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Abstract—Automated space operations command and control software development and its 
implementation must be an integral part of the vehicle design effort.  The software design must encompass 
autonomous fault detection, isolation, recovery capabilities and also provide “single button” intelligent 
functions for the crew. Development, operations and safety approval experience with the Timeliner system on-
board the International Space Station (ISS), which provided autonomous monitoring with response and 
single command functionality of payload systems, can be built upon for future automated operations as the 
ISS Payload effort was the first and only autonomous command and control system to be in continuous 
execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven 
capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design 
from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System 
software architecture and interfaces as applied to NASA’s Habitat Demonstration Unit (HDU) in support of 
the Advanced Exploration Systems, Autonomous Mission Operations project. The development and 
implementation of integrated simulators within this development effort will also be detailed and is the first 
step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs’ effectiveness. This design paper 
will conclude with a summary of the current development status and future development goals as it pertains 
to automated command and control for the HDU.  

I. Introduction 
 In April 2012, the International Space Station (ISS) laboratory module Destiny will have been supporting 
science research in Earth orbit for over eleven years.  Many of the spacecraft development and scientific research 
accomplishments of the ISS program have been documented in the media, professional journals and academic 
publications.  One of the vitally important systems supporting ISS is a software tool commonly referred to as 
“Timeliner.”   

During the early years of ISS operations, NASA-Marshall Space Flight Center (MSFC) ISS Payload Operations 
and Integration Center (POIC) Flight controllers were routinely sending dozens of commands daily just to configure 
data systems, activate and deactivate experiments and many other routine, complex, yet necessary activities in order 
to successfully utilize the ISS as a world-class science facility. 

Fortunately, NASA had anticipated that this would be the case and had planned to use the Timeliner User 
Interface Language (UIL) on ISS.  The Timeliner UIL [3] was developed by the Charles Stark Draper Laboratory in 
1981 for use in simulating tasks performed by astronauts aboard the Space Shuttle. In 1992, Timeliner was selected 
by NASA as the user interface language for the ISS, and it was incorporated into the ISS Command and Control 
Multiplexer-DeMultiplexer (MDM) and the Payload MDM (PLMDM).  

Beginning in 1999, software engineers at the POIC, working with Draper, began developing autonomous blocks 
of software, called Timeliner Bundles in new and innovative ways to reduce ground controller workload, add 
reliability and to a certain extent, put a virtual-controller onboard.  From those humble beginnings to the present, 
engineers, scientists and flight controllers have developed an autonomous and continuously executing system 
onboard the ISS called Higher Active Logic (HAL).  The HAL System performs autonomous monitoring with 
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command responses for Payload Systems and Subsystems.  The design of the ISS HAL System was the proof of 
concept for the execution component for the larger HAL 9000 System design.   

In September 2011, software engineers at MSFC were asked to begin development of incorporating Timeliner-
TLXTM within the NASA’s Habitat Demonstration Unit/Deep Space Hab (HDU/DSH) (Figure 1.) simulation 
environment in support of the Advanced Exploration Systems (AES), Autonomous Mission Operations (AMO) 
project, and convert Procedure Representation Language (PRL) [4] scripts into Timeliner-TLXTM scripts.  This paper 
describes the development and analysis of integrated simulators within the Timeliner-TLXTM environment, how to 
“qualify” the Timeliner-TLXTM scripts from the converted PRL scripts, testing all paths of execution, and how the 
initial HAL System software architecture and interfaces are applied to HDU/DSU. The development and 
implementation of integrated simulators within this development effort will also be detailed and is the first step in 
verifying the HAL 9000 Integrated Test-Bed Component [2] designs’ effectiveness. This design paper will conclude 
with a summary of future development goals as it pertains to automated command and control for deep space 
missions.  

 

 
 

Figure 1:  NASA’s Habitat Demonstration Unit/Deep Space Hab 
 

II. Procedure Execution Capability 
Once the ability to convert PRL procedures to Timeliner-TLXTM auto-procedures was accomplished, a rapid way 

was needed to execute the procedures for analysis and comparison of logic flows.  The ability to insert faults within 
the command paths and at each system/sub-system was also desired in order to fully exercise the procedure by 
traversing all paths of execution. The HAL 9000 System design included an integrated test bed with resident 
simulations (Figure 2.) for verification and validation of newly created procedures. Could the simulation be 
embedded within the Timeliner-TLXTM Execution Components or would they be required to be external 
simulations?  The decision was made to implement an integrated simulation within Timeliner-TLXTM that would 
respond to the commands within the converted PRL HDU/DSH procedures.  
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Figure 2:  HAL 9000 Context Diagram 
 

This opened the door for initial design and development of Timeliner-TLXTM based simulations for auto-
procedure interaction that could be employed within the HAL9000 Test Bed. The possibility of up-linking the 
simulation and converted PRL procedures for scenario testing with ISS directed that the auto-procedures and 
simulation be compatible with the Timeliner Executor resident on the International Space Station Payload 
Multiplexer / De-Multiplexer (PLMDM). 
 

III. HAL9000 Simulation Integration Context 
The HAL 9000 Integrated Test Bed (Figure 3) includes the 9 planning engines, the 9 Timeliner-TLXTM 

Execution engines, and the 9 Timeliner-TLXTM simulators (4 of which utilized for HDU/DSH simulation). The Test 
Bed would be utilized for qualifying crew authored, in-flight developed procedures during the mission. These 
procedures would be required to pass test bed execution in order to be hosted in the real-time environment.  The 
initial development and checkout of internal Timeliner-TLXTM simulations for HDU/DSH PRL procedure 
conversion support and the data exchanges that would be required has shown a limited but valuable aspect to 
procedure qualifying in that all paths of execution can be induced to verify the logic of the procedure and its flow 
control when anomalies are encountered, but does not utilize a true command interface. 
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Figure 3:  HAL 9000 Test Bed Context 

 

IV. Command Handling 
 Since the procedures and simulation both execute within the same Timeliner-TLXTM Execution Engine, the 
capability to format and transmit a command to the simulation without using the Timeliner-TLXTM “Command” 
statement was needed. Timeliner-TLXTM Command Statements are linked directly to external I/O interfaces and will 
be used to send commands to actual HDU/DSH Hardware. A conversion option was needed to place command data 
into memory that would be monitored by the simulation. The ISS HAL System 3 [1] instituted a ground request 
handling function that essentially had the capability required.  The PRL converter was designed with an option that 
would place all command data and routing into Timeliner Current Value Table (CVT) variables. These variables 
reside within global memory available to all Timeliner-TLXTM auto-procedures.  The HDU/DSH Timeliner-TLXTM 
simulation would monitor for this data, interpret the routing and command data and perform the end item data 
generation that was utilized by the executing procedure. The converter also has the option of generating the 
Timeliner-TLXTM Command statements when desired to send commands to the actual HDU/DSH. 
 The Simulation was divided into separate command handlers in an attempt to mirror the HAL9000 Execution 
Component design, the Power handler, the Communications handler, the Environmental Control and Life Support 
System (ECLSS) handler, and the Activity handler. The HAL 9000 system design also includes Propulsion, 
Guidance Navigation and Control (GNC), Safety, Robotics and HALMain functional separations but these were 
deemed not to be required for the HDU/DSH procedure execution at this time. 
 The Power command handler performs only functions related to the HDU/DSH power system and sub-systems. 
The ECLSS command handler performs only functions related to HDU/DSH ECLSS and Thermal Control Systems 
(TCS). In the HAL9000 design TCS is part of ECLSS and not classified separately. The COMM command handler 
performs only functions related to communication systems and subsystems as well video systems. The Activity 
command handler performs all “activity” related functions such as avionics configurations, and utility type functions 
such as turning lights on/off. This division of command functions follows the planning and execution functions of 
the HAL 9000 System design and also allows a division of processing within the simulation to not only assist in 
negating a memory race condition, but also to allow multiple commands to be processed simultaneously when 
commanding different systems and sub-systems when multiple procedures are in  execution.  Nominal procedure 
logic qualification will be one at a time, but some procedures invoke procedure steps within other procedures which 
drives the requirement for simultaneous procedure execution. 
 Upon development and initial testing of the command handlers with the initial converted PRL procedures, an 
execution “race” condition was apparent in that the execution timing within the Timeliner-TLXTM execution engine 
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allowed a converted PRL procedure to attempt multiple commands in its “time slice” before the targeted command 
handler was able to read memory in its “time-slice”. Although the number of statements per execution pass is 
configurable within the Timeliner-TLXTM system, it was decided to use “Wait” statements after each command in 
order to synchronize the command requests from the PRL procedures to the HDU/DSH simulation. Issuing a Wait 
statement within a Timeliner-TLXTM auto-procedure causes the procedure to “give up” its’ time slice, effectively 
allowing the simulation the time to process the command data request. This condition arises due to the nature of the 
procedure authorship where the author issues several commands without checking the end items until all commands 
are sent. This is a “rapid fire” command method or command chain which was unexpected as nominally end items 
are checked after each command is sent and before sending the next command in the procedure. The time period to 
wait was settled at 3 seconds, 1 second to release the time slice, 1 second to process the data and perform the end-
item function, and 1 second to message the console of the function performed. An example of this type of procedure 
was encountered in the initial PRL procedures where power is commanded to a Power Distribution Unit (PDU), and 
the commands to power other devices interfaced to the PDU are sent immediately thereafter. If the PDU did not 
power up or required a power up time period, all other commands to that PDU would be rejected and the procedure 
author would not know of the failure until after  execution as the end items of the commands were not checked until 
after all commands were sent.  The HDU/DSH Timeliner-TLXTM Simulation command interface context is shown in 
Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4:  HDU/DSH Command Interface Context 
 

In the HAL 9000 System design, the request handlers require a “Sequence ID” be provided by the requesting 
sequence for validating the source of the request.  This is an important function for negating code and procedure 
errors during execution but with PRL procedures and their conversion, there was no way to assign unique sequence 
id’s since upon conversion each PRL “step” was converted to a sequence, each PRL procedure was converted 
individually, the order and number of PRL procedures can change and the HAL 9000 Development Methodology [2] 
was not employed as in this methodology all procedures are Timeliner-TLXTM procedures from beginning of 
operations development and are assigned unique identifiers. 

V. Command Handler Code 
The sample code segment in Figure 5 depicts a 1 second control loop where the request handler samples memory 

for a command request. The handler only looks for a command id that is not zero, and if one arrives, flags that a 
request is in progress. Requesting sequences must check to see if a request is in progress and if the command id is 
equal to zero before populating a request. This will make a sequence wait until a request has completed before 
issuing another request. Note also the code for identifying the sequence making the request. As mentioned earlier, 
this source validation has not been implemented, but the code remains. 
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Set ACTYRequestInProgress = 0   -- none in progress at this point 
every 1.0         -- Look for a command every second 
   if HDUACTYRequestID /= 0 then  -- do we have a request? 
   set ACTYRequestInProgress = 1  -- we got a request, indicate processing 
   set RequestComplete = 0       -- Indicte not completed 
   set RequestingSeqID = HDUACTYRequestingSeqID -- who sent us the request? 
   set CurrentRequest = HDUACTYRequestID - 100 -- save the request ID 
 

Figure 5:  Sample Control Loop Code 
 
The sample code segment in Figure 6 depicts a function execution within the Activity Command Handler of the 

HDU/DSH Simulation. 
 

-- *************************** 
-- *** Check for XHAB      *** 
-- *************************** 
if SystemID = 4 then -- XHAB 
   if SubSys1ID = 14 then -- CRIO 
      if SubSys2ID = 16 then  -- CTRL1 
         set XHAB_CRIO_CTRL1_OPERATION_MODE_SENSOR_1 = HDUACTYRequestData1 
         Message "ACTY: XHAB CRIO CTRL1 OPERATION MODE SENSOR 1 SET" 
      end if 
   end if    
   if SubSys1ID = 16 then -- HUMFAC 
      if SubSys2ID = 16 then  -- CTRL1 
        set XHAB_HUMFAC_CTRL1_OPERATION_MODE_SENSOR_1 = HDUACTYRequestData1 
        Message "ACTY: XHAB HUMFAC CTRL1 OPERATION MODE SENSOR 1 SET" 
      end if 
   end if   
   if SubSys1ID = 17 then -- INFLATION 
     if SubSys2ID = 16 then  -- CTRL1 
       set XHAB_INFLATION_CTRL1_OPERATION_MODE_SENSOR_1 = HDUACTYRequestData1 
       Message "ACTY: XHAB INFLATION CTRL1 OPERATION MODE SENSOR 1 SET" 
     end if 
   end if                  
end if 

 
Figure 6:  Function Code Sample 

 
The command routing data was read from memory as well as the command id. The routing data is checked , in 

the first case XHAB->CRIO->CTRL1. The code structure allows the insertion of a fault flags anywhere along the 
path and including the end item data. An example of fault insertion is depicted in Figure 7. 

 
-- *************************** 
-- *** Check for XHAB      *** 
-- *************************** 
if SystemID = 4  and XHABFault = False then -- XHAB 
   if SubSys1ID = 14 and CRIOFault = False then -- CRIO 
      if SubSys2ID = 16 and CTRL1Fault = False then  -- CTRL1 
         set XHAB_CRIO_CTRL1_OPERATION_MODE_SENSOR_1 = HDUACTYRequestData1 
         Message "ACTY: XHAB CRIO CTRL1 OPERATION MODE SENSOR 1 SET" 
      end if 

 end if 
end if 

 
Figure 7:  Command Routing Code Sample 
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The routing information within the command data is used to determine the logical and or physical path the 
command travels before reaching the destination. The end item variable(s) are set in memory, a message is 
generated to trace the execution and the requesting procedure can now check the end items for continued execution 
or anomaly resolution. 

VI. Fault Insertion 
 

 The ability to insert a non-response capability to a command or to insert a failure signature (data indication) is 
extremely important in the auto-procedure certification process. During the initial ISS auto-procedure development, 
it was required by the MSFC Mission Operations Laboratory (MOL), the ISS Computer Safety Working Group, the 
Payload Software Control Panel (PSCP), the Timeliner Operations Review Panel (TORP) and the Avionics Software 
and Control Board (ASCB), that all paths of execution be tested. This was accomplished during rigorous testing with 
the Space Station Training Facility (SSTF) and the Payload Software Integration and Test Facility (PSIVF), by 
utilization of numerous data load commands to on-board memory setting up the data conditions prior to execution. 
This method encompassed many hours of test time as well as producing and documenting the test results proving all 
paths of execution were employed during certification testing. Each auto-procedure had to be executed numerous 
times in order to explore each path of execution. The creation of auto-procedures for path and logic control of auto-
procedures being certified allows real-time insertion of faults during the testing, negating numerous commanding 
prior to test execution.  It also reduces the test time as well as the amount of facility resources needed for such path 
and logic testing. It does not fully qualify an auto-procedure though as actual flight hardware or flight equivalent 
units or flight certified simulations must be utilized for the final qualification for flight readiness. It should also be 
noted that during ISS testing with external facilities, it became very difficult to data load failures since these were 
joint Operational Readiness Tests (ORT), not all procedure paths could be induced due to impacts to other test 
groups participating in the ORT. The internal simulation capability alleviates some of these problems. 

VII. Conclusion 
The design described in this paper enhances the development of automated operations for the AES-AMO. The 

Timeliner-TLXTM language and system is a vital requirement, as without its execution structure and language 
components, the design could not be accomplished or, at a minimum, the increased costs and development schedule 
impact would adversely affect our progression.  The Timeliner-TLXTM system is flight qualified and human rated 
allowing for immediate development use. Future development will support deep space missions by allowing the 
crew single command functionality for on-board functions, crew authoring of procedures, and crew 
validation/verification of procedures on-board.  This will allow the crew to develop and execute procedures on-
board and will reduce communication requirements with earth-based assets for procedure execution in case of 
communication delays and/or permanent loss of communications.  The “pre-qualification” of crew authored auto-
procedures can be done via the integrated Timeliner-TLXTM simulations.  This pre-qualification provides for logic 
path testing of all paths and fault insertions.  High fidelity testing will be required to fully qualify an auto-procedure 
for real-time execution, as external simulations/services will be required in order to declare a procedure as “flight 
ready”.  Currently, the future goals are the development of a diagnostic failure model of an HDU/DSH subsystem, 
and to automate the model by interfacing with real-time telemetry, providing failure data to Timeliner-TLXTM 
Command & Control (C&C) systems and having Timeliner-TLXTM procedures perform the responses. 

AMO’s mission is to demonstrate advanced capabilities for autonomous and crew-centered operations, with 
emphasis on reducing the crew’s workload and dependence on mission support from Earth-based control centers.  
This design paper describes a small effort within AMO’s mission and will further the advancement toward on-board 
procedure authorship and validation/verification.   
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Appendix A 
Acronym List 

AES 
AMO 
ASCP 
C&C 
COMM 
DSH 
ECLSS 
GbE 
GNC 

Advanced Exploration Systems 
Autonomous Mission Operations 
Avionics Software and Control Panel 
Command & Control 
Communications 
Deep Space Hab 
Environmental Control and Life Support System 
Gigabyte 
Guidance , Navigation and Control 

HAL Higher Active Logic 
HDU 
HDU/DSH 
ISS 
ISD 

Habitat Demonstration Unit 
Habitat Demonstration Unit/Deep Space Hab 
International Space Station 
Integrated Server Device 

MDM 
MOL 
MSFC 
NASA 
ORT 
PDU 

Multiplexer/Demultiplexer  
Mission Operations Lab 
Marshall Space Flight Center 
National Aeronautics and Space Administration  
Operational Readiness Tests 
Power Distribution Unit 

PLMDM 
POIC 
PRL 
PSCP 
PSIVF 
SSMMU 
SSTF 
TBE 
TCS 
TLX 
TORP 
UIL 
VCC 

Payload Multiplexer/Demultiplexer 
Payload Operations and Integration Center 
Procedure Representation Language 
Payload Software Control Panel 
Payload Software Integration and Test Facility 
Solid State Mass Memory Unit 
Space Station Training Facility 
Teledyne Brown Engineering 
Thermal Control Systems 
Timeliner Execution Environment 
Timeliner Operations Review Panel 
User Interface Language 
Vital Communication Computer 

 Appendix B 
Glossary 

 

HAL 9000 Space 
Operating System 

 

Habitat Development 
Unit/Deep Space Hab 

 

HAL 9000 Space Operating System is a crew-integrated, autonomous 
command and control system designed specifically for fully automated, long-
duration deep space vehicles.  

Habitat Development Unit-Deep Space Hab is a one story, 4-port habitat unit 
with an approximate volume of 56 cubic meters. The HDU/DSH shell can 
accommodate an inflatable loft for additional laboratory or habitation volume.  
HDU/DSH project is a multi-center team project consisting of NASA 
architects, scientist, and engineers, working together to develop sustainable 
living quarters, workspaces, and labs for next-generation space missions.  
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What is Timeliner?
History of Timeliner?

• Timeliner is both a programming language and an execution 
environment.

• The programming language is a scripting or procedural 
language. 
• Used to write automated procedures that can execute 

autonomously, be event, time, ground and/or crew command 
driven (or combination of these).

• Can be used in conjunction with manual procedures

• Created by the Charles Stark Draper Laboratory in 1982.
• Used to emulate the actions of the Space Shuttle crew in 

timelines and on-board crew procedures.

• Chosen as the User Interface Language (UIL) for the Space 
Station Program in 1992.
• Currently, Timeliner is being used by the U.S. Core and Payload 

communities.  
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Automated Operations Development for Advanced 
Exploration Systems-Introduction

• Automated Space Operations command and control software 
development and implementation is an integral part of the Deep-
Space vehicle design effort.

• The Software design must encompass:

• Autonomous Fault Detection

• Isolation

• Recovery Capabilities

• “Single Button” Intelligent Functions for the Crew

• Timeliner (TLX) accommodates all of the “must haves” for the 
Advanced Exploration Systems software design

• Timeliner has been executing/supporting onboard the International 
Space Station (ISS) for about 11 years.

• The Timeliner System onboard the ISS performs autonomous 
command responses for Payload Systems and Subsystems.

• The Timeliner System onboard the ISS was proof of concept for the 
execution componenet of the larger HAL 9000 design .
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HAL 9000/ Timeliner (TLX) Procedure 
Execution Potential Capabilities

• Intelligent Operations Layer on top of avionics

• Moves ground operations and planning to on-board

• Timeliner-TLXTM for Operations monitoring and commanding

• Crew Autonomy / Risk Mitigation for Communication delays and for 
Permanent Loss of Communications 

• HAL9000 Real-Time Planning Engines

• Direct control of execution

• Crew Interface

• Major Operations Paradigm shift to human factors
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Automated and Autonomous Mission Operations

Commonality needed for least amount of impact:

Changes Human Factors for Long Duration Deep Space Missions
Single crew command for on-board functions

Timeliner Procedure per function

Communication delays 
Develop and run procedures on-board
Reduces comm requirements with earth-based assets for procedure 
execution

Crew Authoring of On-Board Procedures
Verification
Validation
Implementation

Mitigation of Permanent Loss of Communication
Crew Autonomy
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Automated Operations Development for Advanced 
Exploration Systems-Introduction con’t

HDU/
DSH

HM 
Console

TLX TReK EPC

S
L
S

Other
Sys

HDU/DSH

SLS

Other 
Systems

Cmd
Cmd/TLM

Reports

C&T T

Telemetry and Command
Database

TLM
Sim

CVT

On-board Console 
(workstation)
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Timeliner (TLX) Overview

• Timeliner (TLX) 

– Activity is a procedure or set of procedures

– All procedures are auto-procedures in the HAL System

• Manual Procedures (Physical)

– Auto procedure gives direction on physical steps

– Crew gives confirmation physical steps performed

• Provides current state of activities

– Situational awareness for autonomous monitoring & real-
time replanning.

» Mitigates Comm light time delays impact

» Can provide input for activities prognosis analysis 
(external non-HAL function)

» Resource Utilization Predicts

» Can compare with resource utilization from previous 
executions of the activity; used for resourse planning 
in the HAL Executives.
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Timeliner (TLX) Overview (con’t) 

• Auto Procedures (manually initiated or autonomous)

– Command operations

– End Item Verification

– Each Step verified before processing

– Self-Contained

• Provides both nominal and off-nominal operations

– Targeted systems/devices that do not provide an end item 
response are candidates for Hardware/Software design changes

• Crew Authoring of Procedures

– Verification

• Command correctness

• Telemetry end items for each command

– Validation

• Logic path exercising (Did it work?)

– Pre-Qual with internal SIM; final qual with Flight certified 
SIM/Testbed (on-board)
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Deep Space Habitat Simulation Capability

• Conversion of PRL procedures to Timeliner-TLXTM 

auto-procedures occurred.

• Quick way to execute the converted procedures 
for analysis and comparison of logic flows was 
needed

• The Simulation provided the ability to insert faults 
within the command paths and at each 
system/subsystem level; this provided the ability 
to fully qualify the procedure by executing all 
paths of execution.

• The HAL9000 System design contains an 
integrated test bed with a resident simulation for 
verification and validation of newly created 
autoprocedures. 
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HAL 9000 Simulation Integration Context

• HAL 9000 Integrated Test Bed includes:

– 9 Planning Engines

– 9 Timeliner-TLX Execution Engines

– 9 Timeliner-TLX Simulators (4 are utilized for 
HDU/DSH simulation)

• Power

• ECLSS

• COMM

• Activity
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Simulation Command Handling

• The procedures and simulation both execute 
within the same Timeliner-TLXTM Execution Engine

• Capability to format and transmit a command to 
the simulation without using the Timeliner-TLXTM

“Command” statement was needed.

• A conversion option to place command data into 
memory that would be monitored by the 
simulation was needed.
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Fault Insertion

• The ability to insert a non-response capability to a command 
or to insert a failure signature (data indication) is extremely 
important in the auto-procedure certification process.

• From previous experience during the initial ISS auto-
procedure development, it was requirement that all paths of 
execution be tested.

• The creation of auto-procedures for path and logic control of 
auto-procedures being certified allows real-time insertion of 
faults during the testing, negating numerous commanding 
prior to test execution.

• With this simulation, all paths of execution is tested with the 
insertion of a failed signature.
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Summary

• This design enhances the development of automated operations 
for the AES-AMO. 

• The Timeliner-TLXTM language and system is a vital requirement, as 
without its execution structure and language components, the 
design could not be accomplished or, at a minimum, the increased 
costs and development schedule impact would adversely affect our 
progression.

• The Timeliner-TLXTM system is flight qualified and human rated 
allowing for immediate development use.

• Future development will support deep space missions by allowing 
the crew single command functionality for on-board functions, 
crew authoring of procedures, and crew validation/verification of 
procedures on-board.

• Future goals are the development of a diagnostic failure model of 
an HDU/DSH subsystem, and to automate the model by interfacing 
with real-time telemetry, providing failure data to Health 
Management Systems.
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Acronym List

AES
AMO
ASCP
C&C
COMM
DSH
ECLSS
EPS
GbE
GNC

Advanced Exploration Systems
Autonomous Mission Operations
Avionics Software and Control Panel
Command & Control
Communications
Deep Space Hab
Environmental Control and Life Support System
Enhanced HOSC PC
Gigabyte
Guidance , Navigation and Control

HAL Higher Active Logic

HDU
HDU/DSH
HM
HOSC
ISS
ISD

Habitat Demonstration Unit
Habitat Demonstration Unit/Deep Space Hab
Health Management
Huntsville Operations Support Center
International Space Station
Integrated Server Device

MDM
MOL
MSFC
NASA
ORT
PDU

Multiplexer/Demultiplexer
Mission Operations Lab
Marshall Space Flight Center
National Aeronautics and Space Administration 
Operational Readiness Tests
Power Distribution Unit

PLMDM
POIC
PRL
PSCP
PSIVF
SSMMU
SSTF
TBE
TCS
TIL
TLX
TORP
TReK
UIL
VCC

Payload Multiplexer/Demultiplexer
Payload Operations and Integration Center
Procedure Representation Language
Payload Software Control Panel
Payload Software Integration and Test Facility
Solid State Mass Memory Unit
Space Station Training Facility
Teledyne Brown Engineering
Thermal Control Systems
Target Interface Library
Timeliner Execution Environment
Timeliner Operations Review Panel
Telescience Resource Kit
User Interface Language
Vital Communication Computer
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Glossary

HAL 9000 Space 
Operating System

Habitat 
Development 
Unit/Deep Space 
Hab

HAL 9000 Space Operating System is a crew-integrated, 
autonomous command and control system designed 
specifically for fully automated, long-duration deep space 
vehicles. 

Habitat Development Unit-Deep Space Hab is a one 
story, 4-port habitat unit with an approximate volume of 
56 cubic meters. The HDU/DSH shell can accommodate 
an inflatable loft for additional laboratory or habitation 
volume.  HDU/DSH project is a multi-center team project 
consisting of NASA architects, scientist, and engineers, 
working together to develop sustainable living quarters, 
workspaces, and labs for next-generation space missions. 


