

Purpose of Study

- Investigate various polymers capacity for PCB absorption/removal
- Investigate effect of solvent interior on PCBremoval capacity
- Investigate feasibility of 1-step versus 2-step remediation treatment options
- Develop technology capable of removing PCBs from contaminated sediments
- Design prototype system capable of demonstrating capabilities of technology on larger scale

Overview of PCBs

- Polychlorinated Biphenyls
- Synthetic, 209 Congeners
- Heavy Industrial Use
- Possible Carcinogens
 C₁₂H₁₀.
- Bioaccumulate and Concentrate in Fatty Tissue
- TSCA Regulated Since 1976
- · Environmentally Persistent due to Stability
- Difficult to remediate from sediments due to variety
 of factors

<u>Previous Remediation</u> <u>Technologies for Sediments</u>

- Dredging and incineration
 - Contaminated sediments removed and destroyed
 - High risk of re-releasing the PCBs into the water table during the dredging process
 - Allows PCBs to become available to benthic population
 - Transport and incineration of PCB-contaminated wastes is a costly process
 - Incineration requires high-temperature facilities to avoid dioxin formation
- Sediment Capping
 - Impermeable capping material used to seal contaminated sediments in place
 - Does not treat source of contamination
 - Possibility of cap failure; re-introduction of contaminants into local water table
- Monitored Natural Recovery (MNR)
 - Contaminated sediments left in place
 - Natural processes allowed to reduce contamination through weathering processes, biodegradation, natural capping (clean sediment)
 - Requires long time periods
 - Not as effective as more aggressive techniques

In-Situ Remediation of PCB-Contaminated Sediments using Polymeric Absorption System

Initial Research Results

- Initial studies focused on determining various polymers affinities for PCB absorption
 - PCB-spiked sediment vial experiments carried out over a period of several months
 - Polymers exposed to contaminated sediments, extracted/analyzed at various times during experiment
 - Certain polymers (Butyl Rubber, Norprene, Gum Rubber/Foam) showed higher removal capacities over the 4 month study
- Follow-up studies were conducted to determine if PCB removal from contaminated sediments could be increased through the use of an interior solvent
 - Would provide a concentration gradient which would allow for increased PCB transport across polymer as well as to open polymer lattice for easier transport
 - Nitrile used due to convenience; polymer filled with acidified ethanol for testing
- Thick Nitrile Glove (W/EDH)
 19.19%
 66.13%

 Ethanol Interior
 4.99%
 2.47%

 Thick Nitrile Glove (W/EDH)
 24.18%
 68.61%

 Thick Nitrile Glove (w/EDH)
 19.42%
 70.13%

 Ethanol Interior
 4.34%
 2.49%

 FDM Letherise Glove (w/EDH)
 23.76%
 72.62%

Sample ID

Both polymer and solvent interior were extracted and analyzed
~70% of PCBs were recovered using this method

Conceptual Prototype Blanket Design

- Produced via industrial manufacturing process such as injection molding, plastic extruder, 3-D printing, etc...
- Produced in individual segments
 - A failure/leak in one segment will be localized; will prevent failure from affecting entire blanket and causing loss of entire solvent reservoir
 - Each segment will be capable of being pumped for easy solvent removal/replacement for re-use or recycling purposes, or to allow for remediation of the solvent using activated magnesium

For further information, contact the Kennedy Space Center Innovative Partnerships Office at <u>ksc-partnerships@mail.nasa.gov</u> or (321) 867-5033

Demonstration Unit

- Small-scale demo unit produced via 3-D printing
- Will be used in the next set of scaled-up experiments for proof-of-concept

4.10%

2-Step Process

- Preliminary lab work has shown that a 2-step process will be most effective in the field..
- Step 1 will be to use the Polymer Blanket to remove as many PCBs as possible from the contaminated sediments.
- Step 2 will be to extract the PCBs (*ex-situ*) from the polymer blanket and the interior solvent using a combination of ultrasound/solvents, then exposing the extract to activated zero-valent metal (AMTS) and allowing the PCBs to degrade.
- The Polymer blanket (now cleaned) can be refilled and re-used until the contaminated area has reached its target goal.

<u>Summary</u>

- Various polymers tested for ability to remove PCBs from contaminated sediments
- Butyl Rubber, Norprene, Gum Rubber/Foam showed highest removal capacities
- Interior solvent studies showed marked increase in PCB removal capacity when combined with polymers
- Polymer blanket designed for use in feasibility studies
- · Small-scale demonstration unit produced for testing

Future Directions

- Test demonstration unit's ability/feasibility to remove PCBs from contaminated sediments in a laboratory scale test
- Evaluate re-usability of both blanket and interior solvent
 - Test effectiveness of removal capability of PCBs over multiple removal cycles
 - · Test extraction efficiency from polymer blanket
- Evaluate capability of combining polymer blanket with AMTS technology for degradation of PCBs removed /extracted from contaminated sediments