

American Institute of Aeronautics and Astronautics

1

Automated Operations Development for Advanced
Exploration Systems

Angie T. Haddock 1

angie.haddock@nasa.gov
NASA, Marshall Space Flight Center, Huntsville, AL 35812, US

Howard K. Stetson 2

howard.k.stetson@nasa.gov
Teledyne Brown Engineering/NASA, Marshall Space Flight Center, Huntsville, AL 35812, US

Abstract—Automated space operations command and control software development and its
implementation must be an integral part of the vehicle design effort. The software design must encompass
autonomous fault detection, isolation, recovery capabilities and also provide “single button” intelligent
functions for the crew. Development, operations and safety approval experience with the Timeliner system on-
board the International Space Station (ISS), which provided autonomous monitoring with response and
single command functionality of payload systems, can be built upon for future automated operations as the
ISS Payload effort was the first and only autonomous command and control system to be in continuous
execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven
capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design
from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System
software architecture and interfaces as applied to NASA’s Habitat Demonstration Unit (HDU) in support of
the Advanced Exploration Systems, Autonomous Mission Operations project. The development and
implementation of integrated simulators within this development effort will also be detailed and is the first
step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs’ effectiveness. This design paper
will conclude with a summary of the current development status and future development goals as it pertains
to automated command and control for the HDU.

I. Introduction
 In April 2012, the International Space Station (ISS) laboratory module Destiny will have been supporting
science research in Earth orbit for over eleven years. Many of the spacecraft development and scientific research
accomplishments of the ISS program have been documented in the media, professional journals and academic
publications. One of the vitally important systems supporting ISS is a software tool commonly referred to as
“Timeliner.”

During the early years of ISS operations, NASA-Marshall Space Flight Center (MSFC) ISS Payload Operations
and Integration Center (POIC) Flight controllers were routinely sending dozens of commands daily just to configure
data systems, activate and deactivate experiments and many other routine, complex, yet necessary activities in order
to successfully utilize the ISS as a world-class science facility.

Fortunately, NASA had anticipated that this would be the case and had planned to use the Timeliner User
Interface Language (UIL) on ISS. The Timeliner UIL [3] was developed by the Charles Stark Draper Laboratory in
1981 for use in simulating tasks performed by astronauts aboard the Space Shuttle. In 1992, Timeliner was selected
by NASA as the user interface language for the ISS, and it was incorporated into the ISS Command and Control
Multiplexer-DeMultiplexer (MDM) and the Payload MDM (PLMDM).

Beginning in 1999, software engineers at the POIC, working with Draper, began developing autonomous blocks
of software, called Timeliner Bundles in new and innovative ways to reduce ground controller workload, add
reliability and to a certain extent, put a virtual-controller onboard. From those humble beginnings to the present,
engineers, scientists and flight controllers have developed an autonomous and continuously executing system
onboard the ISS called Higher Active Logic (HAL). The HAL System performs autonomous monitoring with

1 Computer Engineer, Space Systems Operations/Mission Operations Lab, NASA, Marshall Space Flight Center.
2 Computer Scientist, Space Systems Operations/Mission Operations Lab, TBE/NASA, Marshall Space Flight
Center.

American Institute of Aeronautics and Astronautics

2

command responses for Payload Systems and Subsystems. The design of the ISS HAL System was the proof of
concept for the execution component for the larger HAL 9000 System design.

In September 2011, software engineers at MSFC were asked to begin development of incorporating Timeliner-
TLXTM within the NASA’s Habitat Demonstration Unit/Deep Space Hab (HDU/DSH) (Figure 1.) simulation
environment in support of the Advanced Exploration Systems (AES), Autonomous Mission Operations (AMO)
project, and convert Procedure Representation Language (PRL) [4] scripts into Timeliner-TLXTM scripts. This paper
describes the development and analysis of integrated simulators within the Timeliner-TLXTM environment, how to
“qualify” the Timeliner-TLXTM scripts from the converted PRL scripts, testing all paths of execution, and how the
initial HAL System software architecture and interfaces are applied to HDU/DSU. The development and
implementation of integrated simulators within this development effort will also be detailed and is the first step in
verifying the HAL 9000 Integrated Test-Bed Component [2] designs’ effectiveness. This design paper will conclude
with a summary of future development goals as it pertains to automated command and control for deep space
missions.

Figure 1: NASA’s Habitat Demonstration Unit/Deep Space Hab

II. Procedure Execution Capability
Once the ability to convert PRL procedures to Timeliner-TLXTM auto-procedures was accomplished, a rapid way

was needed to execute the procedures for analysis and comparison of logic flows. The ability to insert faults within
the command paths and at each system/sub-system was also desired in order to fully exercise the procedure by
traversing all paths of execution. The HAL 9000 System design included an integrated test bed with resident
simulations (Figure 2.) for verification and validation of newly created procedures. Could the simulation be
embedded within the Timeliner-TLXTM Execution Components or would they be required to be external
simulations? The decision was made to implement an integrated simulation within Timeliner-TLXTM that would
respond to the commands within the converted PRL HDU/DSH procedures.

American Institute of Aeronautics and Astronautics

3

Figure 2: HAL 9000 Context Diagram

This opened the door for initial design and development of Timeliner-TLXTM based simulations for auto-
procedure interaction that could be employed within the HAL9000 Test Bed. The possibility of up-linking the
simulation and converted PRL procedures for scenario testing with ISS directed that the auto-procedures and
simulation be compatible with the Timeliner Executor resident on the International Space Station Payload
Multiplexer / De-Multiplexer (PLMDM).

III. HAL9000 Simulation Integration Context
The HAL 9000 Integrated Test Bed (Figure 3) includes the 9 planning engines, the 9 Timeliner-TLXTM

Execution engines, and the 9 Timeliner-TLXTM simulators (4 of which utilized for HDU/DSH simulation). The Test
Bed would be utilized for qualifying crew authored, in-flight developed procedures during the mission. These
procedures would be required to pass test bed execution in order to be hosted in the real-time environment. The
initial development and checkout of internal Timeliner-TLXTM simulations for HDU/DSH PRL procedure
conversion support and the data exchanges that would be required has shown a limited but valuable aspect to
procedure qualifying in that all paths of execution can be induced to verify the logic of the procedure and its flow
control when anomalies are encountered, but does not utilize a true command interface.

American Institute of Aeronautics and Astronautics

4

Figure 3: HAL 9000 Test Bed Context

IV. Command Handling
 Since the procedures and simulation both execute within the same Timeliner-TLXTM Execution Engine, the
capability to format and transmit a command to the simulation without using the Timeliner-TLXTM “Command”
statement was needed. Timeliner-TLXTM Command Statements are linked directly to external I/O interfaces and will
be used to send commands to actual HDU/DSH Hardware. A conversion option was needed to place command data
into memory that would be monitored by the simulation. The ISS HAL System 3 [1] instituted a ground request
handling function that essentially had the capability required. The PRL converter was designed with an option that
would place all command data and routing into Timeliner Current Value Table (CVT) variables. These variables
reside within global memory available to all Timeliner-TLXTM auto-procedures. The HDU/DSH Timeliner-TLXTM
simulation would monitor for this data, interpret the routing and command data and perform the end item data
generation that was utilized by the executing procedure. The converter also has the option of generating the
Timeliner-TLXTM Command statements when desired to send commands to the actual HDU/DSH.
 The Simulation was divided into separate command handlers in an attempt to mirror the HAL9000 Execution
Component design, the Power handler, the Communications handler, the Environmental Control and Life Support
System (ECLSS) handler, and the Activity handler. The HAL 9000 system design also includes Propulsion,
Guidance Navigation and Control (GNC), Safety, Robotics and HALMain functional separations but these were
deemed not to be required for the HDU/DSH procedure execution at this time.
 The Power command handler performs only functions related to the HDU/DSH power system and sub-systems.
The ECLSS command handler performs only functions related to HDU/DSH ECLSS and Thermal Control Systems
(TCS). In the HAL9000 design TCS is part of ECLSS and not classified separately. The COMM command handler
performs only functions related to communication systems and subsystems as well video systems. The Activity
command handler performs all “activity” related functions such as avionics configurations, and utility type functions
such as turning lights on/off. This division of command functions follows the planning and execution functions of
the HAL 9000 System design and also allows a division of processing within the simulation to not only assist in
negating a memory race condition, but also to allow multiple commands to be processed simultaneously when
commanding different systems and sub-systems when multiple procedures are in execution. Nominal procedure
logic qualification will be one at a time, but some procedures invoke procedure steps within other procedures which
drives the requirement for simultaneous procedure execution.
 Upon development and initial testing of the command handlers with the initial converted PRL procedures, an
execution “race” condition was apparent in that the execution timing within the Timeliner-TLXTM execution engine

GNC Executive

Power Executive

ECLSS Executive

Activity Executive

Propulsion Executive

Communication
E tiRobotics Executive

Safety Executive

HAL Main Executive

GNC Executor

Power Executor

ECLSS Executor

Activity Executor

Propulsion Executor

Communication Executor

Robotics Executor

Safety Executor

HAL Main Executor

GNC Sim

Power Sim

ECLSS Sim

Activity Sim

Propulsion Sim

Communication Sim

Robotics Sim

Safety Sim

HAL Main Sim

Test Bed Knowledge Packs

Timeliner-TLX

American Institute of Aeronautics and Astronautics

5

allowed a converted PRL procedure to attempt multiple commands in its “time slice” before the targeted command
handler was able to read memory in its “time-slice”. Although the number of statements per execution pass is
configurable within the Timeliner-TLXTM system, it was decided to use “Wait” statements after each command in
order to synchronize the command requests from the PRL procedures to the HDU/DSH simulation. Issuing a Wait
statement within a Timeliner-TLXTM auto-procedure causes the procedure to “give up” its’ time slice, effectively
allowing the simulation the time to process the command data request. This condition arises due to the nature of the
procedure authorship where the author issues several commands without checking the end items until all commands
are sent. This is a “rapid fire” command method or command chain which was unexpected as nominally end items
are checked after each command is sent and before sending the next command in the procedure. The time period to
wait was settled at 3 seconds, 1 second to release the time slice, 1 second to process the data and perform the end-
item function, and 1 second to message the console of the function performed. An example of this type of procedure
was encountered in the initial PRL procedures where power is commanded to a Power Distribution Unit (PDU), and
the commands to power other devices interfaced to the PDU are sent immediately thereafter. If the PDU did not
power up or required a power up time period, all other commands to that PDU would be rejected and the procedure
author would not know of the failure until after execution as the end items of the commands were not checked until
after all commands were sent. The HDU/DSH Timeliner-TLXTM Simulation command interface context is shown in
Figure 4.

Figure 4: HDU/DSH Command Interface Context

In the HAL 9000 System design, the request handlers require a “Sequence ID” be provided by the requesting
sequence for validating the source of the request. This is an important function for negating code and procedure
errors during execution but with PRL procedures and their conversion, there was no way to assign unique sequence
id’s since upon conversion each PRL “step” was converted to a sequence, each PRL procedure was converted
individually, the order and number of PRL procedures can change and the HAL 9000 Development Methodology [2]
was not employed as in this methodology all procedures are Timeliner-TLXTM procedures from beginning of
operations development and are assigned unique identifiers.

V. Command Handler Code
The sample code segment in Figure 5 depicts a 1 second control loop where the request handler samples memory

for a command request. The handler only looks for a command id that is not zero, and if one arrives, flags that a
request is in progress. Requesting sequences must check to see if a request is in progress and if the command id is
equal to zero before populating a request. This will make a sequence wait until a request has completed before
issuing another request. Note also the code for identifying the sequence making the request. As mentioned earlier,
this source validation has not been implemented, but the code remains.

Power Command Handler

ECLSS Command Handler

Comm Command Handler

Activity Command Handler

Converted PRL Procedure

Memory CVT

Power Cmd Data

ECLSS Cmd Data

Comm Cmd Data

Activity Cmd Data

American Institute of Aeronautics and Astronautics

6

Set ACTYRequestInProgress = 0 -- none in progress at this point
every 1.0 -- Look for a command every second
 if HDUACTYRequestID /= 0 then -- do we have a request?
 set ACTYRequestInProgress = 1 -- we got a request, indicate processing
 set RequestComplete = 0 -- Indicte not completed
 set RequestingSeqID = HDUACTYRequestingSeqID -- who sent us the request?
 set CurrentRequest = HDUACTYRequestID - 100 -- save the request ID

Figure 5: Sample Control Loop Code

The sample code segment in Figure 6 depicts a function execution within the Activity Command Handler of the

HDU/DSH Simulation.

-- ***************************
-- *** Check for XHAB ***
-- ***************************
if SystemID = 4 then -- XHAB
 if SubSys1ID = 14 then -- CRIO
 if SubSys2ID = 16 then -- CTRL1
 set XHAB_CRIO_CTRL1_OPERATION_MODE_SENSOR_1 = HDUACTYRequestData1
 Message "ACTY: XHAB CRIO CTRL1 OPERATION MODE SENSOR 1 SET"
 end if
 end if
 if SubSys1ID = 16 then -- HUMFAC
 if SubSys2ID = 16 then -- CTRL1
 set XHAB_HUMFAC_CTRL1_OPERATION_MODE_SENSOR_1 = HDUACTYRequestData1
 Message "ACTY: XHAB HUMFAC CTRL1 OPERATION MODE SENSOR 1 SET"
 end if
 end if
 if SubSys1ID = 17 then -- INFLATION
 if SubSys2ID = 16 then -- CTRL1
 set XHAB_INFLATION_CTRL1_OPERATION_MODE_SENSOR_1 = HDUACTYRequestData1
 Message "ACTY: XHAB INFLATION CTRL1 OPERATION MODE SENSOR 1 SET"
 end if
 end if
end if

Figure 6: Function Code Sample

The command routing data was read from memory as well as the command id. The routing data is checked , in

the first case XHAB->CRIO->CTRL1. The code structure allows the insertion of a fault flags anywhere along the
path and including the end item data. An example of fault insertion is depicted in Figure 7.

-- ***************************
-- *** Check for XHAB ***
-- ***************************
if SystemID = 4 and XHABFault = False then -- XHAB
 if SubSys1ID = 14 and CRIOFault = False then -- CRIO
 if SubSys2ID = 16 and CTRL1Fault = False then -- CTRL1
 set XHAB_CRIO_CTRL1_OPERATION_MODE_SENSOR_1 = HDUACTYRequestData1
 Message "ACTY: XHAB CRIO CTRL1 OPERATION MODE SENSOR 1 SET"
 end if

 end if
end if

Figure 7: Command Routing Code Sample

American Institute of Aeronautics and Astronautics

7

The routing information within the command data is used to determine the logical and or physical path the
command travels before reaching the destination. The end item variable(s) are set in memory, a message is
generated to trace the execution and the requesting procedure can now check the end items for continued execution
or anomaly resolution.

VI. Fault Insertion

 The ability to insert a non-response capability to a command or to insert a failure signature (data indication) is
extremely important in the auto-procedure certification process. During the initial ISS auto-procedure development,
it was required by the MSFC Mission Operations Laboratory (MOL), the ISS Computer Safety Working Group, the
Payload Software Control Panel (PSCP), the Timeliner Operations Review Panel (TORP) and the Avionics Software
and Control Board (ASCB), that all paths of execution be tested. This was accomplished during rigorous testing with
the Space Station Training Facility (SSTF) and the Payload Software Integration and Test Facility (PSIVF), by
utilization of numerous data load commands to on-board memory setting up the data conditions prior to execution.
This method encompassed many hours of test time as well as producing and documenting the test results proving all
paths of execution were employed during certification testing. Each auto-procedure had to be executed numerous
times in order to explore each path of execution. The creation of auto-procedures for path and logic control of auto-
procedures being certified allows real-time insertion of faults during the testing, negating numerous commanding
prior to test execution. It also reduces the test time as well as the amount of facility resources needed for such path
and logic testing. It does not fully qualify an auto-procedure though as actual flight hardware or flight equivalent
units or flight certified simulations must be utilized for the final qualification for flight readiness. It should also be
noted that during ISS testing with external facilities, it became very difficult to data load failures since these were
joint Operational Readiness Tests (ORT), not all procedure paths could be induced due to impacts to other test
groups participating in the ORT. The internal simulation capability alleviates some of these problems.

VII. Conclusion
The design described in this paper enhances the development of automated operations for the AES-AMO. The

Timeliner-TLXTM language and system is a vital requirement, as without its execution structure and language
components, the design could not be accomplished or, at a minimum, the increased costs and development schedule
impact would adversely affect our progression. The Timeliner-TLXTM system is flight qualified and human rated
allowing for immediate development use. Future development will support deep space missions by allowing the
crew single command functionality for on-board functions, crew authoring of procedures, and crew
validation/verification of procedures on-board. This will allow the crew to develop and execute procedures on-
board and will reduce communication requirements with earth-based assets for procedure execution in case of
communication delays and/or permanent loss of communications. The “pre-qualification” of crew authored auto-
procedures can be done via the integrated Timeliner-TLXTM simulations. This pre-qualification provides for logic
path testing of all paths and fault insertions. High fidelity testing will be required to fully qualify an auto-procedure
for real-time execution, as external simulations/services will be required in order to declare a procedure as “flight
ready”. Currently, the future goals are the development of a diagnostic failure model of an HDU/DSH subsystem,
and to automate the model by interfacing with real-time telemetry, providing failure data to Timeliner-TLXTM
Command & Control (C&C) systems and having Timeliner-TLXTM procedures perform the responses.

AMO’s mission is to demonstrate advanced capabilities for autonomous and crew-centered operations, with
emphasis on reducing the crew’s workload and dependence on mission support from Earth-based control centers.
This design paper describes a small effort within AMO’s mission and will further the advancement toward on-board
procedure authorship and validation/verification.

American Institute of Aeronautics and Astronautics

8

Appendix A
Acronym List

AES
AMO
ASCP
C&C
COMM
DSH
ECLSS
GbE
GNC

Advanced Exploration Systems
Autonomous Mission Operations
Avionics Software and Control Panel
Command & Control
Communications
Deep Space Hab
Environmental Control and Life Support System
Gigabyte
Guidance , Navigation and Control

HAL Higher Active Logic
HDU
HDU/DSH
ISS
ISD

Habitat Demonstration Unit
Habitat Demonstration Unit/Deep Space Hab
International Space Station
Integrated Server Device

MDM
MOL
MSFC
NASA
ORT
PDU

Multiplexer/Demultiplexer
Mission Operations Lab
Marshall Space Flight Center
National Aeronautics and Space Administration
Operational Readiness Tests
Power Distribution Unit

PLMDM
POIC
PRL
PSCP
PSIVF
SSMMU
SSTF
TBE
TCS
TLX
TORP
UIL
VCC

Payload Multiplexer/Demultiplexer
Payload Operations and Integration Center
Procedure Representation Language
Payload Software Control Panel
Payload Software Integration and Test Facility
Solid State Mass Memory Unit
Space Station Training Facility
Teledyne Brown Engineering
Thermal Control Systems
Timeliner Execution Environment
Timeliner Operations Review Panel
User Interface Language
Vital Communication Computer

 Appendix B
Glossary

HAL 9000 Space
Operating System

Habitat Development
Unit/Deep Space Hab

HAL 9000 Space Operating System is a crew-integrated, autonomous
command and control system designed specifically for fully automated, long-
duration deep space vehicles.

Habitat Development Unit-Deep Space Hab is a one story, 4-port habitat unit
with an approximate volume of 56 cubic meters. The HDU/DSH shell can
accommodate an inflatable loft for additional laboratory or habitation volume.
HDU/DSH project is a multi-center team project consisting of NASA
architects, scientist, and engineers, working together to develop sustainable
living quarters, workspaces, and labs for next-generation space missions.

American Institute of Aeronautics and Astronautics

9

Acknowledgments
The authors would like to acknowledge Craig Cruzen, Mission Operations Laboratory, NASA Marshall Space

Flight Center, Scott Akridge, Space Systems Department, NASA Marshall Space Flight Center, Shen Chang,
Spacecraft & Vehicle Systems Department, NASA Marshall Space Flight Center, and Dr. Jeremy Frank, NASA
Ames Research Center, for their support with the initial groundwork of incorporating Timeliner- TLXTM into
NASA’s Habitat Demonstration Unit/Deep Space Hab simulation environment and PRL scripts to Timeliner-
TLXTM scripts conversion work in support of the Advanced Exploration Systems, Autonomous Mission Operations.

References
[1] Stetson, H. K.; Deitsch, D. K.; Cruzen, C. A., Haddock, A. T.; “Autonomous Operations Onboard the International

Space Station,” IEEE Aerospace Conference, Big Sky, Montana, March 2007.

[2] Stetson, H. K.; Knickerbocker, G. K.; Cruzen, C. A., Haddock, A. T.; “The HAL 9000 Space Operating System,”
IEEE Aerospace Conference, Big Sky, Montana, March 2011.

[3] Brown, R. A.; Braunstein, R.; Brunet, R. C.; Grace, R.; Vu, T.; Busa, J.; Dwyer, W. K.; “Timeliner: Automating
Procedures on the ISS,” 2002 SpaceOps Conference, Houston, Texas, October 2002.

[4] Dalal, K. M.; Frank, J.; “Bridging the Gap between Human and Automated Procedure Execution,” IEEE
Aerospace, Big Sky, Montana, March 2010.

Biography

Angie T. Haddock is employed by NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Alabama, in the
Mission Operations Lab. Currently, Ms. Haddock is the Co-Lead of the MSFC Advanced
Exploration Systems-Autonomous Mission Operations (AES-AMO), and an analyst for the
Space Launch Systems (SLS) Flight Operations. In the SLS position, she has worked with
the analysis and development of the SLS Flight Operations Specification and supported the
analysis and documentation of requirements and Launch Commit Criteria derived from the
vehicle system. Preceding the SLS and the AES projects, Ms. Haddock was the Operations
Lead for the ISS PLMDM. In this role, she was responsible for leading the development of
PLMDM operations, technical coordination for the development and update of PLMDM
software. Prior to joining NASA in 2000, she worked for Teledyne Brown Engineering,

where she trained to serve as a Command and Payload MDM Officer (CPO) for the ISS Payload Operations
Integration Center. She holds a Bachelor of Science degree in Computer Science from Athens State University. Ms.
Haddock, and her husband, Stacey, have three daughters; Stephanie, Mary Elizabeth & Amy.

Howard K. Stetson is a contractor for Marshall Space Flight Center, Space Systems
Operations and is currently working as an analyst for the Space Launch Systems (SLS)
flight operations, avionics and software, as well as the Advanced Exploration Systems-
Autonomous Mission Operations project and has over 34 years of experience in software
development and engineering. Preceding the SLS and AES projects, Mr. Stetson designed,
developed and implemented the Higher Active Logic (HAL) autonomous system for ISS
payloads. Mr. Stetson, an employee of Teledyne Brown Engineering, has received the NASA
Space Flight Awareness Honoree Award, the Astronauts Personal Achievement Award
(Silver Snoopy), and the NASA Exceptional Pubic Service Medal. Mr. Stetson is a member
of the United States Selective Service System and the United States Parachute Association

and currently has over 3000 jumps.

1

Automated Operations Development for
Advanced Exploration Systems

Angie T. Haddock/NASA

Howard K. Stetson/TBE-NASA

SpaceOps Conference 2012

June 2012

2

What is Timeliner?
History of Timeliner?

• Timeliner is both a programming language and an execution
environment.

• The programming language is a scripting or procedural
language.
• Used to write automated procedures that can execute

autonomously, be event, time, ground and/or crew command
driven (or combination of these).

• Can be used in conjunction with manual procedures

• Created by the Charles Stark Draper Laboratory in 1982.
• Used to emulate the actions of the Space Shuttle crew in

timelines and on-board crew procedures.

• Chosen as the User Interface Language (UIL) for the Space
Station Program in 1992.
• Currently, Timeliner is being used by the U.S. Core and Payload

communities.

3

Automated Operations Development for Advanced
Exploration Systems-Introduction

• Automated Space Operations command and control software
development and implementation is an integral part of the Deep-
Space vehicle design effort.

• The Software design must encompass:

• Autonomous Fault Detection

• Isolation

• Recovery Capabilities

• “Single Button” Intelligent Functions for the Crew

• Timeliner (TLX) accommodates all of the “must haves” for the
Advanced Exploration Systems software design

• Timeliner has been executing/supporting onboard the International
Space Station (ISS) for about 11 years.

• The Timeliner System onboard the ISS performs autonomous
command responses for Payload Systems and Subsystems.

• The Timeliner System onboard the ISS was proof of concept for the
execution componenet of the larger HAL 9000 design .

4

HAL 9000/ Timeliner (TLX) Procedure
Execution Potential Capabilities

• Intelligent Operations Layer on top of avionics

• Moves ground operations and planning to on-board

• Timeliner-TLXTM for Operations monitoring and commanding

• Crew Autonomy / Risk Mitigation for Communication delays and for
Permanent Loss of Communications

• HAL9000 Real-Time Planning Engines

• Direct control of execution

• Crew Interface

• Major Operations Paradigm shift to human factors

5

Automated and Autonomous Mission Operations

Commonality needed for least amount of impact:

Changes Human Factors for Long Duration Deep Space Missions
Single crew command for on-board functions

Timeliner Procedure per function

Communication delays
Develop and run procedures on-board
Reduces comm requirements with earth-based assets for procedure
execution

Crew Authoring of On-Board Procedures
Verification
Validation
Implementation

Mitigation of Permanent Loss of Communication
Crew Autonomy

6

Automated Operations Development for Advanced
Exploration Systems-Introduction con’t

HDU/
DSH

HM
Console

TLX TReK EPC

S
L
S

Other
Sys

HDU/DSH

SLS

Other
Systems

Cmd
Cmd/TLM

Reports

C&T T

Telemetry and Command
Database

TLM
Sim

CVT

On-board Console
(workstation)

TIL

7

Timeliner (TLX) Overview

• Timeliner (TLX)

– Activity is a procedure or set of procedures

– All procedures are auto-procedures in the HAL System

• Manual Procedures (Physical)

– Auto procedure gives direction on physical steps

– Crew gives confirmation physical steps performed

• Provides current state of activities

– Situational awareness for autonomous monitoring & real-
time replanning.

» Mitigates Comm light time delays impact

» Can provide input for activities prognosis analysis
(external non-HAL function)

» Resource Utilization Predicts

» Can compare with resource utilization from previous
executions of the activity; used for resourse planning
in the HAL Executives.

8

Timeliner (TLX) Overview (con’t)

• Auto Procedures (manually initiated or autonomous)

– Command operations

– End Item Verification

– Each Step verified before processing

– Self-Contained

• Provides both nominal and off-nominal operations

– Targeted systems/devices that do not provide an end item
response are candidates for Hardware/Software design changes

• Crew Authoring of Procedures

– Verification

• Command correctness

• Telemetry end items for each command

– Validation

• Logic path exercising (Did it work?)

– Pre-Qual with internal SIM; final qual with Flight certified
SIM/Testbed (on-board)

9

Deep Space Habitat Simulation Capability

• Conversion of PRL procedures to Timeliner-TLXTM

auto-procedures occurred.

• Quick way to execute the converted procedures
for analysis and comparison of logic flows was
needed

• The Simulation provided the ability to insert faults
within the command paths and at each
system/subsystem level; this provided the ability
to fully qualify the procedure by executing all
paths of execution.

• The HAL9000 System design contains an
integrated test bed with a resident simulation for
verification and validation of newly created
autoprocedures.

10

HAL 9000 Simulation Integration Context

• HAL 9000 Integrated Test Bed includes:

– 9 Planning Engines

– 9 Timeliner-TLX Execution Engines

– 9 Timeliner-TLX Simulators (4 are utilized for
HDU/DSH simulation)

• Power

• ECLSS

• COMM

• Activity

11

Simulation Command Handling

• The procedures and simulation both execute
within the same Timeliner-TLXTM Execution Engine

• Capability to format and transmit a command to
the simulation without using the Timeliner-TLXTM

“Command” statement was needed.

• A conversion option to place command data into
memory that would be monitored by the
simulation was needed.

12

Fault Insertion

• The ability to insert a non-response capability to a command
or to insert a failure signature (data indication) is extremely
important in the auto-procedure certification process.

• From previous experience during the initial ISS auto-
procedure development, it was requirement that all paths of
execution be tested.

• The creation of auto-procedures for path and logic control of
auto-procedures being certified allows real-time insertion of
faults during the testing, negating numerous commanding
prior to test execution.

• With this simulation, all paths of execution is tested with the
insertion of a failed signature.

13

Summary

• This design enhances the development of automated operations
for the AES-AMO.

• The Timeliner-TLXTM language and system is a vital requirement, as
without its execution structure and language components, the
design could not be accomplished or, at a minimum, the increased
costs and development schedule impact would adversely affect our
progression.

• The Timeliner-TLXTM system is flight qualified and human rated
allowing for immediate development use.

• Future development will support deep space missions by allowing
the crew single command functionality for on-board functions,
crew authoring of procedures, and crew validation/verification of
procedures on-board.

• Future goals are the development of a diagnostic failure model of
an HDU/DSH subsystem, and to automate the model by interfacing
with real-time telemetry, providing failure data to Health
Management Systems.

14

15

Acronym List

AES
AMO
ASCP
C&C
COMM
DSH
ECLSS
EPS
GbE
GNC

Advanced Exploration Systems
Autonomous Mission Operations
Avionics Software and Control Panel
Command & Control
Communications
Deep Space Hab
Environmental Control and Life Support System
Enhanced HOSC PC
Gigabyte
Guidance , Navigation and Control

HAL Higher Active Logic

HDU
HDU/DSH
HM
HOSC
ISS
ISD

Habitat Demonstration Unit
Habitat Demonstration Unit/Deep Space Hab
Health Management
Huntsville Operations Support Center
International Space Station
Integrated Server Device

MDM
MOL
MSFC
NASA
ORT
PDU

Multiplexer/Demultiplexer
Mission Operations Lab
Marshall Space Flight Center
National Aeronautics and Space Administration
Operational Readiness Tests
Power Distribution Unit

PLMDM
POIC
PRL
PSCP
PSIVF
SSMMU
SSTF
TBE
TCS
TIL
TLX
TORP
TReK
UIL
VCC

Payload Multiplexer/Demultiplexer
Payload Operations and Integration Center
Procedure Representation Language
Payload Software Control Panel
Payload Software Integration and Test Facility
Solid State Mass Memory Unit
Space Station Training Facility
Teledyne Brown Engineering
Thermal Control Systems
Target Interface Library
Timeliner Execution Environment
Timeliner Operations Review Panel
Telescience Resource Kit
User Interface Language
Vital Communication Computer

16

Glossary

HAL 9000 Space
Operating System

Habitat
Development
Unit/Deep Space
Hab

HAL 9000 Space Operating System is a crew-integrated,
autonomous command and control system designed
specifically for fully automated, long-duration deep space
vehicles.

Habitat Development Unit-Deep Space Hab is a one
story, 4-port habitat unit with an approximate volume of
56 cubic meters. The HDU/DSH shell can accommodate
an inflatable loft for additional laboratory or habitation
volume. HDU/DSH project is a multi-center team project
consisting of NASA architects, scientist, and engineers,
working together to develop sustainable living quarters,
workspaces, and labs for next-generation space missions.

