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Free-space optical communication
holds great promise for future space
missions requiring high data rates. For
data communication in deep space, the
current architecture employs pulse posi-
tion modulation (PPM). In this scheme,
the light is transmitted and detected as
pulses within an array of time slots.
While the PPM method is efficient for
data transmission, the phase of the laser
light is not utilized. 
The phase coherence of a PPM opti-

cal signal has been investigated with the
goal of developing a new laser commu-
nication and ranging scheme that uti-
lizes optical coherence within the estab-
lished PPM architecture and photon-
counting detection (PCD). Experi -
mental measurements of a PPM modu-
lated optical signal were conducted,
and modeling code was developed to
generate random PPM signals and sim-
ulate spectra via FFT (Fast Fourier
Transform) analysis. The experimental

results show very good agreement with
the simulations and confirm that coher-
ence is preserved despite modulation
with high extinction ratios and very low
duty cycles. 
A real-time technique has been devel-

oped to recover the phase information
through the mixing of a PPM signal with
a frequency-shifted local oscillator
(LO). This mixed signal is amplified, fil-
tered, and integrated to generate a volt-
age proportional to the phase of the
modulated signal. By choosing an ap-
propriate time constant for integration,
one can maintain a phase lock despite
long “dark” times between consecutive
pulses with low duty cycle. A proof-of-
principle dem onstration was first
achieved with an RF-based PPM signal
and test setup. With the same principle
method, an optical carrier within a PPM
modulated laser beam could also be
tracked and recovered. A reference
laser was phase-locked to an independ-

ent pulsed laser signal with low-duty-
cycle pseudo-random PPM codes. In
this way, the drifting carrier frequency
in the primary laser source is tracked via
its phase change in the mixed beat note,
while the corresponding voltage feed-
back maintains the phase lock between
the two laser sources. 
The novelty and key significance of

this work is that the carrier phase infor-
mation can be harnessed within an opti-
cal communication link based on PPM-
PCD architecture. This technology
development could lead to quantum-
limited efficient performance within the
communication link itself, as well as en-
able high-resolution optical tracking ca-
pabilities for planetary science and
spacecraft navigation. 

This work was done by David C. Aveline,
Nan Yu, and William H. Farr of Caltech for
NASA’s Jet Propulsion Laboratory. Further
information is contained in a TSP (see page
1). NPO-47994
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the counters are sampled and cleared.
This downsampled photon count infor-
mation is then sent one counter word
at a time to the GA. 
For a large array, processing even the

downsampled pixel counts exceeds the
capabilities of the GA. Windowing of the
array, whereby several subsets of pixels
are designated for processing, is used to
further reduce the computational re-
quirements. The grouping of the desig-
nated pixel frame as the photon count
information is sent one word at a time to

the GA, the aggregation of the pixels in
a window can be achieved by selecting
only the designated pixel counts from
the serial stream of photon counts,
thereby obviating the need to store the
entire frame of pixel count in the gate
array. The pixel count se quence from
each window can then be processed,
forming lower-rate pixel statistics for
each window. By having this processing
occur in the GA rather than in the ASIC,
future changes to the processing algo-
rithm can be readily implemented. 

The high-bandwidth requirements of
a photon counting array combined with
the properties of the optical modulation
being detected by the array present a
unique problem that has not been ad-
dressed by current CCD or CMOS sen-
sor array solutions. 

This work was done by Ferze D. Patawaran,
William H. Farr, Danh H. Nguyen, Kevin J.
Quirk, and Adit Sahasrabudhe of Caltech for
NASA’s Jet Propulsion Laboratory. Further in-
formation is contained in a TSP (see page 1).
NPO-48346

A high-speed edge-detecting line scan
smart camera was developed. The cam-
era is designed to operate as a compo-
nent in a NASA Glenn Research Center
developed inlet shock detection system.
The inlet shock is detected by projecting

a laser sheet through the airflow. The
shock within the airflow is the densest
part and refracts the laser sheet the most
in its vicinity, leaving a dark spot or shad-
owgraph. These spots show up as a dip
or negative peak within the pixel inten-

sity profile of an image of the projected
laser sheet. The smart camera acquires
and processes in real-time the linear
image containing the shock shadow-
graph and outputting the shock loca-
tion. Previously a high-speed camera

High-Speed Edge-Detecting Line Scan Smart Camera
This circuit reduces size and system complexity while increasing processing frame rates. 
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and personal computer would perform
the image capture and processing to de-
termine the shock location.
This innovation consists of a linear

image sensor, analog signal processing
circuit, and a digital circuit that provides
a numerical digital output of the shock
or negative edge location. The smart
camera is capable of capturing and pro-
cessing linear images at over 1,000
frames per second. The edges are identi-

fied as numeric pixel values within the
linear array of pixels, and the edge loca-
tion information can be sent out from
the circuit in a variety of ways, such as by
using a microcontroller and onboard or
external digital interface to include se-
rial data such as RS-232/485, USB, Ether-
net, or CAN BUS; parallel digital data; or
an analog signal. The smart camera sys-
tem can be integrated into a small pack-
age with a relatively small number of

parts, reducing size and increasing relia-
bility over the previous imaging system. 

This work was done by Norman F. Prokop of
Glenn Research Center. Further information is
contained in a TSP (see page 1).

Inquiries concerning rights for the commer-
cial use of this invention should be addressed
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Partnerships Office, Attn: Steven Fedor, Mail
Stop 4–8, 21000 Brookpark Road, Cleve-
land, Ohio 44135. Refer to LEW-18816-1.

NASA has identified deep-space opti-
cal communications links as an integral
part of a unified space communication
network in order to provide data rates in
excess of 100 Mb/s. The distances and
limited power inherent in a deep-space
optical downlink necessitate the use of
photon-counting detectors and a power-
efficient modulation such as pulse posi-
tion modulation (PPM). For the output
of each photodetector, whether from a
separate telescope or a portion of the
detection area, a communication re-
ceiver estimates a log-likelihood ratio for
each PPM slot. To realize the full effec-
tive aperture of these receivers, their
outputs must be combined prior to in-
formation decoding. 

A channel combiner was developed
to synchronize the log-likelihood ratio
(LLR) sequences of multiple receivers,
and then combines these into a single
LLR sequence for information decod-
ing. The channel combiner synchro-
nizes the LLR sequences of up to three
receivers and then combines these into
a single LLR sequence for output. The
channel combiner has three channel
inputs, each of which takes as input a
sequence of four-bit LLRs for each
PPM slot in a codeword via a XAUI 10
Gb/s quad optical fiber interface. The
cross-correlation between the chan-
nels’ LLR time series are calculated
and used to synchronize the sequences
prior to combining. The output of the

channel combiner is a sequence of
four-bit LLRs for each PPM slot in a
codeword via a XAUI 10 Gb/s quad op-
tical fiber interface. The unit is con-
trolled through a 1 Gb/s Ethernet
UDP/IP interface. 
A deep-space optical communication

link has not yet been demonstrated. This
ground-station channel combiner was
developed to demonstrate this capability
and is unique in its ability to process
such a signal. 

This work was done by Kevin J. Quirk,
Jonathan W. Gin, Danh H. Nguyen, and
Huy Nguyen of Caltech for NASA’s Jet Propul-
sion Laboratory. For more information, con-
tact iaoffice@jpl.nasa.gov. NPO-47733
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The thermal infrared sensor (TIRS) is
a quantum well infrared photodetector
(QWIP)-based instrument intended to
supplement the Operational Land Im-
ager (OLI) for the Landsat Data Conti-
nuity Mission (LDCM). The TIRS in-
strument is a far-infrared imager
operating in the pushbroom mode with
two IR channels: 10.8 and 12 µm. The
focal plane will contain three 640×512
QWIP arrays mounted onto a silicon
substrate. The readout integrated cir-
cuit (ROIC) addresses each pixel on the
QWIP arrays and reads out the pixel
value (signal). The ROIC is controlled
by the focal plane electronics (FPE) by

means of clock signals and bias voltage
value. The means of how the FPE is de-
signed to control and interact with the
TIRS focal plane assembly (FPA) is the
basis for this work.
The technology developed under the

FPE is for the TIRS focal plane assembly
(FPA). The FPE must interact with the
FPA to command and control the FPA,
extract analog signals from the FPA, and
then convert the analog signals to digital
format and send them via a serial link
(USB) to a computer. The FPE accom-
plishes the described functions by con-
verting electrical power from generic
power supplies to the required bias

power that is needed by the FPA. The
FPE also generates digital clocking sig-
nals and shifts the typical transistor-to-
transistor logic (TTL) to ±5 V required
by the FPA. The FPE also uses an appli-
cation-specific integrated circuit (ASIC)
named System Image, Digitizing, En-
hancing, Controlling, And Retrieving
(SIDECAR) from Teledyne Corp. to gen-
erate the clocking patterns commanded
by the user. The uniqueness of the FPE
for TIRS lies in that the TIRS FPA has
three QWIP detector arrays, and all
three detector arrays must be in synchro-
nization while in operation. This is to
avoid data skewing while observing

Development of Thermal Infrared Sensor To Supplement
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The application is for the Landsat Data Continuity Mission.
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