
Experience Report: a Do-It-Yourself High-Assurance Compiler

Lee Pike
Galois, Inc.

leepike@galois.com

Nis Wegmann
University of Copenhagen
niswegmann@gmail.com

Sebastian Niller
Unaffiliated

sebastian.niller@gmail.com

Alwyn Goodloe
NASA

a.goodloe@nasa.gov

Abstract
Embedded domain-specific languages (EDSLs) are an approach for
quickly building new languages while maintaining the advantages
of a rich metalanguage. We argue in this experience report that
the “EDSL approach” can surprisingly ease the task of building a
high-assurance compiler. We do not strive to build a fully formally-
verified tool-chain, but take a “do-it-yourself” approach to increase
our confidence in compiler-correctness without too much effort.
Copilot is an EDSL developed by Galois, Inc. and the National
Institute of Aerospace under contract to NASA for the purpose of
runtime monitoring of flight-critical avionics. We report our expe-
rience in using type-checking, QuickCheck, and model-checking
“off-the-shelf” to quickly increase confidence in our EDSL tool-
chain.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
The “do-it-yourself” (DIY) culture promotes individuals to design
and craft objects on their own, without relying on outside experts.
DIY construction should be inexpensive with easy-to-access mate-
rials. Ranging from hobbyist electronics1 to urban farming to fash-
ion, DIY is making somewhat of a resurgence across the United
States.

We see no reason why DIY culture should not also extend to
compilers, and in particular, to high-assurance compilers. By high-
assurance, we mean a compiler that comes with compelling evi-
dence that the source code and object code have the same opera-
tional semantics.

High-assurance compilers development has traditionally re-
quired years of effort by experts. A notable early effort was the
CLI Stack, of which a simple verified compiler was one part [18].
The CLI Stack was verified by the precursor to the ACL2 theorem
prover. The most recent instance is CompCert, which compiles a
subset of C suitable for embedded development to machine code

1 This even includes full-featured unpiloted air vehicles! See http://
diydrones.com/.

[Copyright notice will appear here once ’preprint’ option is removed.]

for a number of targets [17]. CompCert is formally verified in the
Coq theorem-prover—indeed, CompCert is written in Coq’s spec-
ification language. While CompCert achieves the highest levels of
assurance, generating the evidence comes at a steep price, since it
relies on manually interacting with a theorem-prover. Neither the
CLI Stack nor CompCert are DIY projects: building them requires
relatively esoteric skills that combine interactive theorem-proving
and multiple engineer-years of verification effort.

In this experience report, we argue that by leveraging functional
languages and off-the-shelf verification tools, we can accumulate
significant evidence of correctness at a fraction of the cost and with-
out the specialized know-how required by interactive verification
approaches.2

The case-study of our approach is the Copilot language and
toolset, developed by Galois, Inc. and the National Institute of
Aerospace under contract to NASA. Copilot is a stream language
for generating embedded C-code software monitors for system
properties. Copilot itself is not comparable to a verified compiler
like CompCert: Copilot back-ends stop at the C level, where Com-
pCert starts. Verifying C semantics against the semantics of a ma-
chine model is extraordinarily difficult. Still, for high-level lan-
guages, we can do much better than the status quo.

Specifically, we employ three not-so-secret weapons from the
functional languages and formal methods communities in our work.
1. Embedded DSLs: We implement Copilot as an embedded

domain-specific (EDSL) language [16] within Haskell.
2. Sub-Turing complete languages: Copilot is targeted at embed-

ded programming, therefore we focus on the class of programs
that are computable in constant time and constant space.

3. A verifying compiler: CompCert typifies a verified compiler ap-
proach in which the compiler itself is proved correct. A verify-
ing compiler is one that provides evidence that a specific com-
pilation is correct [20]. We borrow from this second approach.
(We emphasize that this report is about assurance of the EDSL
compiler itself, not about the functional correctness of programs
written in the EDSL.)

While the approaches we describe are known within the func-
tional programming and formal methods communities, the pur-
pose of this experience report is to demonstrate the engineering
ease in putting them to use. In particular, the EDSL approach is
well-known for quickly prototyping new languages, but the reader
should have some level of skepticism that they are appropriate for
high-assurance development; we hope to dispel that skepticism.
Furthermore, there is nothing special about the Copilot language
with respect to assurance. We hope to convince the reader that the
approach we have taken can be applied broadly to new language
design.

2 Our work perhaps is an instance of the Pareto Principle with respect to
compiler assurance. The principle states that 80% of effects arise from 20%
of the causes in a wide variety of empirical observations [22].

1 2012/3/12

Outline. In Section 2, we briefly introduce Copilot (we assume
some familiarity with Haskell syntax). The heart of the report is
Section 3 in which we describe our “lessons learned” for easily
generating evidence of correctness. We briefly mention related
work in Section 4, and make concluding remarks in Section 5.

2. The Copilot Language & Toolset
From 2009-2011, NASA contracted Galois, Inc. to research the
possibility of augmenting complex aerospace software systems
with runtime verification (RV). RV is a family of approaches that
employ monitors to observe the behavior of an executing system
and to detect if it is consistent with a formal specification. A mon-
itor implementation should be simple and direct and serve as the
last line of defense for the correctness for the system. The need
for aerospace RV is motivated by recent failures in commercial
avionics and the space shuttle [12].

Our answer to the contract goals was Copilot, an EDSL to gen-
erate embedded monitors.3 The Copilot language itself, focusing
on its RV uses for NASA, has been previously described [21]. We
will very briefly introduce Copilot in this paper; our focus is more
specifically about compiler correctness.

One research challenge of the project was phrased as, “Who
watches the watchmen?” meaning that if the RV monitor is the
last line of defense, then it must not itself fail or worse, introduce
unintended faults itself! Nonetheless, because the primary goal of
the project was to implement an RV system and to field-test it, few
resources were available for assuring the correctness of the Copilot
compiler itself. Our approach was born out of necessity.

Copilot’s expression language. In the following, we briefly and
informally introduce Copilot’s expression language. One design
goal for Copilot is to use a familiar syntax and model of compu-
tation; doing so is a first step in reducing specification errors. The
Copilot language mimics both the syntax and semantics of lazy lists
(which we call streams) in Haskell. One notable exception though
is that operators are automatically promoted point-wise to the list
level, much like in Lustre, a declarative language for embedded
programming [13]. For example, the Fibonacci sequence modulo
232 can be written as follows in Haskell:

fib :: [Word32]
fib = [0,1] ++ zipWith (+) fib (drop 1 fib)

In Copilot, the equivalent definition is the following:

fib :: Stream Word32
fib = [0,1] ++ (fib + drop 1 fib)

Copilot overloads or redefines many standard operators from
Haskell’s Prelude Library. Here is a Haskell and equivalent Copilot
function that implements a latch (flip-flop) over streams—the out-
put is the XOR of the input stream and the latch’s previous output.
For example, for the input stream

T, F, F, T, F, F, T, F, F, ...

latch generates the stream

F, T, T, T, F, F, F, T, T, T, ...

In Haskell, latch can be defined

latch :: [Bool] -> [Bool]
latch x = out x

where
out ls = [False] ++ zipWith xor ls (out ls)
xor n m = (n || m) && not (n && m)

3 Copilot source code is available at http://leepike.github.com/
Copilot/ and is licensed under the BSD3 license.

and then in Copilot (xor is a built-in operator for Copilot):

latch :: Stream Bool -> Stream Bool
latch x = out

where out = [False] ++ x ‘xor‘ out

The base types of Copilot over which streams are built include
Booleans, signed and unsigned words of 8, 16, 32, and 64 bits,
floats, and doubles. Type-safe casts in which overflow cannot occur
are permitted.

Sampling. Copilot programs are meant to monitor arbitrary C
programs. They do so by sampling values. Concretely, the values
are from in-scope symbols in a linked C program. Copilot samples
variables, arrays, and side-effect free functions (sampling arbitrary
structures is future work). The operator extern takes a C symbol
and a possible list of values for use by the interpreter. For example,
the following stream samples the C variable e0 of type uint8 t
to create each new stream index. For example, if e0 takes the
values 2, 4, 6, ... the stream ext has the values 1, 3, 7,
13,

ext :: Stream Word8
ext = [1] ++ (ext + extern "e0" interp)

where interp = Just [2,4..]

We make the design decision to build interpreter values for external
values into the language. (If the user wishes not to provide inter-
preter values, the constructor Nothing can be used.)

Sampling arrays and functions are similar. For example, the
following stream samples an array with the prototype uint32 t
arr[3]:

arr :: Stream Word32
arr = externArray "arr" idx 3 interp

where idx :: Stream Word8
idx = [0] ++ (idx + 1) ‘mod‘ 2
interp = Just (repeat [0,1,2])

The interpreter takes a list of lists to represent possible array values.

Effects. Copilot has exactly one mechanism for output called
triggers. For example, consider the following example trigger:

trigger "trig" (fib ‘mod‘ 2 == 0)
[arg fib, arg (latch fib)]

A trigger has a guard that is a Boolean-valued Copilot stream, and
a list of arguments, which are Copilot expressions. A trigger is fired
exactly when its guard (stating that the current value from the fib
stream is even in this case) is true. A trigger’s implementation is a
C function with a void return type that takes the current values
of the trigger arguments as arguments. For example, given the
definition of fib and latch above, the prototype of the C-function
implementing the trigger is

void trig(uint32_t, bool);

The definition of a trigger is implementation-dependent and up to
the programmer to implement.

Copilot’s toolchain. Copilot’s toolchain is depicted in Figure 1.
The Copilot language package reifies a Copilot program (i.e.,
turns a recursive structure into explicit graphs via observable
sharing [11]—Copilot is deeply embedded in Haskell) and does
domain-specific type-checking (∼1200 lines of code or LOCs).
Copilot programs are then translated into a core language (∼900 LOCs).
The core package contains an interpreter (∼300 LOCs) as well as a
custom QuickCheck engine and test harness for testing interpreter
output against one of the back-ends (∼400 LOCs). Copilot’s lan-
guage package is explicitly Trustworthy Haskell, as there is a single
instance of unsafeCoerce to implement observable sharing. Copi-
lot’s core language is written in Safe Haskell [10].

2 2012/3/12

Interpreter

Copilot Libraries
Copilot Language

Copilot Core Pretty Printer

Atom Back-End SBV Back-End

C99 C99

Reification and
DSL-specific type-
checking

Translation

Evaluation

QuickCheck

Compilation Compilation

Model checking

Figure 1. The Copilot toolchain.

The back-ends (each of which is ∼1100 LOCs) translate a
Copilot core program into the language of another Haskell DSL
for code generation. We use the Atom (∼2500LOCs)4 [14] and
SBV (∼4500LOCs)5 packages for code generation, both of which
generate a strict subset of C99 embedded code that is constant-
memory and nearly constant-time.

Atom is an EDSL originally designed by Tom Hawkins at Eaton
Corp. for synthesizing real-time embedded control systems from
high-level specifications. The language provides scheduling con-
structs, obviating the need for a real-time operating system when
cooperative scheduling is sufficient.

Symbolic Bit Vectors (SBV) is an EDSL developed by Levent
Erkök. The primary focus of SBV is to express and reason about
bit-level Haskell programs. In particular, the language provides
tight integration with satisfiability modulo theories (SMT) solvers
(e.g., Yices [8]) for automatic proofs and to check for satisfiability.
The EDSL also contains a C-code generator which we use. Other
features of the language include test-case generation and automated
synthesis.

A separate package (∼100 LOCs) generates a driver for the
CBMC model-checker [7], which we use to check the equivalence
between the C code generated by each back-end.

3. Lessons Learned: Quick and Easy Correctness
Evidence

In the following, we describe some “lessons-learned” in quickly
and easily building assurance into an EDSL compiler.

Lesson: Turing-complete macros, small, Turing-incomplete lan-
guages. C-like languages treat macros as a second-class feature—
they are just textual substitution. Lisp-like languages take the con-
verse approach, treating macros as a first-class datatype, so macros
are on par with (Turing-complete) programming. These are two
extremes, but they largely represent the status of macro program-
ming.

EDSLs, however, treat meta-programming as first-class, and
programming as second-class! The difference in emphasis of ED-
SLs is because the embedded language is a datatype within its host
language (we assume a deep-embedding of the DSL [11]). The dif-
ference affects how one programs using an EDSL. Practically, one

4 http://hackage.haskell.org/package/atom, BSD3 license.
5 http://hackage.haskell.org/package/sbv, BSD3 license.

spends very little time directly using the operators of the EDSL it-
self but rather, one generates EDSL programs using combinators
from the host language.

Embedded system programming, with time and memory con-
straints, does not require the full power of a general-purpose
Turing-complete language [5]. But a Turing-complete macro lan-
guage affords benefits in code-reuse and library development. With
an EDSL, one can have his cake and eat it too: Arbitrarily complex
combinators over the EDSL can be written, but then a simple core
language can be reasoned about.

Reasoning about the correctness of sub-Turing-complete lan-
guages is easier than general-purpose languages. For example, a
verifying compiler for a cryptographic DSL leveraged the ability to
automatically generate measures to formally prove termination of
programs written in the language [20]. Conversely, Sassaman et al.
argue that a principal origin of insecurity in computer systems is
due to Turing-complete (or more generally, too powerful) data-
description languages [24].

data Expr a where
-- Constants
Const :: Type a -> a -> Expr a
-- Stream constructors
Drop :: Type a -> Int -> Id -> Expr a
-- Let expressions
Local :: Type a -> Type b -> Name -> Expr a

-> Expr b -> Expr b
Var :: Type a -> Name -> Expr a
-- Operators
Op1 :: Op1 a b -> Expr a -> Expr b
Op2 :: Op2 a b c -> Expr a -> Expr b -> Expr c
Op3 :: Op3 a b c d -> Expr a -> Expr b

-> Expr c -> Expr d
-- Externals
ExternVar

:: Type a -> Name -> Maybe [a] -> Expr a
ExternFun

:: Type a -> Name -> [UExpr]
-> Maybe (Expr a) -> Maybe Int -> Expr a

ExternArray
:: Integral a => Type a -> Type b
-> Name -> Int -> Expr a -> Maybe [[b]]
-> Maybe Int -> Expr b

-- Untyped streams
data UExpr = forall a. UExpr

{ uExprType :: Type a
, uExprExpr :: Expr a }

Figure 2. The core Copilot expression language abstract syntax.

The core language of Copilot is both small and unpowerful: as
noted, only programs requiring a constant amount of space can be
written in Copilot. In Figure 2 is the generalized abstract datatype
(GADT) [25] that is the abstract syntax for Copilot expressions in
the core language. There are constants, the “drops” stream con-
structor (dropping a finite number of prefix list elements), let-
expressions within Copilot for user-defined expression sharing, ex-
ternal program inputs, and unary, binary, and ternary operators. One
final data type, UExpr contains existentially-typed streams that are
used in argument lists. Everything else is syntactic sugar or spe-
cific operators. (The operational semantics of Copilot, given by an
interpreter function over the Expr datatype, is about 200 LOCs.)

Despite the small size of the core language and the lack of
computational power, with Haskell’s parametric polymorphism and
standard library combinators, we can enjoy the benefits of code
reuse and abstraction in building libraries while maintaining a terse
core language. For example, in our fault-tolerant voting library, the

3 2012/3/12

Boyer-Moore linear-time Majority Vote algorithm [4] is written as
a Haskell function that gets expanded at compile-time into a Copi-
lot program. Libraries for bounded linear-temporal logic, regular
expressions, bounded folds, bounded scans, etc. are similarly just
Copilot macros.

The idea that the macro language can be arbitrarily complex is
obvious to the functional languages community, but it is a disrup-
tive one to the embedded languages community, particularly for
safety-critical systems. Typical declarative languages for embed-
ded systems design, like Lustre [5], are not polymorphic (poly-
morphism is limited to a small set of pre-defined operators, like
if-then-else).

Lesson: decomposed type-checking. Type-checking is the first
defense against incorrect programs. We used a two-layer approach:
let the host language enforce types where possible, and write a
custom checker for type-checking that falls outside of the host
language’s type system. In this way, we rely on Haskell to do most
of the heavy lifting.

We use GADTs to represent both the front-end abstract syntax
and the core language. The use of parameterized datatypes makes
the probability of unanticipated type-casts low. There are only two
cases during which we escape Haskell’s type system, which may
lead to incorrect type-casts.

The first case is when a back-end pretty-prints C code. The
correctness of such code can be determined by inspecting a small
number of functions and class instances.

The second case arises during the translation from the core
abstract syntax into the back-ends. Both the core language and
the back-ends make use of polymorphic functions and class con-
straints. As a matter of software engineering, we do not want Copi-
lot’s core functions to be dependent on the classes introduced in the
back-ends—doing so would require modifying the core each time
a new back-end is added.

Therefore, we use the ideas of type-safe dynamic typing to
translate from the core language to the back-end languages without
relying on compiler extensions or unsafe functions [2]. The basic
idea is to create witness functions that we pattern-match against.
For example, for the class SymWord (“Symbolic Word”) in the SBV
back-end, we create the following instance datatype and an instance
function mapping Copilot types to SymWords:

data SymWordInst a = SymWord a => SymWordInst

symWordInst :: Type a -> SymWordInst a
symWordInst t =

case t of
Bool -> SymWordInst
Int8 -> SymWordInst
...

where Type is a phantom type containing concrete representations
of Copilot’s core types.

data Type :: * -> * where
Bool :: Type Bool
Int8 :: Type Int8
...

Then during the translation, we pattern-match. For example, in
translating the addition operator, we have the case:

transBinaryOps op = case op of
Add t -> case W.symWordInst t of

W.SymWordInst -> (+)
...

The upshot is that we have created potentially partial translation
functions, but type-incorrect translation is not possible.

In addition to type-checking provided by Haskell, we perform
a small amount of custom type-checking (∼250 LOCs). The two

classes of custom type-checking are (1) causality analysis and (2)
type-checking external variables (arrays and functions). Causality
analysis ensures that stream dependencies are strict. Strict depen-
dencies are necessary when we are sampling variable values in real-
time from the external world. For example, the following Copilot
stream equations fail type-checking:

x :: Stream Word8
x = extern "ext" Nothing
y = drop 2 x

We also check at compile-time that streams are productive; for
example, the stream definition x = x fails type-checking.

In addition, external variables are just strings with associated
types. Therefore, we must check that the same string is not given
two different types or declared to be of two different kinds of sym-
bols (e.g,. a global variable vs. a function symbol). For example,
the following two expressions, if they appear in the same Copilot
program, fail type-checking:

x :: Stream Word8
x = extern "ext" Nothing

y :: Stream Word16
y = extern "ext" Nothing

Lesson: cheap front-end/back-end testing. QuickCheck [6] test-
ing is so easy to implement and so effective that no EDSL com-
piler should be without it. QuickCheck can of course be used for
unit testing during compiler development, but we use it to gener-
ate regression tests for the semantics of the EDSL by comparing
the output of the interpreter against the Atom back-end (we plan
to implement QuickCheck testing against the SBV back-end in the
future).

We generate a stand-alone executable that for a user-specified
number of iterations,

1. generates a random Copilot program,

2. compiles the Copilot program to C,

3. generates a driver.c file containing a main function as well
as values for external variables,

4. compiles and links an executable (using gcc),

5. executes the program,

6. and compares its output to the output from the Copilot inter-
preter.

Weights can be set to determine the frequency of generating the
various Copilot language constructs and streams of different types.

There are at least two approaches to generating type-correct
programs. First, we can generate random programs, then filter ill-
typed programs using the type-checker. Second, we can generate
type-correct programs directly. We take the second approach. Gen-
erating type-correct programs is not difficult in our case: as de-
scribed already, because Copilot’s abstract syntax is parameter-
ized by Haskell type variables, type-correct expression generation
is straight-forward. We need only to ensure the small number of
domain-specific type rules are also satisfied.

The benefit of generating type-correct programs directly is that
if the generator is implemented correctly, every generated program
is type-correct and will be tested. The danger, however, is that the
generator may be too strict, omitting some type-correct programs
from being generated and tested.

With the standard options, we generate, compile, test and pretty-
print to standard output about 1,000 programs per minute. It is easy
to let the QuickCheck test generator run continuously on a server,
generating some million and a half vectors per day (in practice,
bugs, if present, tend to appear after just 10s or 100s of gener-

4 2012/3/12

ated vectors). The kinds of bugs we have caught include forgot-
ten witness for the Atom back-end and the incorrect ordering of
the state-machine with respect to the interpreter, such as outputting
stream values before reading in external variable values. A “non-
bug” we “discovered” was disagreement on floating-point values
between GHC’s runtime system (executing the interpreter) and libc.
We solved this problem by just checking that floating point val-
ues are within some small constant range, noting that pathological
cases may cause differences outside of a constant range without
violating the IEEE floating-point standard.

Lesson: cheap back-end proofs. The verified compiler approach
assumes that the compiler itself is within the trusted computing
base (TCB)—the software that must be trusted to be correct. Con-
sequently, it requires a monolithic approach to verification in which
the compiler is verified. But what if the compiler can be removed
from the TCB? Doing so can reduce the difficulty of providing as-
surance evidence.

This is our motivation for a proof approach of the back-ends.
Recalling Figure 1, Copilot has two back-ends that generate C. We
leverage a model-checker to prove the equivalence of the code
generated by each back-end. Open-source model-checkers like
CBMC [7] and Blast [3] use C as their specification language.
In our work, we use CBMC. CBMC can prove memory-safety
properties, such as division by zero, not-a-number floating-point
errors, and array out of bound indexes. It can also prove arbitrary
propositional formulas given in the body of assert() functions.

To prove equivalence between the two back-end outputs, we au-
tomatically generate a driver program that executes both back-ends
for one step, compares their outputs, takes another step, compares
their outputs, and so on for a user-specified number of iterations.
The generated driver is of the form

for (i = 0; i < RNDS; i++) {
sampleExterns();
atom_step();
sbv_step();
assert(atomStr_0 == sbvStr_0

&& atomStr_1 == sbvStr_1
&& ...);

}

For sampled variables (arrays, functions), we use CBMC’s built-
in model of nondeterminism to model arbitrary inputs to Copilot
programs. CBMC proves the two programs are memory-safe and
have equivalent semantics for a finite number of user-specified
iterations (RNDS).

Model-checking works “out of the box” in our case because
both back-ends generate simple code (e.g., no non-linear pointer
arithmetic, no function pointers, no loops) in the state-update func-
tions. This use of formal methods emphasizes the lesson about sim-
ple, Turing-incomplete languages from Section 3.

A proof of correspondence on the C code reduces the trust
required in the Atom and SBV back-ends. Assuming the model-
checker is sound, incorrectly-generated code will be claimed to
be equivalent only if bugs with the same effects appear in both
back-ends. In addition, memory-safety errors, even if they appear
simultaneously in both programs, will be caught.

That said, one must still trust the C compiler—CompCert [17]
would be a good point in this case. Furthermore, Copilot programs
are expected to be executed forever (i.e., they are programs over in-
finite streams), which mimics the behavior of embedded software.
CBMC symbolically unrolls programs either completely if possible
or to a user-specified depth; it does not perform an inductive proof,
so currently, we only show equivalence up to a user-set bound
(RNDS in the code-snippet above). Using a model-checker with
induction (e.g., k-induction via SAT [15, 26]) would strengthen
the assurance case. Finally, note that this use of model-checking

takes the verifying rather than verified-compiler approach: model-
checking is done for each program compiled.

The kinds of bugs we have caught mostly include incorrect
ordering of state-machine functions in the generated C. Because
we do not yet have a QuickCheck testing infrastructure between
the interpreter and the SBV back-end, we get a transitive argu-
ment that the SBV back-end is equivalent to the Atom back-end,
which has evidence of matching the interpreter through the use
of QuickCheck. From an evidence perspective, model-checking
the back-ends reduces the required trust in the Haskell com-
piler/interpreter, since we check the generated artifacts. Ideally,
we would have the power of an EDSL without having to trust the
runtime system of the host language.

Lesson: a unified host language. Our last lesson is one ob-
vious to the functional programming community, but novel in
safety-critical languages. EDSLs are intrinsically immune to whole
classes of potential compiler bugs. For example, because a separate
parser, lexer, tokenizer, etc. are not necessary, EDSLs do not suffer
from these front-end bugs. This assumes that the host language’s
front-end does not contain bugs, which for a stable well-used host
language, is more likely than for a new DSL front-end.

We enjoyed two other advantages. First, translating between
EDSLs in the same host language was type-safe and relatively easy
since the two back-ends we use were existing EDSLs. Translating
from Copilot into a back-end is a matter of converting from one ab-
stract syntax datatype into another, never leaving the host language.

Second, the host language serves as more than a macro lan-
guage: it serves as a partial build system. For example, consider
the case of generating distributed Copilot programs to be run on
networked processors, where we want to parameterize inputs based
on the processor identifier. With an EDSL, this is no more difficult
than parameterizing the compile function. In our experiments with
NASA, we did just this to build fault-tolerant monitors [21].

4. Related Work
Our experience report builds on research in disparate fields includ-
ing functional programming and EDSL design, compiler verifica-
tion, and embedded safety-critical languages. In this section, we
provide just a few pointers into the literature that inspired us.

Some might believe that compilers are generally bug-free (even
if specific programs are buggy). Work at the University of Utah
has dispelled this myth [27], having uncovered hundreds of bugs
in C compilers like gcc, clang, and even the (unverified) front-
end of the CompCert compiler [17]. Compiler verification is still
important. Our work does not address C compilation directly, but
it does reduce the risk of encountering bugs in C compilers by
constraining the language to a small subset of well-defined C.

FeldSpar is an EDSL in Haskell designed for digital signal
processing designed by Ericsson and Chalmers University [1].
FeldSpar’s architecture and implementation is similar to Copilot’s
and could likely integrate the kind of assurance evidence for Copi-
lot easily.

Researchers at the University of Minnesota have also built a
family of DSLs tailored for safety-critical embedded system mod-
eling [9]. The host language was designed so that new DSLs can
be specified using attribute grammars. It appears the purpose of the
language is primarily for modeling, so the work does not address
compilation, and consequently does not address compiler correct-
ness issues.

An alternative to the EDSL approach is to take a functional lan-
guage and augment it with sufficient evidence to be used in safety-
critical contexts directly. A consortium did just that with OCaml,
rewriting the SCADE code generator [19]. SCADE is a model-
ing and development environment for critical embedded systems,

5 2012/3/12

such as avionics. The code generator was rewritten in OCaml, and
it is qualifiable under DO-178B, level A, the most stringent level
of tool qualification for avionics [23]. Qualifying the software re-
quired substantially reducing OCaml’s runtime system and garbage
collector, extensive testing, and providing “traceability” of require-
ments. From a formal verification perspective, the requirements are
lightweight (the main direct evidence for correctness is testing), but
in practice DO-178B qualification is rigorous.

5. Conclusions
Despite our experience, EDSLs are not a panacea. Copilot suffers
the same problems that many EDSL implementations do. Error
messages from the Haskell compiler are not domain-specific. There
is no graphical development environment (common in embedded
systems development). Large Haskell expressions are easy to gen-
erate, which can be expensive to interpret or compile. Copilot does
not currently have a highly-optimizing back-end.

Regarding our approach to compiler assurance, there are some
weaknesses. First, since the interpreter and back-ends are built on
the core language, bugs in translation from the front-end will affect
all the targets. While QuickCheck tests the executables against the
interpreter, the model-checker only proves properties about (its in-
terpretation of) the C source semantics. CompCert would obviously
be a good choice to compile C, then. Finally, as noted in the intro-
duction, we have focused here on evidence of correct compilation,
but our implementation does not necessarily help ensure a specific
program meets its specification.

These shortcomings point to future research efforts.
In summary we hoped to make two points in this report: first,

that EDSLs are a viable approach for building high-assurance com-
pilers, and second, that strong evidence can be generated with little
work or expertise. With the EDSL, you do not have to write your
own front-end, most type-checking is done for you, and today’s off-
the-shelf model-checkers are capable of checking real programs.

But don’t take our word for it; do-it-yourself.

Acknowledgments
This work was supported by NASA Contract NNL08AD13T. We
wish to especially thank the following individuals for advice on our
work: Ben Di Vito, Paul Miner, Eric Cooper, Joe Hurd, and Aaron
Tomb. Robin Morisset worked on an earlier version of Copilot.
Nis Wegmann and Sebastian Niller completed this work while they
were visiting researchers at the National Institute of Aerospace.

References
[1] E. Axelsson, K. Claessen, M. Sheeran, J. Svenningsson, D. Engdal,

and A. Persson. The design and implementation of Feldspar - an
embedded language for digital signal processing. In Implementation
and Application of Functional Languages, volume 6647 of LNCS,
pages 121–136. Springer, 2011.

[2] A. I. Baars and S. D. Swierstra. Typing dynamic typing. In Intl. Con-
ference on Functional Programming (ICFP), pages 157–166. ACM,
September 2002.

[3] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker BLAST: Applications to software engineering. Inter-
national Journal on Software Tools for Technology Transfer, 2007.

[4] R. S. Boyer and J. S. Moore. Mjrty: A fast majority vote algorithm.
In Automated Reasoning: Essays in Honor of Woody Bledsoe, pages
105–118, 1991.

[5] P. Caspi, D. Pialiud, N. Halbwachs, and J. Plaice. LUSTRE: a declrata-
tive language for programming synchronous systems. In 14th Sympo-
sium on Principles of Programming Languages, pages 178–188, 1987.

[6] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for
random testing of haskell programs. In ACM SIGPLAN Notices, pages
268–279. ACM, 2000.

[7] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), LNCS, pages 168–176. Springer, 2004.

[8] B. Dutertre and L. D. Moura. The Yices SMT solver. Technical report,
SRI, 2006.

[9] J. Gao, M. Heimdahl, and E. Van Wyk. Flexible and extensible
notations for modeling languages. In Fundamental Approaches to
Software Engineering (FASE), volume 4422 of LNCS, pages 102–116.
Springer Verlag, March 2007.

[10] GHC Team. The glorious Glasgow Haskell compilation system
user’s guide, version 7.4.1, March 2012. Available at http://www.
haskell.org/ghc/docs/latest/html/users_guide/.

[11] A. Gill. Type-safe observable sharing in Haskell. In Proceedings of
the 2009 ACM SIGPLAN Haskell Symposium, September 2009.

[12] A. Goodloe and L. Pike. Monitoring distributed real-time systems:
A survey and future directions. Technical Report NASA/CR-2010-
216724, NASA Langley Research Center, July 2010.

[13] N. Halbwachs and P. Raymond. Validation of synchronous reactive
systems: from formal verification to automatic testing. In ASIAN’99,
Asian Computing Science Conference. LNCS 1742, Springer, Decem-
ber 1999.

[14] T. Hawkins. Controlling hybrid vehicles with Haskell. Presentation.
Commercial Users of Functional Programming (CUFP), 2008. Avail-
able at http://cufp.galois.com/2008/schedule.html.

[15] T. Kahsai, Y. Ge, and C. Tinelli. Instantiation-based invariant discov-
ery. In 3rd NASA Formal Methods Symposium, volume 6617 of LNCS,
pages 192–207. Springer, 2011.

[16] D. Leijen and E. Meijer. Domain specific embedded compilers. In
Domain-Specific Languages Conference. USENIX, 1999.

[17] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52:107–115, July 2009.

[18] J. S. Moore, editor. Special Issue on System Verification: Journal of
Automated Reasoning, volume 5, 1989.

[19] B. Pagano, O. Andrieu, T. Moniot, B. Canou, E. Chailloux, P. Wang,
P. Manoury, and J.-L. Colao. Experience report: using Objective Caml
to develop safety-critical embedded tools in a certification framework.
In G. Hutton and A. P. Tolmach, editors, International Conference on
Functional Programming (ICFP), pages 215–220. ACM, 2009.

[20] L. Pike, M. Shields, and J. Matthews. A verifying core for a crypto-
graphic language compiler. In Proceedings of the 6th Intl. Workshop
on the ACL2 Theorem Prover and its Applications, pages 1–10. ACM,
2006.

[21] L. Pike, S. Niller, and N. Wegmann. Runtime verification for ultra-
critical systems. In Proceedings of the 2nd Intl. Conference on Run-
time Verification, LNCS. Springer, September 2011.

[22] W. J. Reed. The Pareto, Zipf and other power laws. Economics Letters,
74(1):15–19, 2001.

[23] RTCA. Software considerations in airborne systems and equipment
certification. RTCA, Inc., 1992. RCTA/DO-178B.

[24] L. Sassaman, M. L. Patterson, S. Bratus, and A. Shubina. The halting
problems of network stack insecurity. ;login: The USENIX Magazine,
36(6), December 2011.

[25] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Com-
plete and decidable type inference for GADTs. In International Con-
ference on Functional Programming (ICFP), ICFP ’09, pages 341–
352. ACM, 2009.

[26] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties
using induction and a sat-solver. In Formal Methods in Computer-
Aided Design (FMCAD), volume 1954 of LNCS, pages 108–125.
Springer, 2000.

[27] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In Programming Language Design and Imple-
mentation (PLDI), pages 283–294. ACM, 2011.

6 2012/3/12

