total of 112 footprints were completely inside the stem map. 154 

Twenty sites (Fig. 1 and Table 1) across the study area were sampled in October, 2003 for biomass and other forest 155 

parameters. In each site three to four plots with radius of 4 or 7 m were arranged in the center, and 30 m north, south-156 

west, south-east from the center. The dbh for every tree with a dbh > 3cm, and the height, crown length and width of 8 157 

trees in each plot were measured. These sites represent a range of forest structures and biomass levels. The locations of 158 

the 2003 sampling sites were determined using a backpack borne Garmin V GPS Unit including a Garmin V Personal 159 

Navigator and a MBX-3S Differential Beacon Receiver with known accuracy up to 1 meter, 95% of the time in good 160 

receiving conditions.  The major parameters of these sampled forest sites were listed in Table 1.  161 

 162 

  <Fig. 2>  <Table 1> 163 

 164 

2.2. LVIS data 165 

NASA's Laser Vegetation Imaging Sensor (LVIS) is an airborne laser altimeter system designed, developed and 166 

operated by the Laser Remote Sensing Laboratory, Goddard Space Flight Center (GSFC) (Blair et al., 1999).  The LVIS 167 

system measures the intensity of backscatter returns within 30 cm intervals and the time delay (or traveled distance by 168 

laser beam) through the forest canopy.  These recorded signals form a vertical profile or lidar waveform of the lidar 169 

footprint, which is a direct measurement of the forest structure.   In the summer of 2003, LVIS obtained waveform data 170 

for forested sites in New England, generating the most detailed forest structural data sets currently available for these 171 

regions. The LVIS data used in this study were acquired on July 26, 2003 and processed at GSFC (B. Blair, M. A. 172 

Hofton, and D. L. Rabine. 2006; http://lvis.gsfc.nasa.gov).  LVIS Ground Elevation (LGE) data were used, which 173 

include location (latitude/longitude), surface elevation, and the heights (relative to surface) where 25%, 50%, 75% and 174 

100% of the waveform energy occur.  These quartile heights are referred as rh25, rh50, rh75 and rh100 to represent the 175 

relative heights in this study. ENVI’s gridding function, which uses Delaunay triangulation of a planar set of points, was 176 

used to grid the LVIS LGE data to 15m ASTER base images.  Fig. 3-A is a false color image showing the rh50 (R), 177 

rh100 (G), and rh25 (B) from LVIS data. 178 

The quartile heights are direct measurements of the vertical profile of canopy components.  Waveform measures are a 179 

function of the complex and variable 3-D structure of canopy components and their spectral properties, as well as the 180 
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spectral properties of the ground/litter. The rh25 and rh50 are lower for the selectively cut areas as seen in Fig. 3-A. In 181 

the area around the stem map in Fig. 3-A (the solid red rectangle) all three relative height indices are high so it appears 182 

white in the false color image.   This corresponds to a forest area without disturbances. When the trees were partially cut 183 

(the patch of forest across the road to the east of the stem map), the relative lidar signature returned from tree crowns 184 

was reduced and that from the ground surface increased resulting in the lower values of rh25 and rh50, so the false color 185 

of the selectively cut area in Fig. 3-A does not appear white but green. Fig. 3-B depicts the centers of LVIS footprints 186 

overlaid on the 15m ASTER image, showing that there were more than 20 footprints in a window of 5x5 15m pixels. 187 

 188 

  <Fig. 3> 189 

 190 

2.3. SAR and LANDSAT images 191 

PALSAR images from the Japanese Aerospace Exploration Agency (JAXA) Advanced Land Observing System used in 192 

this study are listed in Table 2. Data were ordered as Level 1.1 data. The spatial resolution of the single-look image is 193 

3.556 m and 9.369 m in azimuth and range directions, respectively. As a Level 1.1 product, the data were 194 

radiometrically calibrated and in complex format. The data in Table 2 form two pairs of InSAR data, and were 195 

processed using ROI_PAC software (Repeat Orbit Interferometry PACkage, http://www.roipac.org/) to create coherence 196 

data.  SRTM data were downloaded from the USGS site (http://srtm.usgs.gov/), and the height of the scattering phase 197 

center was derived from the SRTM DEM minus the surface elevation measured with LVIS. Fig. 4 shows false colour 198 

images of SAR data. 199 

 200 

 <Table 2>  <Fig. 4> 201 

 202 

While the forest area surrounding the stem map has been preserved for scientific studies, the rest of the forests in the 203 

study area have been actively managed. The logging methods were changed from clear-cut in the 1980s, to strip-cuts in 204 

the 1990s and to select-cuts (shelter wood cuts) after 2000. Since the data used in this study were from different years of 205 

2000, 2003 and 2007, the logged areas during this period need to be identified. Three LANDSAT ETM+ data acquired 206 
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on July, 2, 2000, September 10, 2003 and July 22, 2007 were used to map the changed areas, so they could be omitted 207 

for this study. 208 

3. Method  209 

3.1. Image Data Processing 210 

Rasterized LVIS height indices data, SAR data, and the phase center height from SRTM and LVIS DEM data were all 211 

co-registered with the 15m ASTER base images. LVIS indices and SAR data were extracted from the co-registered 212 

images using windows with various sizes (1x1, 3x3, 5x5) corresponding to various scales (15m, 45m, 75m), 213 

respectively. 214 

Definiens Developer 7.0 (Baatz et al., 2004), which allows for the automatic and optimal delineation of local 215 

homogenous regions, was used to perform a segmentation of ETM+ images.  The polygon segments formed were 216 

classified to create a change mask.  Fig. 5-A shows the polygon segments overlaid on the 2007 ETM+ images, and Fig. 217 

5-B shows the changed areas identified from the classification of the polygons segments. A mask (Fig. 5-C) was 218 

generated to exclude these changed areas and non-forest areas in further analyses. The non-forest areas were identified 219 

using rh50 <= 0 since the waveform from an ideal bare surface would have  rh50 = 0. 220 

 221 

  <Fig. 5> 222 

 223 

3.2. Biomass estimation from LVIS data 224 

3.2.1. Correlations of forest biomass with lidar waveform indices  225 

The height indices (relative to the ground surface) rh25, rh50, rh75 and rh100 were extracted from LVIS LGE data for 226 

each of the LVIS footprints within stem map (Fig. 2).  Trees within a diameter of the footprint size of 20m were used to 227 

derive the biomass for each footprint, and step-wise regression was performed to select the best prediction model. The 228 

correlation was low probably due to the errors in lidar footprint locations and field-measured tree positions 229 

Aggregation of both biomass measurements and the LVIS indices into a larger unit will reduce measurement 230 

uncertainty. The suitable aggregation scale was investigated by randomly sampling the stem map using different pixel 231 

sizes. In Fig. 3-B, the square pixels are 15m pixels from ASTER data. A window with 2x2, 3x3, and 5x5 pixels will form pixels with 232 

sizes of 30m, 45m and 75m. It can be seen that in most cases, there will be several lidar footprints in one of the 30-75m pixels. The 233 
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biomass prediction models at pixel sizes of 15m, 45m and 75m were examined.  Thirty points were randomly selected 234 

within the stem map, such that a pixel with size of 15m, 45m and 75m was entirely within the stem map. The biomass of 235 

these points was calculated from the stem map data using the pixel sizes. The remote sensing data were extracted at 236 

these points with a window size of 1, 3 and 5 from co-registered LVIS and SAR data. The stepwise regression function 237 

from S-plus (S-Plus, 2010) was used to find the best biomass prediction model. The suitable pixel size for biomass 238 

mapping was determined from the analyses. 239 

3.2.2. Prediction model and biomass mapping from LVIS data 240 

The 2003 field samples covered forest sites with very different structures. It was found that when the data were extracted 241 

from a 3x3 15m window, the correlations between LVIS height indices and biomass were low.  The window size was 242 

increased to 5x5 pixels for extracting LVIS and SAR data for the sites sampled in field. The stem map was divided into 243 

twelve 50m by 50m sub-plots and the total above-ground biomass of these sub-plots was calculated. The biomass of 244 

these sub-plots was (Mg/Ha): 115.3, 119.4, 136.1, 143.8, 149.8, 166.7, 170.9, 175.5, 193.9, 206.5, 209.6, and 210.2. 245 

These biomass data were used to develop models to generate biomass from LVIS and SAR data. The stepwise 246 

regression was used to pick the best LVIS variables for biomass estimation.  An above-ground biomass map from LVIS 247 

data was generated using the regression model. 248 

3.3. Forest biomass mapping using field samples and SAR data 249 

The data from SAR include ALOS PALSAR polarimetric data (PLR mode) from two dates (April 16 and June 1, 2007), 250 

and dual-pol (HH and HV) images (FSD mode) from two dates (July 10 and August 25, 2007). These PALSAR data 251 

were ordered as L1.1, and form two pairs of InSAR data. The data were radiometrically calibrated by JAXA and in 252 

complex form (I + jQ). The equation, Normalized Radar Cross Section (NRCS) (dB) = 10*log10(<Iˆ 2+Qˆ 2>) + CF - 253 

32.0, where CF= -83.0, provided by JAXA (https://auig.eoc.jaxa.jp/auigs/en/doc/an/20090109en_3.html) was used to 254 

convert the complex data to NRCS. The complex coherence (Gaveau et al., 2003) between dual-pol data from July 10 255 

and August 25, 2007 was relatively high, so the coherence was used as a variable for biomass estimation. The ratio of 256 

HV to HH was calculated for each of these PALSAR data. For the polarimetric data, the total power (HH+VV+2HV) 257 

was also calculated and used as the independent variables. SRTM elevation data represent the elevation of the scattering 258 

phase center over the vegetated areas. By subtracting the surface elevation from LVIS data from the SRTM elevation, 259 

the height (from the ground surface to the scattering center within the canopy) can be obtained. This height was used as 260 

a variable in the regression analyses. 261 

https://auig.eoc.jaxa.jp/auigs/en/doc/an/20090109en_3.html�
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The stepwise regression was used to find the best regression models for biomass estimation when the dependent variable 262 

is the field biomass and the independent variables include 1) PALSAR PLR data with and without SRTM phase center 263 

height, 2) dual-pol PALSAR data with and without SRTM phase center height, and 3) both PLR and dual-pol PALSAR 264 

data with and without SRTM phase center height. The best regression models were used to generate biomass maps from 265 

SAR data.  266 

3.4. Extending LVIS biomass samples using SAR data  267 

3.4.1. Mapping biomass using LVIS samples and SAR data 268 

The biomass map from LVIS data was treated as a reference biomass map. The purpose of the study was to investigate 269 

the possibility of generating a comparable biomass map using limited samples from LVIS-derived biomass and the SAR 270 

imagery.  One hundred samples were randomly selected from the areas not masked out by the mask image (Fig. 5-C). 271 

The LVIS-derived biomass and SAR signatures at each point were extracted using a 5x5 window. This data set includes 272 

the following variables: LVIS derived biomass, srtm-lvis_ht, HH, HV, VH, VV intensity, the total power of two 273 

polarimetric SAR images, HH, HV intensities of two dual-pol SAR images, coherence of HH polarization of dual-pol 274 

images, and he HV to HH ratio for all SAR images.  275 

The stepwise regression was used to find the best SAR variables for biomass estimation. The regression models were 276 

then applied to the same area mapped by LVIS data.  277 

3.4.2. Model performance and error assessments 278 

For each biomass estimation equation, the root mean square error (RMSE) was calculated as SQRT(SUM((Bpred-279 

Bref)^2/n). The mean, variance and correlation of the estimated biomass map were calculated and compared. 280 

Re-sampling techniques, such as bootstrapping and jackknifing (Efron, 1981) can provide estimates of the standard 281 

error, confidence intervals, and distributions for any statistic without the normality distribution assumption. The lidar 282 

sampled biomass was randomly picked in the forested area that was not disturbed during the period of 2000-2007. 283 

Bootstrapping was used to investigate the stability or reliability of the prediction models.  284 

4. Results 285 

4.1. Biomass mapping from LVIS data 286 

4.1.1. Correlations of forest biomass with lidar waveform indices  287 



 

 9 

When the waveform indices from 112 LVIS footprints within the stem map were used to predict forest biomass for the 288 

20 m footprints, the step-wise regression selected all energy quartiles from LVIS LGE data. The relation between the 289 

biomass calculated from the forest stem map data and that predicted by the lidar waveform indices was  290 

 B = 17.0-10.3 rh25+23.0 rh50-22.4 rh75+13.7 rh100               (1) 291 

with Multiple R-Squared: 0.315, RSE: 21.1 Mg/ha, F-statistic: 12.17 on 4 and 106 degrees of freedom, and a p-value of 292 

3.543e-008.  293 

To investigate the regression relations at different spatial scale, thirty points were randomly selected within the stem 294 

map, such that a pixel with size of 15m, 45m and 75m was entirely within the stem map. The biomass of these points 295 

was calculated from the stem map data and the LVIS height indices were extracted at these points with a window size of 296 

1x1, 3x3 and 5x5 from co-registered imagery data. The results from the stepwise regression show that when the pixel 297 

size increased from 15 to 45 and 75 meters, the R2 increased from 0.171 to 0.496 and then to 0.725. Because of the 298 

small size of the stem map, when the pixel size increases, there will be much overlap between sampling points. The 299 

range of the biomass also decreases. The increases of R2 here may not entirely result from the increase of the pixel size. 300 

Nevertheless, the increased averaging reduced the variance of the data caused by the spatial sampling and geo-location 301 

mis-matching between lidar footprint and tree locations.  The 75m pixel size was used in the following procedures for 302 

biomass mapping. 303 

4.1.2. Prediction model and biomass mapping from LVIS data 304 

The best regression equation from stepwise regression using field biomass and LVIS height indices was 305 

 B = -1.717 – 6.208  rh50 + 8.625  rh75     (2) 306 

With  a residual standard error (RSE) of 32.91 Mg/ha, Multiple R2 of 0.70, F-statistic of 34.08 on 2 and 29 degrees of 307 

freedom, and a p-value of 2.43e-08. The relationship between field and predicted biomass shown in Fig. 6 was 308 

 Bpred = 48.5276 + 0.7015 Bfield      (3)   309 

with R2 = 0.70, and the RSE of 27.10 Mg/ha. The RMSE calculated from SQRT(SUM((Bpred – Btot)^2)/32) was 31.33 310 

Mg/ha.  Fig. 7 is the above-ground biomass map from LVIS data using the equation (2). The model was applied to the 311 

entire image, but all the biomass statistics, and the comparisons between different biomass maps were performed on the 312 

pixels defined by the mask image (Fig. 5-C). 313 

 314 
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 <Fig. 6> <Fig. 7> 315 

 316 

4.2. Biomass mapping using field biomass data and SAR data 317 

Stepwise regression was used to find the best variables and models for various combinations of the variables from SAR 318 

data. Polarimetric and dual-pol data were treated as two groups of data and stepwise regression was applied separately. 319 

Table 3 shows the variables selected by stepwise regression, and the RSE, R2, and p-values of these models. It can be 320 

seen from these models that the height of scattering phase center (srtm-lvis_ht) is an important variable, but couldn’t 321 

predict biomass alone. The coherence of L-band HH data is not a very sensitive variable for biomass estimation. The 322 

regression models from 3 and 7 in Table 3 were used to generate the biomass map of the study area. The regression 323 

relation between predicted from model 3 and the reference biomass is: 324 

 Bpred = 38.2452 + 0.7019 Bref         (4)  325 

with R2 = 0.7019, and the RSE of 24.32 Mg/ha. The RMSE is 28.73 Mg/ha. The biomass map from model 3 is shown in 326 

Fig. 8. Comparing with Fig. 7, the biomass is obviously high, and spatial distribution pattern is vague. 327 

 328 

 <Table 3> <Fig. 8> 329 

 330 

4.3. Extending LVIS biomass samples using SAR data  331 

The biomass map shown in Fig. 7 was treated as a reference map.  One hundred points were randomly picked from the 332 

map shown in Fig. 7.  The stepwise regression was used to find the best regression models. Table 4 is a list of these 333 

models from stepwise regression when different independent variables were used. The stepwise regression selected 334 

different variables from those shown in Table 3. Though the R2 in Table 4 are lower than those in Table 3, the RSE and 335 

p-value are also lower, because of larger number of data points. Fig. 9 shows the comparison of predicted biomass using 336 

SAR data with the reference biomass using the model 7 in Table 4. The regression relation between predicted and 337 

reference biomass is: 338 

 Bpred = 38.8803 + 0.7126 Bref         (5)   339 

with R2 = 0.71, and the RSE of 24.06 Mg/ha. The RMSE is 28.21 Mg/ha. Fig. 10 is the biomass map predicted using 340 

this model.  341 
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 342 

 <Table 4>    <Fig. 9>  <Fig. 10> 343 

 344 

4.4. Model performance and error assessments 345 

Equations 3-5 showed that the regression models for biomass estimation from LVIS-field, SAR-field and SAR-LVIS 346 

have similar RMSE and R2. But by applying these models on LVIS or SAR data, the resulting biomass maps are quite 347 

different. Table 5 shows the statistics of these biomass maps and the correlations of these maps with the reference maps 348 

from LVIS-field data. Fig. 11 shows the histograms of above-ground biomass in the areas not masked out by Fig. 5-C. 349 

First we can see that the two biomass maps from SAR-field are very similar, as are the three biomass maps from LVIS-350 

SAR models. The average biomass from SAR-field models was too high. Stem map is a preserved mature stand with an 351 

average above-ground biomass of about 170 Mg/ha. The average biomass of the stem map extracted from the biomass 352 

maps using the models listed in Table 5 were 161.6, 200.5, 206.7, 141.3, 159.8 and 173.7 Mg/ha, respectively. Large 353 

parts of the forest areas in the study area have been harvested since 1980. The biomass level from Field-LVIS and all 354 

LVIS-SAR models is closer to reality (Table 5). The LVIS-SAR models gave similar mean biomass as the Field-LVIS 355 

model. The high correlation of these maps with the Field-LVIS map indicates similar spatial distribution patterns as well. 356 

The combined RMSE of the two-step models shown in Equations 3 and 5 will be sqrt(31.33^2 + 28.21^2) = 42.16 357 

Mg/ha.  358 

 359 

 <Fig. 11>     <Table 5> <Table 6> 360 

 361 

The statistics from bootstrapping of the coefficients of the regression model LVIS-SAR-ALL (Table 5) are shown in 362 

Table 6. The means are very close to the observed values and the distributions of these coefficients were close to normal 363 

(graphs not shown here). 364 

5. Discussion 365 

5.1.  Forest parameters retrieval at lidar footprint scale 366 

The biomass within a lidar footprint was calculated from trees with trunks inside the footprint. The lidar waveform is the 367 

result of reflectance from the tree crowns and the ground surface within the lidar beam while the major biomass is from 368 
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tree trunks.  While a trunk may be inside a footprint, a portion of its crown may fall outside.  Similarly, the crown of a 369 

nearby tree outside the footprint may be partially illuminated by the lidar beam. This mis-matching will reduce the 370 

correlation between the biomass calculated for lidar footprints and the lidar waveform indices. The effect depends on the 371 

forest spatial structure and the spatial scales at which the forest parameters are to be estimated. At flat areas, the bigger 372 

footprint size will have less edge effect. The direct measurements of lidar waveform are the vertical profile of reflectors 373 

within the footprint. It is directly related to the tree or canopy height information, but is not direct measurements of the 374 

biomass. The correlation between biomass and lidar waveform indices may depend on the species and spatial structure 375 

of forests. To define and determine the biomass in a footprint requires clear understanding of the relations between lidar 376 

waveform, crown structure and the biomass of forest stands. 377 

5.2.  Aggregation of data into various spatial scales 378 

No matter what models (multivariable regressions, regression trees, neural networks, etc.) are used to retrieve forest 379 

physical parameters from lidar waveform indices, several factors will always cause errors, as long as the model is 380 

statistical in nature. In addition to the fact mentioned above, the spatial heterogeneity of the canopy determined in part 381 

by its successional stage, natural and anthropogenic disturbances, and local terrain will cause more error from 382 

uncertainties.  These include 1) the uncertainties in field data; 2) the uncertainties in waveform indices, and 3) the mis-383 

matching between locations of field sampling and lidar footprints.  Aggregating the data and increasing the samples 384 

reduce the uncertainties and improve accuracy. A window of 5 by 5 15m pixels (75m spacing) was used in this study. 385 

Because of the discrepancy in data acquisition dates, and inadequate field sampling data, this issue has not been fully 386 

explored in this study. 387 

5.3.  Forest biomass information in SAR data 388 

This study shows that no single channel of SAR data provides enough information for biomass retrieval, so multiple 389 

channels from multiple polarizations, bands and operation modes, and temporal acquisitions were needed. The height of 390 

the scattering phase center at C-band from SRTM DEM – LVIS surface elevation was an important variable in this 391 

study.  Polarimetric SAR interferometry (Pol-InSAR) data has been used to estimate forest height (Cloude and Papathanassiou, 392 

2003) and then were subsequently converted to forest biomass through forest height-biomass relation (Mette, Papathanassiou and 393 

Hajnsek, 2004; Caicoya et al., 2010). The DESDynI mission will provide temporal L-band InSAR data. The height of 394 

scattering phase center at L band derived from these data if surface DEM is available, and the temporal coherence data 395 

may play the similar rule in the biomass estimation. The preference of polarizations of SAR data is not very clear in this 396 
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study probably because of the flat terrain of the study area. When terrain slope exists, the effects of terrain on co-397 

polarization signature will be more significant, so cross-polarization should not be excluded from future missions.    398 

5.4.  Comparability of lidar and SAR data for forest biomass estimation 399 

The regression models developed using randomly selected LVIS-derived biomass samples and SAR data can generate 400 

biomass maps comparable to the biomass map from LVIS data at 75m pixel spacing. The multi-channel SAR data can 401 

explain more than 70% (R2 in Table 4) of the variation of the biomass information contained in the LVIS data.  It was 402 

found that if the SAR data were used to predict rh50 and rh75, the best regression models selected by stepwise 403 

regression had R2 of 0.7699 and 0.767 (Equations and plots not shown in the paper). The results from this study show 404 

that the SAR data can be used to extend the forest biomass samples at lidar footprints to entire area covered by SAR 405 

data. The mean biomass from Field-LVIS model and LVIS-SAR models are very close. The differences were 4.6%, 406 

4.5% and 7.1% for the three models shown in Table 5. The spatial correlations between the LVIS-SAR biomass maps 407 

and the Field-LVIS map were high: 0.78, 0.78 and 0.8. 408 

5.5.  Differences of the biomass maps derived from lidar and SAR data using field data 409 

The biomass map generated from Field-LVIS model is closer to the mean biomass in the study area than the biomass 410 

map generated from Field-SAR model. Theoretically, if both LVIS and SAR data can be used to predict biomass, they 411 

should give similar results. The only reason for this departure is the inadequate samples of the field biomass for 412 

developing the SAR model: it doesn’t cover the proper range of forest structures.  In this study the number of samples of 413 

field data is only 1/3 of the random samples, the Field-SAR model can not produce the similar biomass maps generated 414 

from the LVIS biomass samples and the SAR model. 415 

It is also important to note that the PALSAR data were acquired in 2007 and SRTM data was acquired in 2000 while 416 

both the field data and the LVIS data were collected in 2003. Even though the areas with significant changes were 417 

excluded in the analyses, the natural changes, such as tree growth and mortality were not considered in the study. In our 418 

future studies, data collected at the same time and at various scales will be used to further investigate the issue.  This 419 

will provide the basis for future analysis. 420 

5.6. Errors in the biomass maps from one step (Lidar only) and two steps (lidar sample and SAR data) 421 

The RMSE of the Field-LVIS prediction model was 31.33 Mg/ha. This can be improved with more field samples, using 422 

more indices from lidar waveform, and more waveform samples by more aggregation. One of the major tasks in 423 

algorithm development for the future DESDynI Mission is improving biomass estimation from the lidar waveform data. 424 
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The RMSE of the best LVIS-SAR prediction model (7 in Table 4) was 28.21 Mg/ha. The combined RMSE of the two-425 

step models will be 42.16 Mg/ha. It can be seen from Fig. 9 that the error is relatively even across the entire range (0-426 

250 Mg/ha) of the biomass, which indicates that the “saturation” may not be a huge problem when multiple SAR 427 

variables were used. The accuracy of biomass prediction from lidar waveforms should be lower when the biomass is low 428 

or trees are shorter, because in these cases the return from vegetation canopy will merge with those from the ground 429 

surface. The signature from canopy was hidden in the ground peak, and the index which is most sensitive to biomass 430 

(e.g. rh50) is near zero (very close to the ground peak) and is easily affected by the shape of the ground peak. This may 431 

need to be addressed when the two-step method is used in the future.   432 

5.7. Comparison of histograms of the biomass maps 433 

Fig. 11 shows that the histogram of Field-LVIS biomass map has two modes. The biomass maps from the LVIS-SAR 434 

models have similar means to the Field-LVIS map, but show only little evidence of a bimodal distribution in their 435 

histograms. The lower mode of the histogram is around 18-35 Mg/ha, and was from  clear cut areas and some other low 436 

biomass areas. When the canopy height and biomass are low, the signature from canopy and ground surface will overlap 437 

in the lidar waveform, which may cause the uncertainty in biomass estimation from lidar waveform data. This issue may 438 

need to be carefully investigated in future studies. The SAR-derived biomass map gave surprisingly high values. This 439 

needs to be further investigated, probably by additional field observations.  440 

6. Concluding remarks 441 

The purpose of this study was to prove the concept of combined use of lidar-samples and radar-imagery for biomass 442 

mapping. The model relating lidar indices to measured biomass explained 71% of the variation at the aggregated 75m 443 

pixel resolution.  We used the map of biomass values generated from this model as the reference for this study. The 444 

results showed that by selecting 100 samples randomly from the reference map and using these samples to develop a 445 

prediction model from SAR data, the model can produce a new biomass map which has similar biomass levels and 446 

spatial biomass distributions.  There is no obvious biomass “saturation” up to 250 Mg/ha, the limit of our measured field 447 

data. 448 

Previously, various studies in SAR biomass estimation have been conducted using field measurements of biomass. The 449 

consensus is that both polarimetric and interferometric SAR data can be used to estimate forest biomass up to a certain 450 

level, depending on radar wavelength. Multiple channels of SAR data from multi-polarization, temporal, interferometric 451 

SAR data and transformations of these data can provide adequate information to extend the biomass information at lidar 452 

footprints across entire radar images. How to fully use the information and avoid over fitting will be a future research 453 
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topic. The height of the scattering phase center in the C band derived from SRTM data was an important variable in 454 

biomass estimation.  455 

This work represents a preliminary analysis of possible methods that can be used to combine lidar derived biomass 456 

(sampled) with SAR image data to provide detailed maps of accurate biomass. The future DESDYnI mission is expected 457 

to rely on data and methods similar to that used here.  Of course acquisition of SAR and Lidar data sets at nearly the 458 

same time, such as envisioned for DESDYnI should improve the results. New airborne contemporaneous NASA 459 

UAVSAR and LVIS data are becoming available along with supporting field measurements.  The techniques described 460 

herein and other methods can be tested with these data sets.   461 
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Figure Captions 588 
 589 
 Fig. 1. Study site near Howland, Maine: The red rectangle is the location of the stem map. Yellow circles are the field 590 

sampled sites in October 2003. 591 

Fig. 2. Stem map – Dark dots are locations of trees and the circles represent the LVIS footprints. 112 footprints were 592 

completely inside the stem map. 593 

Fig. 3. A) Gridded LVIS rh50 (Red), rh100 (Green), and rh25 (Blue), solid red rectangle is the stem map used in this 594 

study. The greenish area across the road to the east of the stem map  is an area with selective cutting. The top canopy 595 

height remains unchanged, but the density of trees was reduced as shown on ASTER images. B) Centers of LVIS 596 

footprints overlaid on the 15m ASTER image, showing the sampling density of LVIS data in the region. 597 

Fig. 4. ALOS PALSAR data: A) polarimetric data acquired on April 16, 2007: Lhh (red), Lhv (green), Lvv (blue) and 598 

B) Dual-pol data acquired on July 10, 2007 and SRTM phase center data in 2000: Lhh (red), Lhv (green), phase center 599 

height (blue). The phase center height was the difference between SRTM DEM and the ground surface elevation from 600 

LVIS data. 601 

Fig. 5. (A) Polygons from the multi-resolution segmentation of the Landsat ETM+ scenes (7/2/2000, 9/10/2003, and 602 

7/22/2007) (processed in Definiens Developer 7.0) overlaid on the ETM+ image of 7/22/2007; (B) Map of changed 603 

areas produced from segmentation and classification: green areas – areas that changed between 2003 and 2000; red 604 

areas – areas that changed between 2003 and 2007. (C) The mask used in this study. Forest areas disturbed during 2000 – 2007 605 

and the non-forest areas were masked out. 606 

Fig. 6. Predicted biomass vs. field measurements (stars): the biomass prediction model was developed from field 607 

sampled forest sites and 12 sub-plots within the stem map 1. Bpred = -1.717 +6.208 * rh50 + 8.625 * rh75, R2=0.71, 608 

P-value = 2.4e-08.   The “fit” line: Bpred = 48.53 + 0.71 Bfield, r2 = 0.71, RSE=27.1 Mg/Ha. RMSE calculated from 609 

SQRT(SUM((Bpred – Bfield)^2)/32) is 31.33 Mg/ha. The lines “LCL” and “UCL” are the lower and upper 95% 610 

confidence lines. 611 

Fig. 7. Biomass map using LVIS height indices from the regression model developed using field biomass data. The 612 

mask shown in Fig. 5-C was used in extraction of image data for developing regression model, and for comparisons of 613 

the biomass mapping results. Nevertheless, the prediction models were applied to entire images that are shown in this 614 

and following images. 615 
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Fig. 8. Biomass map from SRTM phase center height and PALSAR data using regression model developed from field 616 

biomass data. Comparing with the biomass in Fig. 7, the biomass level is much higher, and the spatial pattern of biomass 617 

distribution is not very clear. 618 

Fig. 9. Biomass predicted by SAR vs. the reference biomass mapped by LVIS data: one hundred random samples were 619 

selected in forested area. The line is 1:1 line. Prediction model: B = -87.599 + 12.878 * srtm.lvis + 4.799 * X10900totp 620 

+ 12.343 * X10900hv2hh + 10.172 * X20890hv2hh -8.509 * X20900VV + 9.226 * X20890HH. The prediction results 621 

(line “Fit”): Bsar = 36.8803 + 0.7126 Blvis, R2=0.71, RSE=24.06 Mg/ha, p-value is 0, RMSE= 28.21 Mg/ha. “LCL” and 622 

“UCL” are the lower ad upper 95% confidence lines. 623 

Fig. 10. Biomass map from SRTM phase center height and PALSAR data developed from regression model using 624 

random biomass samples from LVIS-derived reference map 625 

Fig. 11. Histograms of the biomass maps: The mask image of Fig. 5-C excluded about 16.5% pixels from these images. 626 

These six histograms correspond to the six images listed in Table 5. The SAR 1 and 2 biomass maps have significant 627 

higher mean biomass than the reference biomass map from LVIS data.   628 

629 
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 630 
Table 1. Field sample sites in Howland, Maine in 2003: MaxDBH – maximum DBH; Maxht –  maximum of tree height; 631 
DBH_ht – height weighted by Square of DBH; cfb_ratio – percentage of biomass from conifer trees; m_biom – mean  632 
biomass averaged over sampling sites. 633 
 634 
Site MaxDBH Maxht DBH_ht cfb_ratio m_biom 
 (cm) (m) (m) (%) (Kg/m2) 
5 28.3 12.9 11.5 100 7.22 
7 15.6 17.41 12.27 0 10.37 
8 16.5 17.91 12.65 0 10.64 
10 10.55 13.91 6.47 60 6.06 
15 25.9 21.94 14.46 73.8 16.93 
24 32.3 23.92 20.82 6 10.03 
25 18.1 13.66 10.5 92.2 13.85 
27 27.7 22.55 19.79 4.4 24.88 
30 41.8 20.44 18.37 100 28.56 
33 20.6 19.9 13.17 42.7 18.99 
36 30 21.37 17.2 41.3 21.11 
38 17.1 13.2 11.5 100 27.10 
39 16.1 12.71 11.48 100 4.05 
40N 34.2 18.81 17.16 100 22.26 
40 39.0 19.87 18.6 100 19.55 
41 33.9 22.01 19.21 41.9 21.35 
42 27.5 17.04 14.59 30.2 15.15 
43 32.3 18.35 15.5 98.8 11.46 
46 38.6 19.79 15.41 100 16.96 
48 34.9 19.45 15.75 96.3 14.00 
 635 
Table 2. ALOS PALSAR data used in the study: all data were acquired around 3am with ascending orbits. The numbers 636 
in bold were use to identify the data variables in this paper. PLR – polarimetric mode; FBD – Dual-pol (HH and HV) 637 
mode. 638 
 639 
Image Name Date Sensor Mode Angle 
ALPSRP065210900 4/16/2007 PLR 21.5 
ALPSRP071920900 6/1/2007 PLR 21.5 
ALPSRP077610890 7/10/2007 FBD 34.3 
ALPSRP084320890 8/25/2007 FBD 34.3 
 640 
 641 
 642 
 643 
 644 
 645 
 646 
 647 
 648 

649 
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Table 3. Regression models generated from stepwise regression using various POLSAR variables and the field plots. 650 
Adding more SAR variables will further increase the multiple R-square and reduce the Residual Standard Error. Model 651 
3 and 5 were used to generate biomass maps from SAR imagery data. RMSE was calculated by SQRT(SUM((Bpred – 652 
Bfield)^2)/N) and N is the number of field sites 653 
 654 
 655 
Model Variables Selected Var. RSE 

(Mg/ha) 
Mult. 
R2 

p-value RMSE 

1 HH, HV, VH, VV from 
4/16/07 and 6/1/07 

HV,VH of 
4/16/07; VH of 
6/1/07 

52.01 0.28 0.025  

2 Add total power, 
HV/HH ratio to 1 

VH of 4/16/07, 
VV, HH, totP 
and HV/HH of 
6/1/07 

48.7 0.41 0.012  

3 Add srtm-lvis_ht to the 
variables in 2 

VH, HV/HH of 
4/16/07 VV, 
HH, totP and 
HV/HH of 
6/1/07; srtm-
lvis_ht 

35.75 0.71 0.00003606 30.96 

4 Dual-pol HH and HV, 
HV/HH, HH coherence 
from two dates in 2007 

HH, HV, 
HV/HH of 
8/25/07 
Coherence of 
the two HH 
images 

54.6 0.24 0.112  

5 Add srtm-lvis_ht to 
variables in 4 

Srtm-lvis_ht 51.99 0.23 0.005528  

6 All SAR data (combine 
variables in 2 and 4) 

HH of 8/25/07, 
HV/HH of 
4/16/07 and 
VV, HH, totP 
of 6/1/07 

46.52 0.51 0.004335  

7 Add srtm-lvis_ht to 6 HH of 8/25/07, 
VH, HV/HH of 
4/16/07, VV, 
HH, totP, 
HV/HH of 
6/1/07 and 
srtm-lvis_ht 

33.92 0.75 0.0002362 28.76 

 656 
 657 

658 
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Table 4. Regression models generated from stepwise regression using various POLSAR variables and 100 random 659 
samples. Model 3, 5 and 7 were used to generate biomass maps from SAR imagery data. RMSE was calculated by 660 
SQRT(SUM((Bpred – Bfield)^2)/100). 661 
 662 
Model Variables Selected Var. RSE 

(Mg/ha) 
Mult. 
R2 

p-value RMSE 

1 HH, HV, VH, VV from 
4/16/07 and 6/1/07 

HV,VV of 
4/16/07; VV, 
HV, HH of 
6/1/07 

43.6 0.36 6.294e-8  

2 Add total power, 
HV/HH ratio to 1 

HV, HV/HH, 
totP of 4/16/07, 
VV, totP of 
6/1/07 

40.96 0.43 2.35e-10  

3 Add srtm-lvis_ht to the 
variables in 2 

totP, HV/HH of 
4/16/07 VV, 
totP of 6/1/07; 
srtm-lvis_ht 

29.64 0.70 0.0 28.73 

4 Dual-pol HH and HV, 
HV/HH, HH coherence 
from two dates in 2007 

HVof 7/10/07, 
HH, HVHH of  
8/25/07 
Coherence of 
the two HH 
images 

44.26 0.32 2.223e-07  

5 Add srtm-lvis_ht to 
variables in 4 

Srtm-lvis_ht 
HV/HH, HH of 
8/25/07 

32.66 0.63 0.0 32.00 

6 All SAR data (combine 
variables 2 and 4) 

HH, HV/HH of 
8/25/07, HV, 
VV, totP, 
HV/HH of 
4/16/07 and 
VV, totP of 
6/1/07 

39.19 0.50 1.56e-10  

7 Add srtm-lvis_ht to 6 HH, HV/HH of 
8/25/07, totP, 
HV/HH of 
4/16/07 and 
VV of 6/1/07 
and srtm-
lvis_ht 

29.26 0.71 0.0 28.21 

 663 
 664 

665 
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Table 5. Statistics of biomass maps from different data and methods: 1) Field-LVIS –from LVIS height indices and field 666 
data; 2) Field-SAR-PLR – from two PALSAR PLR data and field data; 3) FIELD-SAR-ALL – from the PALSAR PLR 667 
data, two dual-pol PALSAR data and field data; 4) LVIS-SAR-PLR and 5) LVIS-SAR-ALL – similar to 2 and 3, 100 668 
randomly selected samples from Field-LVIS were used instead of the field data. 6) LVIS-DualSAR from 100 samples 669 
and dual-pol PALSAR data only. The height of the scattering center derived from SRTM and LVIS DEMs was always 670 
used in the regression models. The ‘Corr’ is the spatial correlation between these biomass images. 671 
 672 
Models Min Max Mean Stdev Corr 
Field-LVIS 5.6 285.78 126.82 57.31 1.00 
Field-SAR-PLR 1.15 979.58 200.61 52.63 0.59 
Field-SAR-ALL 2.86 1095.39 200.53 55.20 0.54 
LVIS-SAR-PLR 1.11 318.67 120.97 46.93 0.78 
LVIS-SAR-ALL 1.12 321.75 121.13 47.31 0.78 
LVIS-DualSAR 0.86 272.18 117.8 44.87 0.80 
 673 
 674 
 675 
 676 
Table 6. Statistics from Bootstrap of the regression coefficients of model LVIS-SAR-PLR in Table 5. One thousand re-677 
samples were used in the process. The Mean is very close to Observed for all coefficients of the model. 678 
 679 
 680 
Coefficients of Observed Bias Mean SE 
(Intercept) -8.7599 0.4305406 -8.3294 7.3988 
srtm.lvis    1.2878 -0.0031205 1.2847  0.1375 
X20890HH 0.9226 -0.0126622 0.9099 0.3886 
X20890hv2hh 1.0172 0.0006902 1.0179 0.3510 
X10900totp 0.4799 0.0186490 0.4985 0.2836 
X10900hv2hh 1.2343 0.0292449 1.2635 0.2700 
X20900VV -0.8509 0.0180304 -0.8329 0.3407 
 681 
 682 
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