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Performance and Weight Estimates for an  
Advanced Open Rotor Engine 

 
Eric S. Hendricks and Michael T. Tong 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
NASA’s Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are 

focused on developing concepts and technologies which may enable dramatic reductions to the 
environmental impact of future generation subsonic aircraft. The open rotor concept (also historically 
referred to an unducted fan or advanced turboprop) may allow for the achievement of this objective by 
reducing engine fuel consumption. To evaluate the potential impact of open rotor engines, cycle modeling 
and engine weight estimation capabilities have been developed. The initial development of the cycle 
modeling capabilities in the Numerical Propulsion System Simulation (NPSS) tool was presented in a 
previous paper. Following that initial development, further advancements have been made to the cycle 
modeling and weight estimation capabilities for open rotor engines and are presented in this paper. The 
developed modeling capabilities are used to predict the performance of an advanced open rotor concept 
using modern counter-rotating propeller designs. Finally, performance and weight estimates for this 
engine are presented and compared to results from a previous NASA study of advanced geared and direct-
drive turbofans.  

Introduction 
At the outset of the Subsonic Fixed Wing (SFW) Project, NASA established a set of system level 

environmental metrics as a means to spur technology development to reduce aviation’s environmental 
impact. The goals, as shown in Figure 1, are generational and the metrics, and their respective values, 
have evolved over time and are relative to a particular baseline vehicle. The current metrics address 
reducing certification noise, oxides of nitrogen (NOx) emissions in the landing/takeoff (LTO) cycle, NOx 
emissions during cruise, and aircraft fuel/energy consumption (Ref. 1). The SFW project, NASA’s 
Environmentally Responsible Aviation (ERA) Project, and the FAA’s Continuous Lower Energy, 
Emissions and Noise (CLEEN) program are all developing advanced technologies for reducing the 
environmental impact of subsonic transport aircraft across the range of future generations. While there is 
a desire to improve all subsonic aircraft, it is recognized that the benefits of future technologies depend on 
when those technologies mature to a sufficient Technology Readiness Level as well as on the vehicle size 
and mission.  

To assess propulsion technologies capable of meeting the first generation of goals (N+1), the SFW 
systems analysis team has been investigating potential environmental benefits of advanced propulsion 
systems on an “advanced” single-aisle transport aircraft (ASAT). This aircraft would fall into the same 
class as the Boeing 737 and Airbus A320. Nominally, the ASAT aircraft would be capable of carrying 
162 passengers on a 3250 n mi flight. To power this aircraft, three types of advanced propulsion systems 
have been considered in a multiphase, multiyear study conducted by the systems analysis team. During 
the first 3 years of the study, two types of ultra-high bypass (UHB) turbofan concepts were assessed. 
These two concept types were the advanced direct-drive turbofan and the geared turbofan. The studies 
showed potential reductions of 29 percent in fuel burn, 50 percent in LTO NOx emissions and a 
25 EPNdB reduction in cumulative noise relative to a late 1990s technology baseline (Ref. 2).  
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Figure 1.—NASA's technology goals for subsonic transport aircraft (Ref. 1). 

 

 
Figure 2.—A scale model of the open rotor being tested in 

NASA Glenn Research Center's 9- by 15-Ft low speed 
wind tunnel. 

 
Following several phases of evaluating UHB turbofan concepts, the systems analysis team began 

investigating the open rotor concept for powering the ASAT aircraft. The open rotor engine concept, 
shown being tested in Figure 2, was originally developed during the 1970s and 1980s in response to high 
fuel prices. During that time, NASA’s Advanced Turboprop Project (ATP) sponsored research by 
government, academia and industry to develop advanced propeller configurations. While the technology 
developed during the ATP never became commercial product, it demonstrated the potential to reduce 
aircraft fuel consumption by 25 to 30 percent versus aircraft flying at that time (Ref. 3). As a result, the 
ATP team (both NASA and industry partners) received the 1987 Collier Trophy “for developing 
advanced turboprop propulsion technology for new fuel efficient subsonic aircraft propulsion systems” 
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(Ref. 3). With the return of higher fuel costs, the open rotor concept has received renewed interest due to 
its potential to reduce fuel consumption. Research efforts on developing and testing new open rotor blade 
designs are ongoing in the United States (Ref. 4) and in Europe(Ref. 5). 

In order to evaluate the potential benefits of a modern open rotor engine, the SFW systems analysis 
team has developed modeling capabilities for assessing this system. Initial capabilities for analyzing the 
engine performance, aircraft mission and acoustic characteristics have been created for open rotors (Ref . 
6 and 7). This paper first presents an overview of the previous cycle modeling developments made for 
open rotor engines. It then describes recent enhancements made to the cycle modeling capability as well 
as the development of open rotor engine weight estimation techniques. Next, the cycle and weight 
modeling techniques described in the paper are used to evaluate an open rotor engine for the ASAT 
aircraft. Finally, the open rotor engine developed for this application is compared to advanced geared and 
direct-drive turbofans developed during previous phases of the advanced propulsion study for ASAT 
aircraft. 

Review of Previous Open Rotor Cycle Modeling Developments 
Over the past 3 years, NASA has worked to develop cycle modeling capabilities for open rotor 

engines within the Numerical Propulsion System Simulation (NPSS) tool (Ref. 8). These modeling 
improvement efforts have concentrated in four main areas and were presented in a previous paper by the 
author (Ref. 6). The following sections briefly summarize the relevant modeling developments produced 
during the first 2 years of this research effort.  

Counter-Rotating Propeller Modeling 
The first challenge encountered when creating a cycle model for an open rotor engine was developing 

a performance prediction modeling capability for the counter-rotating propellers as the traditional 
propeller element in NPSS was not configured to handle the high speed, counter-rotating propellers. The 
traditional propeller element could not accept the multiple shaft inputs for the counter-rotating 
configuration and could not accept performance maps that were a function of freestream Mach number. 
Therefore, a new component was created for NPSS which would enable analysis of this type of 
configuration. This component was written in a similar fashion as other NPSS components, with the 
performance of the counter-rotating propellers being estimated via performance maps. As a result, a wide 
variety of propeller designs can be modeled by simply replacing the performance map.  

The development of this performance analysis capability in NPSS was based on the available 
information for some of the historic blade sets designed during the ATP. The most complete data set 
available from the ATP was for the F7/A7 blade geometry (Ref. 9). This scale model blade set was 
thoroughly tested in wind tunnels and was eventually used in tests of a full scale engine, the GE36 
Unducted Fan (UDF) Demonstrator. Using the available data, performance maps were created by fitting 
the data with a set of second-order response surface equations. These equations captured the relationship 
between the independent parameters (advance ratio, free stream Mach number and blade pitch angle) and 
the output power coefficient and thrust coefficient.  

Counter-Rotating Turbine Modeling  
During the initial development of the open rotor cycle analysis capability, a power turbine similar to 

that used in the GE36 UDF Demonstrator was assumed as the most likely configuration. In this 
architecture, an alternating blade row, counter-rotating turbine was used as shown in Figure 3 (Ref. 10). 
This type of turbine is unique and required the investigation of modeling techniques that may be able to 
capture the performance of this type of system. Of the techniques tested, the use of a single traditional 
turbine component in NPSS was selected as it produced a reasonable representation based on available 
data from the GE36. 

s
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Figure 3.—Schematic of GE36 power turbine (Ref. 10).  

 
 

Multidesign Point (MDP) Approach 

One of the key components of the initial open rotor modeling development was the implementation of 
a MDP approach for engine cycle analysis. In this approach, the NPSS engine model was set up such that 
several operating conditions would be simultaneously used to size the engine. This approach requires 
some additional implementation time, but results in all engines created during the design process meeting 
the operating requirements at all flight conditions. During the open rotor model development process, two 
design points were selected as being critical for the engine sizing process. These two points were a top-of-
climb condition (nominally Mach 0.78 at 35,000 ft, standard day) and a hot day, rolling takeoff condition 
(Mach 0.25, sea level, International Standard Atmosphere (ISA) +27 °F). By providing thrust targets and 
operating limits at these two points, an engine cycle can be quickly generated which meets these 
operating requirements for a given set of component designs and technology level assumptions. Through 
implementing the MDP approach, the development time for generating engine cycles that meet the 
aircraft mission needs was greatly reduced. 

Power Management Strategy 

Finally, a power management strategy was developed and implemented for the open rotor engine. The 
power management strategy is important for an open rotor as both the combustor fuel flow and the 
propeller blade pitch angles could be changed to affect thrust and fuel burn of the engine. From the 
historic development of the open rotor concept during the Advanced Turboprop Project, very little 
information was provided about how the engine would be controlled with these two degrees of freedom. 
Therefore, a control strategy was created during the initial model development in which the blade pitch 
was varied with freestream Mach number according to a fixed schedule as shown in Figure 4 (Ref. 6). 
This schedule was selected based on observing the impact of several pitch angles on the engine operation 
at various flight conditions. By selecting this power management strategy, the engine could easily be 
evaluated at all operating conditions in the flight envelope.  
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Figure 4.—Front propeller blade angle schedule (Ref. 6). 

Open Rotor Modeling Improvements 
The initial modeling developments presented in the previous sections allowed for the cycle analysis 

of a notional open rotor engine to be completed. However, over the past year a number of improvements 
have been made to NASA open rotor modeling capabilities which have enhanced the ability to assess 
future open rotor engines. The following sections briefly summarize the recent modeling developments 
made for the open rotor which supplement or replace the modeling capabilities described above.  

Performance Maps for Modern Counter-Rotating Propellers 

In the initial development of an open rotor engine cycle model described in Reference 6, the historic 
F7/A7 counter-rotating propellers were used to generate the performance maps. These propellers were 
designed during the 1980s as part of the Advanced Turboprop Project and therefore do not accurately 
estimate performance characteristics of modern blade designs. As a result, new performance maps 
representative of modern blade designs were needed in order to estimate the benefits of a future open 
rotor engine. 

Over the past few years, NASA and General Electric have been collaborating to design and test 
advanced open rotor blade geometries (Ref. 11). A multiyear test campaign was conducted in the NASA 
Glenn Research Center 8- by 6-Ft and 9- by 15-Ft wind tunnel complex that measured both performance 
and acoustic characteristics of these modern blade designs. From the performance characteristics 
observed in these tests, performance maps were created following the process described in Reference 6. 
The performance maps correlate the thrust and power coefficients to advance ratio, free stream Mach 
number and blade pitch angle using a second order polynomial response surface equation. Using these 
performance maps in the cycle modeling has enabled the assessment of an advanced open rotor engine 
system. 
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Figure 5.—Geared open rotor engine components. 

Geared Open Rotor Architecture 

In the initial development of the open rotor modeling capability, a direct drive architecture with a 
counter-rotating power turbine was assumed. This configuration eliminates the need for a large, heavy 
and complex gearbox. However, the direct drive configuration requires that the turbine and propellers 
rotate at the same speeds. The propellers designed for open rotors are large in diameter and constrained by 
tip speed, typically resulting in rotational speeds of less than 1100 rpm. This relatively slow rotation 
speed makes designing the turbine difficult as a larger diameter or more stages need to be added to extract 
enough work from the core flow. Larger diameters and additional stages add more weight to the turbine 
and the overall engine system. Alternatively, an engine with a gearbox allows the propeller and turbine to 
each be designed for different rotational speeds. The turbine can be designed to provide the same power at 
a higher rotation speed with a smaller diameter and fewer stages. This turbine design would be lighter 
than a counter-rotating turbine meeting the same power requirements and would offset the weight added 
by the gearbox. In a trade study comparing the geared and direct drive open rotor engines, similar 
performance levels were achieved with the weight estimate for geared engine slightly lower than the 
direct drive configuration. This benefit would likely be greater as the open rotor engine grows to higher 
thrusts. The higher thrust engines would need to have a larger propeller diameter to produce the required 
thrust and the tip speed limit would result in even slower propeller rotation speeds. Therefore, a cycle 
model for a geared open rotor engine was pursued for this study as shown in Figure 5. In this 
configuration, there are two spools composing the gas generator: the low pressure (LP) spool composed 
of a compressor (LPC) and turbine (LPT) and the high pressure (HP) spool composed of a compressor 
(HPC) and turbine (HPT). Downstream of the gas generator is a power turbine (PT) which drives the 
counter-rotating propellers through a gearbox.  

Power Management Strategy 

During the initial development of the open rotor cycle modeling capability, a power management 
strategy was developed which utilized a blade pitch schedule as a function of Mach number. This 
schedule was required as both the propeller blade pitch angles and fuel flow could be varied to achieve 
the desired thrust. However, the strategy of holding blade pitch constant at a given Mach number resulted 
in large changes in propeller speed as the engine thrust was reduced. By comparison, most modern 
turboprops operate with constant speed propellers. Therefore, a constant tip speed power management 
strategy was investigated and implemented in the current open rotor model. The constant tip speed power 
management strategy was implemented in the NPSS cycle model by adding an independent parameter for 
the blade pitch and a dependent parameter for the tip speed to the solver. Additionally, a minimum blade  
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Figure 6.—Blade angle settings for constant tip speed throughout the flight envelope. 

 
angle constraint was applied to prevent the engine from operating at blade angles that were outside the 
range of validity for the propeller maps. As a result of utilizing the constant tip speed strategy, operating 
points for the engine were identified for selected flight conditions as shown in Figure 6. In comparison to 
the previous power management strategy shown in Figure 4, the constant tip speed strategy shown in 
Figure 6 gives a range of possible blade angles for each flight Mach number. However, the overall trend 
of blade pitch angle increasing as Mach number increases remains similar to the previous strategy. The 
new constant tip speed approach also captures other minor factors that impact the blade angle, such as the 
variations in altitude. Figure 6 can provide further insight into how the blade angles change as the engine 
thrust is changed at a given flight condition. For the maximum thrust (power) conditions, the blade angle 
is the largest with the blade angle decreasing by as much as 10° as the engine throttle is reduced.  

Open Rotor Weight Estimation 

Finally, the NASA software tool WATE++ (Weight Analysis of Gas Turbine Engines) (Refs. 12, 13, 
and 14) was used to create an engine component architecture that would match the engine thermodynamic 
cycle produced using the methods in the previous sections. The cycle data required for WATE execution, 
such as airflow, temperatures, and pressures, pressure ratios, etc., were derived from the NPSS cycle 
model output. The maximum temperature and pressure required for sizing each engine component were 
identified by predicting the cycle performance throughout the flight envelope. The cycle data, the material 
properties, and design rules for geometric, stress, and turbomachinery stage-loading limits were used to 
determine an acceptable engine layout. The material assumed for the LPC and for the first five stages of 
the HPC is titanium. For the remaining stages of the HPC, a titanium-aluminide alloy is used. Nickel-
based alloy is used for all the turbine components. For the counter-rotating propellers, a rotor weight 
correlation which is a function of maximum power delivered to the rotor, blade tip-speed, and number of 
blades is used. This correlation assumes the blades are constructed of polymer composites and is 
described in detail in Reference 15. An empirical correlation was used to calculate the weight of the 
gearbox and lubrication system as shown in Figure 7. The correlation is a function of maximum delivered 
output power and gear ratio, and was developed at NASA based on actual gearbox weight data from over 
fifty rotorcraft, tiltrotors, and turboprop aircraft. 
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Figure 7.—Gearbox and Lubrication System Weight Correlation. 

Open Rotor Modeling Results 
The modeling developments described in the previous sections were used to create an open rotor 

engine model representative of a future system capable of powering an advanced single aisle transport 
aircraft. This aircraft is designed to fly 3250 n mi at a cruise Mach number of 0.78 carrying 162 
passengers. The following sections provide an overview of the performance and weight estimates 
calculated for an open rotor engine based on the described model. Following these sections, the open rotor 
engine results are compared to advanced geared and direct-drive turbofans which were modeled by 
NASA as part of a previous study. 

Cycle Analysis and Performance Results 

The cycle model was developed using the MDP strategy previously summarized in which two 
operating conditions were simultaneously used to size the engine components. The two design points 
selected for this study were a top-of-climb (Mach 0.78 at 35,000 ft) condition and a rolling takeoff (Mach 
0.25 at 0 ft, ISA+27 °F) condition. At each of these points, thrust requirements and operating limits were 
specified for the engine. Additionally, performance assumptions were specified for each core component 
at the top-of-climb (aerodynamic design point) flight condition as shown in Table 1. The component 
efficiency assumptions listed in the table are consistent assumptions used in a recent NASA study of 
advanced geared and direct drive turbofans (Ref. 2). However, the pressure ratios of the low pressure and 
high pressure compressors were adjusted to match the open rotor engine architecture. The LPC pressure 
ratio was set to 4.2 and the HPC pressure ratio set to 10.0 to give an overall pressure ratio of 42.0 which 
matches the turbofan study. In addition to the assumptions in Table 1, a gear ratio of 6 and a gearbox 
efficiency of 99 percent were assumed. Finally, propeller performance assumptions were selected based 
the propeller design characteristics and data obtained during wind tunnel testing.  
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TABLE 1.—OPEN ROTOR ENGINE COMPONENT PERFORMANCE  
ASSUMPTIONS AT TOP OF CLIMB (M0.78, 35000 ft) 

Component Parameter Value 

LPC Pressure ratio  
Adiabatic efficiency, %  

4.2  
89.6  

HPC Pressure ratio  
Adiabatic efficiency, % 

10.0  
88.6  

HPT  Adiabatic efficiency, %  91.9  
LPT  Adiabatic efficiency, %  94.2  
Power turbine  Adiabatic efficiency, % 94.0  

 
Using MDP methodology and assumptions described above an NPSS cycle model was developed. 

Table 2 provides a summary of key engine metrics at the two operating points used to design the engine 
cycle model as well as at sea level static. At the top-of-climb point, 5000 lb of thrust is required by the 
airplane to achieve service ceiling performance with an overall pressure ratio (OPR) of 42 coming from 
the component performance assumptions. At the rolling takeoff design point, 17,500 lb of thrust was 
required to meet field length performance for the aircraft. However, 19,000 lb force of thrust was 
produced by the engine which exceeded the thrust required by 1,500 lb. The engine exceeded the rolling 
takeoff thrust required as a result of temperature constraints set in the engine MDP process. These 
constraints limited the combustor exit temperature at the top-of-climb flight condition to ensure the hot 
section would operate at lower temperatures during cruise resulting in longer life of the turbines. As a 
result, the open rotor engine produces excess thrust at the rolling takeoff and sea level static conditions.  
 
TABLE 2.—OPEN ROTOR ENGINE PERFORMANCE FOR MAXIMUM THRUST AT KEY OPERATING CONDITIONS 

Performance parameter Top of climb,  
M0.78, 35000 ft 

Rolling takeoff,  
M0.25, 0 ft, ISA+27 °F 

Sea level static,  
M0.0, 0 ft, ISA+27 °F 

Net thrust, lbf 5000 19000 27300 
Propeller thrust, lbf 4830 18600 26500 
TSFC, lbm/hr/lbf 0.428 0.229 0.158 
OPR 42.0 28.5 29.4 
Combustor exit temperature, R 3280 3460 3460 
Core mass flow, lbm/s 21.8 42.7 42.2 

 
For all three flight conditions shown in Table 2, a low thrust specific fuel consumption (TSFC) is 

predicted from the cycle model. The low TSFC is a consequence of having a large portion of the net 
thrust at each operating condition being produced by the high-efficiency counter-rotating propellers. The 
low TSFC is a highly desirable characteristic of the open rotor engines and persists throughout the flight 
envelope. The TSFC characteristics for different throttle settings at the flight conditions of Table 2 are 
shown in Figure 8.  

Weight and Flowpath Estimates 

Following the engine cycle model development, an estimate of the engine weight and flowpath 
dimensions was developed using the methods described in the previous section. Table 3 gives a summary 
of the major weights and dimensions of the open rotor engine developed for this study. The overall engine 
weight is predicted to be over 9,000 lb, with about a third of the engine weight coming from the counter-
rotating propellers. An additional 1000 lb of the engine weight comes from the addition of a gearbox to 
the engine. Table 3 also lists the estimated overall dimensions of the open rotor engine. The maximum 
propeller diameter for the engine designed in this study is estimated to be about 13.8 ft with an overall 
engine length of about 23 ft. Additionally, Table 3 presents the estimates for the number of stages for 
each turbomachinery component and the assumed gear ratio for the gearbox. A notional sketch of the 
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flowpath of the open rotor engine developed in this study is shown in Figure 9. The center box between 
the propeller blades is the location of the gearbox, with the other boxes representing ducts that pass the 
core flow around the turbine to the core nozzle. 

 
 

 
Figure 8. Power Hooks for Top of Climb, Rolling Takeoff and Sea Level Static Operating Conditions. 

 
 
 

TABLE 3.—PRINCIPLE MECHANICAL DESIGN PARAMETERS 
Mechanical design parameter Value 
Total engine pod weight, lbm ................................................................ 9220 
Counter-rotating propeller weight, lbm ................................................. 3240 
Gearbox weight, lbm ............................................................................. 1030 
Gas generator, turbomachinery weight, lbm .......................................... 4950 
Maximum propeller diameter, ft ............................................................. 13.8 
Nacelle diameter, ft ................................................................................... 5.6 
Overall length, ft ..................................................................................... 23.2 
LPC stages ...................................................................................................4 
HPC stages...................................................................................................7 
HPT stages ...................................................................................................1 
LPT stages ...................................................................................................1 
Power turbine stages ....................................................................................3 
Gear ratio .....................................................................................................6 
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Figure 9.—Notional Cross-Section of the Open Rotor Engine. 

 

Comparison to NASA Advanced Turbofan Study 

The open rotor engine study described in this paper is the latest in a series of NASA studies which 
have examined future propulsion system concepts for an ASAT aircraft. As such, the open rotor model 
development followed a similar modeling process and applied the same technology assumptions as the 
previous studies. Therefore, a comparison can be made between engines of the previous studies and the 
open rotor engine presented in this paper.  

The previous studies on advanced propulsion systems for ASAT aircraft focused on modeling geared 
and direct drive turbofans as described in Reference 2. In the most recent phase of the turbofan study, two 
engines, one geared and one direct drive, were identified as desirable due to their system level 
characteristics. A geared turbofan with a high pressure ratio LPC and a design point fan pressure ratio of 
1.5 was determined to be the engine that resulted in the lowest block fuel (and therefore the lowest 
operating cost) required for the selected mission. The second engine identified in the study was a direct 
drive configuration with a low pressure ratio LPC and design point fan pressure ratio of 1.7. This engine 
resulted in the lowest aircraft takeoff gross weight which is often used as a surrogate parameter in 
conceptual design for the purchase cost of the aircraft. Because of the desirable features of these two 
engines, they were selected for comparison to the open rotor engine described in this paper. 

Key engine characteristics for the geared turbofan, direct drive turbofan and open rotor engines are 
presented in Table 4. At the top-of-climb flight condition, all three engines produce a similar amount of 
thrust (see table note regarding differences in top-of-climb flight conditions between the turbofans and 
open rotor) with the same overall pressure ratio. While all three engines produce similar amounts of 
thrust, the open rotor engine has a lower thrust specific fuel consumption. A lower TSFC generally 
translates to less fuel required to fly the same mission with the aircraft. At the sea level static operating 
point, the open rotor engine performance and environmental characteristics are noticeably different than 
both of the turbofan engines. First, the open rotor engine produces almost 4000 lb of additional thrust. 
The higher thrust at sea level is again evidence that the open rotor engine is oversized for takeoff because 
of the requirements and constraints placed on the engine at the top-of-climb design point. The open rotor 
engine also has a lower TSFC at the sea level static flight condition compared to both turbofans, 
indicating lower fuel consumption for the open rotor engine during takeoff.  
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TABLE 4.—COMPARISON OF ADVANCED TURBOFAN AND OPEN ROTOR ENGINES 
Engine parameter Geared 

turbofan 
Direct drive 

turbofan 
Open rotora 

Top of climb,  
M0.80, 35000 ft 

OPR 42 42 42 
Net thrust, lbf 5000 5000 4960 
TSFC, lbm/hr/lbf 0.502 0.525 0.441 

Sea level static,  
M0.0, 0 ft, ISA+27 °F 

OPR 32.7 33.8 29.4 
Net thrust, lbf 23400 22700 27300 
TSFC, lbm/hr/lbf 0.257 0.290 0.158 

Fan or propeller diameter, ft 6.2 5.5 13.8 
Nacelle maximum diameter, ft 7.6 6.7 5.6 
Total engine pod weight, lbm 6630 6100 9220 

aNote that the open rotor engine was designed for a top of climb flight condition of M0.78 at 
35000 ft in order to match propeller design characteristics. This table presents open rotor engine 
performance characteristics at M0.80, 35000 ft for top of climb for comparison to the previously 
designed turbofan engines of Reference 2.  

 
Table 4 also provides a comparison of some of the major mechanical design characteristics of the 

three engines. The open rotor engine is much larger in diameter as the propellers are almost twice the 
diameter of the turbofan nacelles. Furthermore, the open rotor engine weight is significantly heavier, 
primarily due to the large propellers. The weight and size of the open rotor will partially offset the benefit 
of lower fuel burn for this engine compared to the turbofans. An aircraft with an open rotor engine will 
likely have a higher empty weight (due to the higher engine weight), but the aircraft would require less 
fuel to complete the mission. As a result, the overall aircraft takeoff gross weight would likely be similar 
between turbofan and open rotor powered aircraft (Ref. 16). 

Conclusion 
NASA’s Subsonic Fixed Wing and Environmentally Responsible Aviation Programs are both 

interested in developing technologies which will reduce the environmental impact of future aircraft. The 
open rotor engine is of interest to both of these programs due to its potential to reduce fuel consumption 
and emissions of NOx near airports. In order to assess the potential impact of an open rotor engine on an 
advanced single aisle aircraft, modeling capabilities have been developed by NASA to predict the 
performance and weight characteristics of open rotor engines. The initial development of open rotor 
modeling capabilities was described in a previous paper.  

Following the initial model development, further improvements to open rotor modeling capabilities 
were made and presented in this paper. First, propeller maps representative of modern blade designs were 
developed using data collected in recent wind tunnel experiments by NASA and General Electric. Second, 
the model was transitioned to a geared open rotor architecture as the geared configuration provided better 
or equivalent performance at a lower overall engine weight. Next, a new power management strategy was 
implemented to control the blade pitch angles throughout the flight envelope. The new constant tip speed 
strategy replaced the assumed blade angle schedule and provided a more realistic approximation of how 
an open rotor engine would be operated. Lastly, weight estimation techniques were developed for the 
counter-rotating propellers and the gearbox. These methods were then implemented to determine the 
mechanical design characteristics of an open rotor engine.  

Using the modeling capabilities summarized in this paper, an open rotor engine model was created. 
This engine was sized using a MDP approach to power an advanced single aisle transport aircraft. The 
open rotor engine model predicted a low thrust specific fuel consumption throughout the flight envelope. 
In addition, a large thrust lapse resulted from the MDP design process producing an engine that is 
oversized at rolling takeoff and sea level static flight conditions. The open rotor weight was estimated to 
be 9220 lb, with about half of the engine pod weight coming from the propellers and gearbox. Lastly, the 
open rotor model results were compared to similar result for both geared and direct drive turbofans. The 
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open rotor system is predicted to have better thrust specific fuel consumption compared to both turbofans. 
However, the turbofan engines are both about 3000 lb lighter than the open rotor engine.  

While a direct comparison of the open rotor, geared turbofan and direct drive turbofan can provide 
some insight into the benefits of each, the impact of the engine can only be truly assessed when they are 
integrated with a full aircraft. By integrating the engine with an aircraft, total fuel burn, emissions, and 
noise estimates can be made. An assessment of an entire aircraft system for these metrics was beyond the 
scope of this paper. However, the open rotor engine described in this paper has been integrated with an 
advanced aircraft to evaluate the potential benefit of this engine. Overall, the open rotor powered aircraft 
is predicted to have 36 percent lower fuel consumption than a 1990s reference baseline aircraft (Ref. 16). 
Additionally, the open rotor aircraft is estimated to have a 13 dB cumulative margin to Stage 4 noise 
regulations (Ref. 16). While there is uncertainty in both of these estimates, they indicate that an open rotor 
engine may be able to meet the future propulsion requirements of a single aisle transport aircraft.  
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