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ABSTRACT

A 14-percent-thick, slotted, natural-laminar-flow airfoil, the S204, for light business-
jet applications has been designed and analyzed theoretically.  The two primary objectives of
high maximum lift, relatively insensitive to roughness, and low profile drag have been
achieved.  The drag-divergence Mach number is predicted to be greater than 0.70.

INTRODUCTION

The wing profile drag is the largest contributor to the total aircraft drag at cruise condi-
tions for most aircraft.  The wing profile drag contributes about one third of the total drag for
transport aircraft.  As the aircraft size decreases from transport through commuter to business
jets and other general-aviation (GA) aircraft and finally unmanned aerial vehicles (UAV’s)
and sailplanes, the percentage of the total aircraft drag due to the wing profile drag generally
increases, primarily because the relative wing area increases, as shown in the following table.

To minimize wing profile drag, the figure of merit  FOM  applicable to aircraft having
their wing area determined by a minimum-speed requirement (usually landing speed) should
be maximized:

where  cl,max  is the section maximum lift coefficient and  cd,cruise  is the cruise section profile-
drag coefficient.  (See ref. 1.)  [Note that the figure of merit is expressed in terms of section
(airfoil) characteristics, not aircraft characteristics.]  The figure of merit can be interpreted as
follows.  The wing area, and therefore the aircraft wetted area, can be reduced if a higher max-
imum lift coefficient is achieved, resulting in lower drag.  The wing profile drag can also be
reduced if a lower section profile-drag coefficient is achieved.  This figure of merit applies to
almost all classes of aircraft.  For those aircraft having their wing area determined by a fuel-
volume requirement (e.g., business jets), reducing the section profile-drag coefficient is even
more beneficial.

Aircraft Type

Transport ~ 1/3

Business jet ~ 1/3

Low-speed GA > 1/3

UAV 1/3 to 1/2

Sailplane > 1/2

Wing Profile Drag
Total Aircraft Drag
------------------------------------------------------

FOM
cl max,
cd cruise,
-------------------=



Three approaches have become accepted for the reduction of wing profile drag.  One
approach is to employ a high-lift system (e.g., leading-edge slat plus double- or triple-slotted,
Fowler flap) to achieve a higher maximum lift coefficient.  (See, for example, ref. 2.)  This
approach has several disadvantages.  Almost no laminar flow can be achieved because of the
disturbances introduced by the slat, which results in a high section profile-drag coefficient.
The maximum lift coefficient is limited to about 4, which limits the reduction in wing area.
High-lift systems are complex, both mechanically and structurally, resulting in higher weight
and cost.  This approach can provide a maximum wing profile-drag reduction of about 50 per-
cent compared to a conventional, turbulent-flow wing with no high-lift system and has been
adopted for all current transport aircraft.  Active high-lift systems (e.g., blown flaps and circu-
lation control) have demonstrated very high lift coefficients but the cost, complexity, and
potentially disastrous failure modes have prevented their adoption in production aircraft.

A second approach is to employ a natural-laminar-flow (NLF) airfoil to achieve a
lower profile-drag coefficient.  (See, for example, ref. 3.)  By appropriate airfoil shaping,
extensive (≥ 30-percent chord) laminar flow can be achieved on both the upper and lower
wing surfaces.  The extent of laminar flow is limited to about 70-percent chord by the pres-
sure-recovery gradient along the aft portion of the airfoil and by leading-edge sweep.  The
recovery gradient becomes steeper as the extent of the favorable gradient along the forward
portion of the airfoil increases.  The recovery gradient eventually reaches a limit beyond
which trailing-edge separation occurs, resulting in a lower maximum lift coefficient and a cor-
respondingly lower figure of merit.  Leading-edge sweep restricts the extent of laminar flow
because it introduces crossflow instabilities that lead to transition.  This approach can also
provide a wing profile-drag reduction of about 50 percent compared to a conventional, turbu-
lent-flow wing and has been adopted for most current general-aviation aircraft, including
business jets, as well as unmanned aerial vehicles and all sailplanes.  It does, however, require
more stringent construction techniques.

A third approach is to employ a laminar-flow-control (LFC) airfoil to achieve a lower
profile-drag coefficient.  (See, for example, ref. 4.)  By incorporating suction through porous
or slotted, wing skins, 100-percent-chord laminar flow can be achieved on both the upper and
lower wing surfaces.  LFC systems are very complex, mechanically, structurally, and opera-
tionally, resulting in higher weight and cost.  This approach can provide a wing profile-drag
reduction of about 75 percent compared to a conventional, turbulent-flow wing but has yet to
be adopted for any production aircraft.

For the present effort, a new approach, called a slotted, natural-laminar-flow (SNLF)
airfoil, is employed.  The SNLF airfoil concept is similar in nature to the slotted, supercritical
airfoil concept (ref. 5).
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SYMBOLS

Cp pressure coefficient

c airfoil chord, m

cd section profile-drag coefficient

cl section lift coefficient

cm section pitching-moment coefficient about quarter-chord point

M Mach number

R Reynolds number based on free-stream conditions and airfoil chord

t airfoil thickness, m

x airfoil abscissa, m

α angle of attack relative to x-axis, deg

Subscripts:

dd drag divergence

ll lower limit of low-drag range

ls lower surface

max maximum

T transition

ul upper limit of low-drag range

us upper surface

0 zero lift

Abbreviations:

LFC laminar flow control

NASA National Aeronautics and Space Administration
3



NLF natural laminar flow

SNLF slotted, natural laminar flow

AIRFOIL DESIGN

OBJECTIVES AND CONSTRAINTS

The design specifications for the airfoil are contained in table I.  The specifications
were distilled from the physical and performance characteristics of seven light business-jet
designs.  The following aircraft were used:  Adam Aircraft A700, Aerostar FJ-100, Beechcraft
Premier I, Cessna Citation Bravo and CJ1, Honda R&D HondaJet, and VisionAire Vantage.
The specifications encompass the requirements of almost all the aircraft well.

Two primary objectives are evident.  The first objective is to achieve a maximum lift
coefficient of at least 1.55 at a Mach number of 0.10 and a Reynolds number of 3 × 106, which
corresponds to the tip chord at minimum speed.  A requirement related to this objective is that
the maximum lift coefficient not decrease significantly with transition fixed near the leading
edge on both surfaces.  In addition, the airfoil should exhibit docile stall characteristics.  The
second objective is to obtain low profile-drag coefficients over the range of lift coefficients
from 0.20 at a Mach number of 0.65 and a Reynolds number of 12 × 106, which corresponds
to the root chord at the cruise condition, to 0.40 at a Mach number of 0.30 and a Reynolds
number of 12 × 106, which corresponds to the root chord at the climb condition.  (The second
specification regarding the upper limit of the low-drag, lift-coefficient range, which corre-
sponds to the high-altitude, cruise condition, is not critical for the airfoil design.)

It should be noted that, while the cruise Mach number is lower than those of larger
business-jet and transport aircraft, higher cruise speeds do not yield significant time savings
because the typical range of light, business jets is only about 2000 km (1000 nm); the negative
impact of higher speeds on fuel efficiency outweighs the small gain in block time.  The drag-
divergence Mach number at a lift coefficient of 0.25 for a Reynolds number of 12 × 106,
which corresponds to the root chord at the high-altitude, maximum-speed condition, should be
greater than 0.70.

One major constraint was placed on the design of the airfoil.  The airfoil thickness
should equal 15-percent chord.  No constraint was placed on the pitching-moment coefficient.
4



PHILOSOPHY

Given the above objectives and constraint, certain characteristics of the design are
apparent.  The following sketch illustrates a drag polar that meets the goals for this design.

Sketch 1

Point A is the lower limit of the low-drag, lift-coefficient range; point B, the upper limit.  The
profile-drag coefficient increases very rapidly outside the low-drag range because boundary-
layer transition moves quickly toward the leading edge with increasing (or decreasing) lift
coefficient.  This feature results in a leading edge that produces a suction peak at higher lift
coefficients, which ensures that transition on the upper surface will occur very near the lead-
ing edge.  Thus, the maximum lift coefficient, point C, occurs with turbulent flow along the
entire upper surface and, therefore, should be relatively insensitive to roughness at the leading
edge.

1.6

.4

0

C

B

A

cl

cd

.2
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A two-element airfoil concept is used to meet the design requirements.  The pressure
distribution at point A is illustrated in sketch 2.  (The sonic pressure coefficient at this Mach
number is −1.01, denoted by the horizontal, dotted line in sketch 2.)

Sketch 2

Because the aft element eliminates the requirement that the pressure at the trailing edge of the
fore element recover to free stream (see ref. 6), the favorable pressure gradient can extend fur-
ther aft.  For the slotted, natural-laminar-flow (SNLF) airfoil concept, the favorable gradient
extends along both surfaces of the fore element to near its trailing edge.  Thus, the fore ele-
ment is almost entirely laminar.  The aft element then provides the necessary recovery to free-
stream pressure.  Because the wake of the fore element does not impinge on the aft element,
the aft element can also achieve significant extents of laminar flow.

The SNLF airfoil concept allows the extent of natural laminar flow to be increased
beyond the limit previously discussed.  Thus, the concept allows lower section profile-drag
coefficients to be achieved without having to resort to the complexity and cost of LFC.  The
concept also allows high maximum lift coefficients to be achieved without variable geometry.
The SNLF airfoil shape is not radically different from conventional airfoil shapes—no more
than conventional, NLF airfoils are from conventional, turbulent-flow airfoils.  Unlike con-
ventional airfoils with slotted flaps, however, the SNLF airfoil has no nested configuration;
the slot between the fore and aft elements is always open.
6



EXECUTION

The Eppler Airfoil Design and Analysis Code (refs. 7 and 8), a subcritical, single-
element code, was used to design the initial fore- and aft-element shapes.  The MSES code
(ref. 9), a transonic, multielement code, was used to refine the shapes in the two-element con-
figuration.

The airfoil is designated the S204.  The airfoil shape is shown in figure 1.  The airfoil
thickness is 14-percent chord, which is less than the design constraint of  t/c = 0.15, primarily
to meet the cruise Mach-number objective.

THEORETICAL PROCEDURE

The pressure distributions and section characteristics are predicted using the method
of reference 9 at a Mach number of 0.10 for Reynolds numbers of 2 × 106, 3 × 106, 4 × 106,
and 6 × 106 and at Mach numbers of 0.30, 0.50, 0.60, and 0.65 for Reynolds numbers of
4 × 106, 6 × 106, 9 × 106, and 12 × 106.  The computations were performed with transition free
using a critical amplification factor of 9, although, because of laminar separation bubbles pre-
dicted near the trailing edge of the fore element, transition was fixed on both the upper and
lower surfaces of the fore element at 97 percent of the fore-element chord (i.e.,  x/c = 0.80).
Note that the method of reference 9 does not model the effect of Görtler instabilities (ref. 10)
on the laminar boundary layer.  A cursory evaluation of this effect indicates that these instabil-
ities may lead to transition in the concave region of the lower surface of the fore element.

Computations were also performed with transition fixed at 2-percent chord on the
upper surface and 5-percent chord on the lower surface of both elements for all Mach numbers
except 0.10 for which transition was fixed at the same locations on the aft element and on the
upper surface of the fore element but at 10-percent chord on the lower surface of the fore ele-
ment to account for the more aft location of the stagnation point at high lift coefficients.  Note
that all the fixed-transition locations are specified relative to the chord of the respective ele-
ment.
7



Because the right sides of the figures showing the transition locations and section
characteristics contain several curves, an explanatory example with transition free is given in
sketch 3, where the various curves are plotted with different line types.  Note that the transi-
tion locations on the aft element are downstream of those on the fore element.

Sketch 3

DISCUSSION OF RESULTS

PRESSURE DISTRIBUTIONS

The pressure distributions at various angles of attack with transition free at a Mach
number of 0.10 and a Reynolds number of 3 × 106 are shown in figure 2 and at Mach numbers
of 0.30, 0.50, 0.60, and 0.65 and a Reynolds number of 12 × 106, in figures 3, 4, 5, and 6,
respectively.

TRANSITION LOCATION

The variations of boundary-layer transition location on the fore and aft elements with
lift coefficient are shown in figures 7 through 11.  In general, within the low-drag, lift-
coefficient range, laminar flow extends essentially to the trailing edge on both surfaces of the
fore element, to about 60-percent of the aft-element chord on the upper surface of the aft ele-
ment, and to the trailing edge on the lower surface of the aft element.
8



SECTION CHARACTERISTICS

Mach Number and Reynolds Number Effects

 The section characteristics at a Mach number of 0.10 and Reynolds numbers of
2 × 106, 3 × 106, 4 × 106, and 6 × 106 with transition free are shown in figure 7.  For a Reyn-
olds number of 3 × 106 (fig. 7(b)), the maximum lift coefficient is predicted to be 2.13, which
meets the design objective of  cl,max ≥ 1.55.

 The section characteristics at a Mach number of 0.30 and Reynolds numbers of
4 × 106, 6 × 106, 9 × 106, and 12 × 106 with transition free are shown in figure 8.  For a Reyn-
olds number of 12 × 106 (fig. 8(d)), a low profile-drag coefficient is predicted at a lift coeffi-
cient of about 0.2, but no low-drag range of lift coefficients is predicted.  Thus, the design
objective of  cl,ul = 0.40  has not been met.  The zero-lift pitching-moment coefficient is pre-
dicted to be –0.133.

The section characteristics at Mach numbers of 0.50 and 0.60 and Reynolds numbers
of 4 × 106, 6 × 106, 9 × 106, and 12 × 106 with transition free are shown in figures 9 and 10,
respectively.

 The section characteristics at a Mach number of 0.65 and Reynolds numbers of
4 × 106, 6 × 106, 9 × 106, and 12 × 106 with transition free are shown in figure 11.  For a
Reynolds number of 12 × 106 (fig. 11(d)), low drag coefficients are predicted over the range
of lift coefficients from 0.22 to 0.52.  Thus, the lower limit of the low-drag range is higher
than the design objective of  cl,ll = 0.20.  For a Reynolds number of 9 × 106 (fig. 11(c)), low
drag coefficients are predicted over the range of lift coefficients from 0.19 to 0.59.  Thus, the
upper limit of the low-drag range is higher than the design objective of  cl,ul = 0.40.  Within
the low-drag range, no wave drag is predicted.  The zero-lift pitching-moment coefficient is
predicted to be –0.162.

The effect of Mach number on the section characteristics with transition free is sum-
marized in figure 12.  In general, the zero-lift angle of attack is relatively unaffected by Mach
number.  The lift-curve slope, the minimum drag coefficient, the width of the low-drag range,
and the magnitude of the pitching-moment coefficient increase with increasing Mach number.
Based on computations performed using the method of reference 9, the drag-divergence Mach
number with transition free is predicted to be greater than 0.70, which meets the design objec-
tive.

The effect of Reynolds number on the section characteristics with transition free is
summarized in figure 13.  In general, the zero-lift angle of attack, the lift-curve slope, and the
pitching-moment coefficient are relatively unaffected by Reynolds number.  The maximum
lift coefficient (fig. 13(a)) increases with increasing Reynolds number.  The minimum drag
coefficient and the width of the low-drag range decrease with increasing Reynolds number.
9



Effect of Roughness

The effect of roughness on the section characteristics is shown in figures 7 through 11.
The maximum lift coefficient at a Mach number of 0.10 and a Reynolds number of 3 × 106

with transition fixed (fig. 7(b)) is predicted to be 2.10, a decrease of approximately 1 percent
from that with transition free.  Thus, the design requirement has been satisfied.  In general, the
magnitudes of the zero-lift angle of attack and the pitching-moment coefficient decrease with
transition fixed primarily because the roughness on the aft element induces trailing-edge sepa-
ration on the upper surface of that element.  The lift-curve slope is relatively unaffected by the
roughness, but the drag coefficients are, of course, adversely affected.  The drag increase is
larger than that for a single-element airfoil of the same thickness, however, because of the
greater wetted surface length of the two-element configuration and also because of the separa-
tion on the aft-element upper surface.

The effect of Mach number on the section characteristics with transition fixed is sum-
marized in figure 14.  In general, the magnitude of the zero-lift angle of attack decreases with
increasing Mach number.  The lift-curve slope and the minimum drag coefficient increase
with increasing Mach number.  The magnitude of the pitching-moment coefficient is rela-
tively unaffected by Mach number.  The drag-divergence Mach number with transition fixed
is predicted to be greater than 0.70, which meets the design objective.

The effect of Reynolds number on the section characteristics with transition fixed is
summarized in figure 15.  In general, the magnitudes of the zero-lift angle of attack, the maxi-
mum lift coefficient, and the pitching-moment coefficient increase with increasing Reynolds
number.  The lift-curve slope is relatively unaffected by Reynolds number.  The minimum
drag coefficient decreases with increasing Reynolds number.

CONCLUDING REMARKS

A 14-percent-thick, slotted, natural-laminar-flow airfoil, the S204, for light business-
jet applications has been designed and analyzed theoretically.  The two primary objectives of a
high maximum lift coefficient, relatively insensitive to leading-edge roughness, and low
profile-drag coefficients have been achieved.  The drag-divergence Mach number is predicted
to be greater than 0.70.
10
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TABLE I.- AIRFOIL DESIGN SPECIFICATIONS

Parameter Value
Mach

Number
M

Reynolds 
Number

R

Maximum lift coefficient  
cl,max

≥ 1.55 0.10 3 × 106

Lower limit of low-drag, 
lift-coefficient range  cl,ll

0.20 0.65 12 × 106

Upper limit of low-drag, 
lift-coefficient range  cl,ul

0.40
0.65

0.30

9 × 106

12 × 106

Zero-lift pitching-moment 
coefficient  cm,0

—

Drag-divergence Mach 
number  Mdd  at  cl = 0.25 ≥ 0.70 — 12 × 106

Thickness  t/c 0.15
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