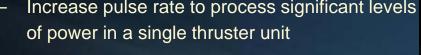


Pulsed Inductive Thruster Using Martian Atmosphere as Propellant

presented at **Concepts and Approaches for Mars Exploration**12-14 June 2012

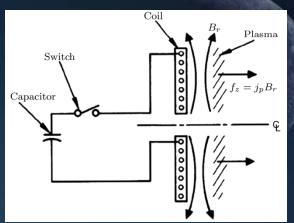
Kurt Polzin

NASA – George C. Marshall Space Flight Center

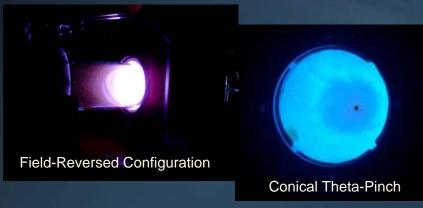


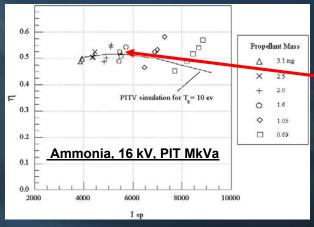
Pulsed Inductive Thruster (PIT)

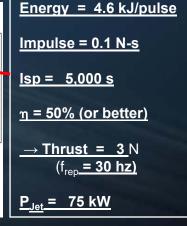
Propulsion Systems Department


Inductive Pulsed Plasma Thrusters Demonstrated

- High, relatively constant η_t over an I_{sp} range
- Operate on arbitrary power level while maintaining constant performance
- Increase pulse rate to process significant levels of power in a single thruster unit

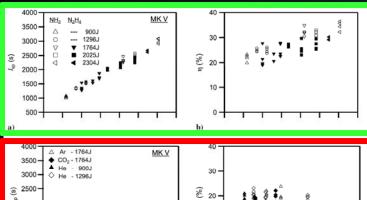




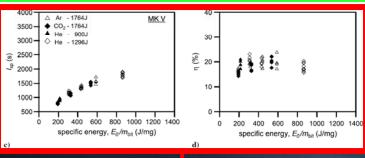


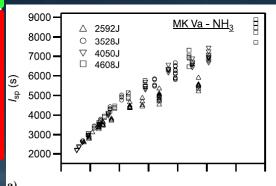
Electrodeless, operates on range of propellants: Ammonia, Hydrazine, Hydrocarbons, Water

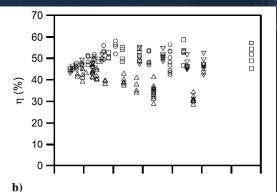
Other Inductive PPT Variants



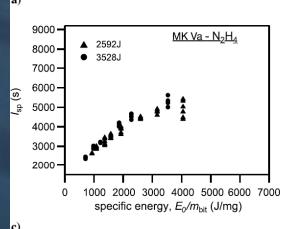
Performance of PIT on Various Propellants

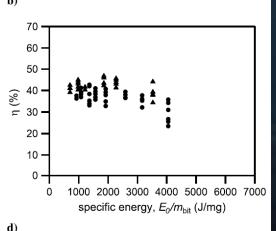

PIT MK V – 4.5 μ F , PIT MK Va – 9 μ F


Propulsion Systems Department



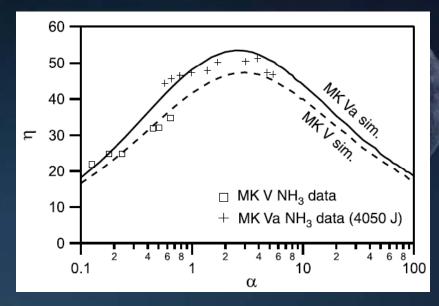
Demonstration of significant advancement in operation capability from MK V to MK Va


- Due to better dynamic impedance matching
- Further advances possible



Expect all other atomic / molecular propellants to follow suit in terms of performance trends and improvements

Performance of PIT


Propulsion Systems Department

MK V performance

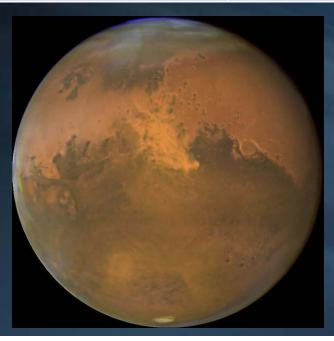
- NH_3 , $N_2H_4 \eta_t \sim 20-30\%$
- Ar, He, $CO_2 \eta_t \sim 15-20\%$
- Dynamic Impedance not optimum

MK Va performance

- NH_3 , $\eta_t \sim 40-50\%$
- $-N_2H_4-\eta_1\sim 35-40\%$
- Dynamic Impedance spans optimum

From K.A. Polzin, Journal of Propulsion and Power, 27:513 (2011)

Takeaways


- PIT will operate on many propellant options
 - Provides consistent performance and flexibility for a mission
- Variations in efficiency across various propellants, but performance likely better for all options with improved dynamic impedance match
- Higher efficiency possible with inductive energy recapture
 - Electrical / Power System challenge : Independent of propellant choice

The Martian Atmosphere as Propellant

Propulsion Systems Department

Chemical Species	Mole fraction
Carbon Dioxide	95.32%
Nitrogen	2.7%
Argon	1.6%
Oxygen	0.13%
Carbon Monoxide	0.07%

Concept

- ➢ If an EP system can operate on CO₂ (as PIT can), Mars atmosphere is a simple ISRU option
- Only need to carry propellant for one way trip (mass and systems advantages)
- Can produce propellant at Mars by compressing atmosphere and filling a COPV tank
- \triangleright Variation in η_t with propellant (but still fairly close)
 - Analysis of system and mission concept required to quantify effects
 - Testing will be conducted at NASA-MSFC using a PIT thruster on simulated Martian atmosphere.
- Spacecraft could also leave Mars and go to a different destination (other than returning to Earth)
- Potentially permits in situ refueling at any other destination where the atmosphere is accessible