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The Federal Aviation Administration’s (FAA) Surveillance and Broadcast Services (SBS) 

Program has supported implementation of the Automatic Dependant Surveillance Broadcast 

(ADS-B) In-Trail Procedure (ITP) on commercial revenue flights.  ADS-B ITP is intended to 

be used in non-radar airspace that is employing procedural separation.  Through the use of 

onboard tools, pilots are able to make a new type of altitude change request to an Air Traffic 

Service Provider (ATSP).  The FAA, in partnership with United Airlines, is conducting flight 

trials of the ITP in revenue service in the Pacific.  To support the expansion of flight trials to 

the rest of the United States managed Pacific Airspace Region, a computerized batch study 

was conducted to investigate the operational impacts and potential benefits that can be 

gained through the use of the ITP in the Pacific Organized Track System (PACOTS).  This 

study, which simulated the Oakland managed portion of the PACOTS, suggests that 

potential benefits in the PACOTS are significant with a considerable increase in time spent 

at optimum altitude and associated fuel savings. 

Nomenclature 

ADS-B = Automatic Dependant Surveillance Broadcast 

ATC = Air Traffic Control 

ATSP = Air Traffic Service Provider 

BADA = Base of Aircraft Data 

CPDLC = Controller Pilot Data-Link Communication 

FAA = Federal Aviation Administration 

ITP = In-Trail Procedure 

ITP/STD = standard clearance issued after an ITP request is made 

kts = knots 

LaRC = Langley Research Center 

NASA = National Aeronautics and Space Administration 

NATOTS = North Atlantic Organized Track System 

NOAA = National Oceanic and Atmospheric Administration 

NLR = National Aerospace Laboratory, Netherlands 

nmi = nautical mile 

PACOTS = Pacific Organized Track System 

SA = Situation Awareness 

SBS = Surveillance and Broadcast Services 

SPR = Safety, Performance, and Interoperability Requirements 

TMX = Traffic Manager 
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I. Introduction 

 

n experiment was performed to investigate the benefits of introducing the Automatic Dependant Surveillance 

Broadcast (ADS-B) In-Trail Procedure (ITP) into the Pacific Organized Track System (PACOTS). This 

experiment was conducted by the National Aeronautics and Space Administration’s (NASA) Langley Research 

Center (LaRC) for the Surveillance and Broadcast Services (SBS) office of the Federal Aviation Administration 

(FAA).  It was designed, developed, and executed as a computerized batch experiment using the TMX (Traffic 

Manager) flight simulation tool.  This paper presents an overview of the ADS-B ITP, the PACOTS, this experiment, 

and summarizes some of the results. 

A. ADS-B ITP 

The ADS-B ITP is designed for use in airspace where the Air Traffic Service Provider (ATSP) is providing 

separation services through procedural separation.  An ADS-B ITP aircraft will reference up to two proximate 

aircraft in order to perform the maneuver.  The information provided by the flight crew to the air traffic controller 

for each referenced aircraft includes the reference aircraft identification, relative location to the ITP aircraft, and the 

ITP distance between the ITP aircraft and the reference aircraft.  Each reference aircraft must be located vertically 

within 2,000 feet of the ADS-B ITP aircraft and meet one of the following criteria: 

 ITP distance must be greater than or equal to 15 nautical miles (nmi) and have a closing ground speed 

difference less than or equal to 20 knots (kts); or 

 ITP distance must be greater than or equal to 20 nmi and have a closing ground speed difference less than 

or equal to 30 kts.   

Once an ADS-B ITP request is received by an air traffic controller, they also have a list of criteria to verify prior to 

issuing an ADS-B ITP clearance.  The controller must confirm that: 

 the current standard separation will exist at the requested altitude, 

 the ADS-B ITP aircraft is not currently being referenced in any other ADS-B ITP clearance, 

 the ADS-B ITP and reference aircraft are: not closing by more than 0.06 Mach, classified as same track, no 

more than 2,000 feet vertically separated, and not currently or expected to maneuver prior to the 

completion of the ADS-B ITP. 

Once an ADS-B ITP clearance is received, the flight crew must re-verify that their ADS-B ITP criteria are still met 

with each referenced aircraft in the clearance.  At that point the maneuver is similar to any other altitude change.  

The ADS-B ITP aircraft must maintain its current Mach number and a minimum rate of change of altitude of 300 

feet per minute during the climb or descent.   

 

 
Figure 1: ITP Configuration 

 

 

Figure 1 shows a typical situation encountered on an organized track system.  To match its optimal fuel burn 

altitude or for other operational reasons, the ADS-B ITP aircraft at FL340 (blue) should be flying at FL360.  While 

FL360 is free of any conflicting traffic, the required separation distance to either of the two red aircraft does not 

exist at the intermediate altitude of FL350.  Without ADS-B ITP, this forces the blue aircraft to remain at the less 

efficient altitude of FL340.  With ADS-B ITP and associated on-board tools, the blue aircraft makes use of ADS-B 

reports from nearby aircraft and determines which of the aircraft have qualified ADS-B data and meet the ADS-B 

ITP criteria.  If the required conditions are met, the flight crew can make an ADS-B ITP request to Air Traffic 

Control (ATC).  The ADS-B reports must meet specific limits for the accuracy and integrity of the data in order to 

be used for the ADS-B ITP.  In order for the ADS-B ITP to be requested, both the ADS-B ITP aircraft and any 
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reference aircraft (red aircraft in Figure 1) must be same direction, and the initiation criteria must be met between 

the ADS-B ITP aircraft and any reference aircraft.   

For a complete description of the ADS-B ITP please refer to the Safety, Performance, and Interoperability 

Requirements (SPR) Document for the ATSA-ITP application (DO-312) document [1].  The ADS-B ITP was 

initially designed after the currently approved ICAO DME/GNSS climb through procedure, which relies on the pilot 

to provide information from the cockpit to the controller to be used during the review and approval of an altitude 

change request.  For the ADS-B ITP, this information is obtained through the use of ADS-B technology.   

B. Pacific Organized Track System (PACOTS) 

The PACOTS is used for the air traffic traveling between Asia and the United States of America.  The track 

definitions are created on a daily basis by Oakland and Fukuoka ATC centers.  The minimum lateral separation of 

the tracks is 50 nmi, the minimum longitudinal separation varies between 30 nmi and 50 nmi based on the airspace 

operator and aircraft equipage, and the minimum vertical separation is 1000 feet.  The eastbound tracks are usually 

located in Fukuoka airspace for approximately two hours and in Oakland airspace for approximately five hours.  

This experiment used data from February 4, 2011 along tracks 1, 2, 3, and 14 along the portion of the eastbound 

tracks that fall within the Oakland airspace boundary and considered both the 30 nmi and 50 nmi longitudinal 

separation standards.  Figure 2 shows a screenshot of a typical traffic flow from a PACOTS controller station. 

 

 
Figure 2: Screenshot of the PACOTS 

 

Previous experiments have shown multiple operational improvements are possible through increased situation 

awareness (SA) resulting from on-board ADS-B displays and the implementation of the new ADS-B ITP standard.  

These experiments were focused on other oceanic environments, where many of the benefits were limited by the 

occasional need for the ADS-B ITP, limited flight time, or traffic densities that were too high to make effective use 

of the ADS-B ITP [2].  It is expected that the PACOTS will show increased use of the ADS-B ITP over the other 

oceanic environments due to the traffic patterns, duration of flight time, and separation standards used on the 

PACOTS.  This combination generates a large demand for similar altitudes within the same period of time, forcing 

some aircraft to fly at undesirable altitudes, which can result in a decrease in fuel efficiency.  This experiment 

examines opportunities for altitude changes created by the ADS-B ITP and estimates the potential fuel savings and 

beneficial operational impact the ADS-B ITP would have on the PACOTS. 
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II. Experiment 

A. Design 

This experiment targeted four parameters as independent variables that could affect the operational impact of the 

ADS-B ITP and the SA provided by an ADS-B display:  

1. the system-wide level of ADS-B equipped aircraft 

2. traffic density 

3. ITP capability 

4. separation standard 

 The system-wide level of ADS-B equipage is a combination of the percent of aircraft equipped with ADS-B 

OUT (30, 60, and 90% were simulated) and those equipped with ADS-B IN (10, 45, and 80% were simulated).  

Because it was assumed that any aircraft equipped with ADS-B IN would also be equipped with ADS-B OUT, no 

combinations that resulted in a higher ADS-B IN equipage level than ADS-B OUT were considered, yielding a total 

of six equipage levels.  A seventh level of no ADS-B equipage (0%) was used as the baseline to simulate current day 

operations.  The levels of ADS-B equipage are referred to by the percent of ADS-B out equipped aircraft followed 

by the percent of ADS-B IN aircraft.  The two values are separated by a “_”.  The complete list includes 0_0 

(baseline), 30_10, 60_10, 90_10, 60_45, 90_45, and 90_80. 

Three traffic densities of 1.0, 1.5, and 2.0 times the number of aircraft in the current PACOTS traffic data were 

simulated.  The third parameter adjusted what information and capabilities for flight level changes could be used by 

the flight crew.  The first level provided the flight crew (pilot model) with increased SA using ITP equipment.  The 

second level expanded the first to include the ability to conduct an ITP (SA+ITP).  Pilot models, which were used in 

lieu of flight crews, were provided with rules to determine under what conditions to request an altitude change based 

on the proximity to other aircraft.  The final parameter of separation standard was set to either 30 nmi or 50 nmi, the 

two main standards used in Oakland airspace.  The relationship of the experiment parameters is shown in Table 1. 

 

Table 1: Experiment Matrix 

Separation standard 
 

30 nmi 
 

50 nmi 

Traffic density 1.0X 1.5X 2.0X 1.0X 1.5X 2.0X 

                                                               # Replicates                                     # Replicates 

IT
P

 &
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D
S
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 e

q
u

ip
a
g

e
 

Baseline 0_0 

 

18  18 18 

 

18 18 18 

SA 

30_10 18 18 18 18 18 18 

60_10 18 18 18 18 18 18 

60_45 18 18 18 18 18 18 

90_10 18 18 18 18 18 18 

90_45 18 18 18 18 18 18 

90_80 18 18 18 18 18 18 

SA + ITP 

30_10 18 18 18 18 18 18 

60_10 18 18 18 18 18 18 

60_45 18 18 18 18 18 18 

90_10 18 18 18 18 18 18 

90_45 18 18 18 18 18 18 

90_80 18 18 18 18 18 18 

 

B. Simulation Environment 

This experiment was conducted in TMX, a medium fidelity desktop flight simulation program originally developed 

by the National Aerospace Laboratory (NLR) in the Netherlands with continued improvement and functionality 

expansion by both the NLR and the NASA over many years.  TMX is capable of simulating up to 2,000 aircraft at a 

time, using a six degrees-of-freedom dynamics aircraft model augmented with performance parameters from the 
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EUROCONTROL Base of Aircraft Data (BADA)  version 3.5 [3].  This experiment used enhancements 

implemented in TMX for a similar ADS-B ITP experiment conducted on the North Atlantic Organized Track 

System (NATOTS) [2] that included a redesigned pilot model, creation of an ATC model, modeling of the oceanic 

environment, expansion of the Controller Pilot Data-Link Communication (CPDLC) model, creation of an ADS-B 

ITP module, and detailed improvements to the accuracy of the fuel flow model.  This experiment used the actual 

National Oceanic and Atmospheric Administration (NOAA) forecast winds and PACOTS route definitions.  The 

traffic flows in the experiment were created by modeling the distribution of recorded traffic data in terms of 

distribution of aircraft arriving at the track entry in time, total number of aircraft, and aircraft distribution across 

tracks.  Traffic data from February 2011 provided by the FAA was analyzed to provide an overview of current 

operations in the PACOTS.  Data reviewed included: total number of aircraft, distribution of aircraft between tracks, 

arrival intervals, aircraft type, number, and magnitude of altitude change requests, and track definitions.  The results 

of this analysis provided the information that was used to define the experiment matrix and configure the TMX 

simulation.  Given the fleet mix flying in the PACOTS and the types of aircraft models available in TMX, a 

selection of eight aircraft types (similar to A330-200, A330-300, A340-300, B747-400, B757-200, B767-200, B767-

300, and B777-200) were modeled for this experiment.  The selected types cover approximately 77% of the 

observed aircraft types, with the remainder being primarily cargo carriers, military and business jets.  The primary 

metric taken from the flight data was the distribution and quantity of traffic in the PACOTS.  Table 2 shows the 

average density for the data analyzed along with the data from the baseline condition of the experiment traffic.  The 

average total number of aircraft per day and percent of traffic per track matches closely between the actual and 

simulated data.  Due to the random variations in actual traffic, exact duplication of the number of aircraft was not 

possible. 

 

Table 2: Comparison of Experiment Baseline 

 February 2011 Experiment Baseline 
for 1.0x density 

Total number of aircraft per day 65.1  68.7  

% on Track 1  28.1  26.6  

% on Track 2  30.8  29.5 

% on Track 3  29.4  29.7  

 % on Track 14  11.7  14.2  

 
The simulated traffic flows used in this experiment were also modeled after the distribution of current traffic 

during the time the tracks are active.  The number of aircraft on each track were counted at 60 second intervals to 

calculate a distribution of the traffic, shown in blue in Figure 3.  The modeled distribution is shown in red.  The 

same process was done for all of the baseline scenarios for 1.0x density of the experiment and the data for tracks 1, 

2, 3, and 14 are shown in Figure 3.  While an exact duplication of the traffic distribution was not possible, the 

similarity of the simulated data to the actual data indicates this simulation is representative of the PACOTS traffic 

flow. 
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Figure 3: Comparison of actual (blue) and modeled (red) PACOTS Tracks 

 

An analysis of the variation in the magnitude of altitude change requests was completed on the actual data, 

and was used following the scenario creation to compare the baseline traffic conditions to the actual data.  Table 3 

includes a comparison of the magnitude of various altitude change requests.  Given the accuracy of this comparison, 

it is important to note that this aspect of the PACOTS was not modeled but emerged from the detailed modeling 

done on the density distributions and the accuracy of the aircraft models as compared to what is flown in the 

PACOTS. 

 
Table 3: Comparison of the magnitude of altitude change requests 

% Altitude Requests February 2011 50 nmi / 30 nmi 

% of 1000 feet requests 61.0 60.8 / 60.5 

% of 2000 feet requests 34.6 28.6 / 29.6 

% of 3000 feet requests 2.6 8.5 / 8.3 

% of 4000 feet requests 1.5 2.1 / 1.6 
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III. Results 

Throughout the results section of this paper, plots are organized by increasing levels of ADS-B IN and then by 

increasing levels of ADS-B OUT.  The equipage levels are labeled using the syntax of “Percent of aircraft with 

ADS-B OUT_Percent of aircraft with ADS-B IN”.  As an example, a label of 30_10 would indicate that 30% of the 

aircraft are equipped with ADS-B OUT and 10% of the aircraft are equipped with ADS-B IN.  Because of the 

extreme similarity of the data between the 30 nmi and 50 nmi conditions, results will be shown for only the 30 nmi 

case with differences between the two cases presented as needed.  In this section, the terms “fuel savings” and “fuel 

loss” are used in comparison to each aircraft’s respective baseline.  When a fuel savings is experienced, it means that 

the aircraft in that experiment condition used less fuel than the same flight did in the baseline.  A fuel loss means 

that a flight used more fuel for the experiment condition flight than it did for the same baseline flight.     

Target density values were 1.0, 1.5, and 2.0 times the current traffic density and the calculated average traffic 

density for the baseline scenarios is shown in Table 4 with experiment traffic density multipliers shown in 

parentheses.  Due to the random variations in actual traffic, exact duplication of the number of aircraft at higher 

densities was not possible.  Through the rest of the paper, the traffic density conditions will be referred to by the 

target multiplier values of 1.0x, 1.5x, and 2.0x. 

 
Table 4: Traffic Density of Experiment 

Density Name Average Number of Aircraft per day 

ACTUAL                               65.1 

1.0X                               68.7     (1.05 X) 

1.5X                               93.7     (1.44 X) 

2.0X                             128.4     (1.97 X) 

 

A. Per Aircraft Fuel Savings and Time at Optimum Altitude 

In all non-baseline scenarios, approximately 35% of unequipped aircraft, for both the 30 and 50 nmi separation 

standards, experienced a fuel savings with no large increases or decreases to the percentage value as the ADS-B or 

ITP equipage increased.  This indicates that the percent of unequipped aircraft that experience a fuel savings or a 

fuel loss on average does not change with increasing ADS-B or ITP equipage levels.  For unequipped aircraft, the 

distribution of aircraft is nearly equal between aircraft with a fuel savings, aircraft with a fuel loss, and aircraft with 

no change, a different trend then that experienced by the ADS-B IN equipped aircraft.  Nearly all (approximately 

95%) of the ADS-B IN equipped aircraft experience a fuel savings.  The remaining 5% of equipped aircraft 

experience a loss.   

 The largest contributing factor to equipped aircraft fuel savings is the amount of time that they are able to 

spend at their respective optimum altitudes.  All aircraft have an optimum altitude to fly at which is most fuel 

efficient for the current weight and speed.  This altitude changes continually during a flight.  During a long flight, 

similar to those in the PACOTS, an aircraft’s optimum altitude could change by as much as 4,000 feet.  In order to 

reduce fuel burned as much as possible, an aircraft should conduct a continuous cruise climb.  However, in an 

organized track system and with the volume of aircraft present, that is not usually possible.  In an attempt to follow 

the cruise climb as close as possible, aircraft perform step climbs periodically as the optimum altitude changes.  The 

more climbs or descents aircraft can make, the higher the fuel savings that can be experienced.  In the baseline 

conditions the unequipped aircraft (100% of the aircraft) spent an average of 28% of the flight time at the optimum 

altitude.  The percent of the flight spent at optimum for the unequipped aircraft did not change as surrounding 

aircraft were equipped with ADS-B or the ITP.  

The percent of time that aircraft spend at their optimum altitude is shown in Table 5.  The percent of time that 

aircraft equipped with ADS-B IN and the ADS-B ITP spend at their optimum altitude ranges between 75% and 

79%.  This is a significant increase over that of the unequipped aircraft, at 28%.  This increase from 28% to 75% of 

flight time at the optimum altitude is from the aircraft being able to make better and more accurate requests for 

altitude changes.  Having the ITP equipment onboard the aircraft provides increased the SA of the proximate traffic 

compared to current operations.  This additional information allows the flight crew (or pilot model) to make altitude 

change requests at times when it is more likely that ATC will be able to issue a clearance.  The percent of the flight 

that is spent at optimum is one metric that does change slightly between the use of a 50 nmi separation standard 



 

American Institute of Aeronautics and Astronautics 
 

 

8 

versus a 30 nmi separation standard.  The 50 nmi separation condition experienced a smaller increase to 70%-78%.  

The main reason for this decrease is that when the separation standard is increased, fewer aircraft can fit at any 

single altitude, resulting in a reduction in opportunities to execute an ITP.  In the PACOTS, many of the aircraft will 

have the same optimum altitude because the aircraft types flown and their weights are usually similar.  This creates 

local conflicts for optimum altitudes which are partially alleviated by the use of a smaller separation standard.  For 

both the 30 nmi and 50 nmi results, the data for ITP equipped aircraft are slightly higher than the data for the SA 

only aircraft.  The benefit of the ITP is offset by the benefit of the smaller separation standard.  Also of interest is 

that under both the 30 nmi and 50 nmi separation standards, there is little variation in the percent of time that 

equipped aircraft spend at optimum altitude when comparing across the ADS-B equipage levels or traffic density.  

The primary reason for this insensitivity to ADS-B equipage and density is that the PACOTS is not functioning near 

a capacity limit.  Since all of the aircraft that are equipped with ADS-B and ITP are able to maneuver to their 

optimum flight levels even at double the current traffic density, it implies that the PACOTS has significant unused 

capacity available. 

 

Table 5: Percent of Time Spent at Optimal Altitude 

 Unequipped ITP with 

30 nmi separation 

ITP with 

50 nmi separation 

Average 27.7% 77.2% 75.0% 

Minimum 27.0% 74.6% 70.0% 

Maximum 28.4% 79.0% 78.1% 

B. Number of Altitude Change Requests and Approvals 

As shown in Figure 4, as the ADS-B IN equipage level increases, the average number of requests per aircraft 

increases from just under two per aircraft in the baseline to over three per aircraft for the highest ADS-B IN 

equipage level.  This increase is primarily due to the increased number of ADS-B IN equipped aircraft, which can 

make more informed altitude change requests.  If the solution was as simple as just making more requests, then that 

is easy to achieve.  Every aircraft in the PACOTS today could start making altitude change requests every time they 

thought it would be efficient.  While this seems like a solution from the perspective of a single aircraft, if all aircraft 

in the PACOTS were to do this the ATSP could become over loaded.  One way to address this is to increase requests 

using improved SA of the traffic environment (via the on-board display) so that the requests have a higher chance of 

being approved.  Additional requests without accompanying approvals do not increase benefit. 

Figure 5 shows that while there is an increase in the number of requests being made by the aircraft (as seen in 

Figure 4), as the ADS-B IN equipage level increases, the approval rate also increases.  In the baseline conditions, an 

approval rate of just under 70% was experienced by the aircraft, corresponding with the target value from current 

operations.  Even though the number of requests on average increased from 2 per aircraft to 3 per aircraft, the figure 

shows that the approval rate increased over 20% as ADS-B IN equipage increased to the highest level tested.  In 

general, the number of requests per aircraft were fewer as the traffic density increased.  This is because there are 

fewer openings on the tracks for aircraft to maneuver to with higher traffic density.  The approval rate, however, did 

not show the same consistent trend with density.  In the baseline and low ADS-B equipage levels, the approval rate 

showed only a minor improvement.  This is because when only a small portion of the aircraft are equipped with 

ADS-B OUT, there is less chance for a requesting aircraft to have a complete view of all the aircraft in the local 

airspace.  As the ADS-B level of equipage increased, the approval rates increased significantly.  As more aircraft 

were equipped with ADS-B, the pilot’s understanding of the local surrounding traffic increased for the ITP equipped 

aircraft.  
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Figure 4: Average requests per aircraft in 30 nmi 

 

  
Figure 5: Percent of altitude change requests approved in 30 nmi 

 

 

C. Number of ITP Approvals 

The results presented so far have shown that there are benefits experienced by the ADS-B IN and ITP equipped 

aircraft.  This section will explore what portion of the benefit is attributed to the ADS-B ITP itself.  The data on the 

left in Figure 6 shows the percent of standard ATC clearances at 30nmi granted in response to an ITP request from 

an ITP equipped aircraft (ITP/STD) with increasing levels of ADS-B OUT equipage across constant ADS-B IN 

levels.  In other words, an ITP equipped aircraft made an ITP request but the ITP procedure was not necessary 

because standard 30nmi separation was available.  These are altitude changes that would have gone unrequested 

were it not for the increased SA provided by ITP equipment.  The data on the right shows the same information but 

ordered across increasing levels of ADS-B IN while holding ADS-B OUT constant.  Figure 7 shows similar data, 

but for when ATC issued an ITP clearance in response to an ITP request.  Both sets of data show a direct 

relationship in the use of the ITP and the level of ADS-B OUT as seen when comparing the left charts of Figure 6 

and Figure 7.  For all traffic densities, the percent of approved requests directly increases with the ADS-B OUT 
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equipage level.  The effect of increased ADS-B IN equipped aircraft is a general decrease in the percent of aircraft 

that use the ITP, as seen in the right charts of Figure 6 and Figure 7.  As the percentage of ADS-B OUT equipped 

aircraft increases, so do the number of potential targets to be used as ITP reference aircraft.  With more potential 

reference aircraft, the opportunities to make use of the ITP naturally increases.  However, because there are more 

aircraft equipped with both ADS-B IN and the ITP, there are more aircraft trying to maneuver to a better (often 

identical) altitude.  This results in some ITP aircraft being blocked from making an altitude change, and decreases 

the percent of aircraft that can take advantage of the ITP. 

 

   
Figure 6: ITP/STD approvals per Equipped Aircraft in airspace using a 30 nmi separation standard 
 

 

   
Figure 7: ITP approvals per Equipped Aircraft in airspace using a 30 nmi separation standard 
 

 

Table 6 shows the average number of ITPs that were approved in a single representative day for both 30nmi and 

50nmi separation standards.  The number of approved ITPs in a 50 nmi environment was more than double the 

number in a 30 nmi environment.  This increase is directly due to the larger minimum separation standard and the 

ITP providing greater flexibility compared to it.  For both separation standards, the average number of ITPs 

increased directly with traffic density, ADS-B OUT equipage, and ADS-B IN equipage.  This suggests there is 

benefit for aircraft that are among the first to equip with the ADS-B ITP. 
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Table 6: Number of Approved ITPs 

Separation Standard 30 nmi  50 nmi 

Traffic Density 

 

ADS-B Equipage 

1.0X 1.5X 2.0X 1.0X 1.5X 2.0X 

30_10 0.0 0.0 0.1 0.1 0.1 0.4 

60_10 0.0 0.2 0.4 0.2 0.3 0.9 

90_10 0.1 0.2 0.9 0.2 0.4 1.7 

60_45 0.4 0.4 1.0 0.8 1.5 2.6 

90_45 0.6 0.9 2.2 1.2 2.7 5.2 

90_80 0.9 1.2 2.8 2.0 3.8 7.4 

 

D. System-Wide Fuel Savings 

Figure 8 shows the average system fuel savings for all unequipped aircraft.  Given the number of aircraft in each 

density (68.7, 93.7, and 128.4) and the duration of the flight (~7 hours), most of the aircraft experience no fuel 

change from the baseline condition.  For example, in the 1.5X condition of the 30_10 ADS-B equipage level, there 

was a system savings of 973 pounds of fuel.  For the 90% ADS-B unequipped aircraft condition, 84.4 aircraft out of 

the 93.7 total aircraft saved, on average, 11.5 pounds of fuel per aircraft per flight.  The majority of the unequipped 

aircraft though did not experience any significant change in fuel burn as the level of ADS-B and ITP equipage 

increased.   

 

 
Figure 8: System fuel savings for unequipped aircraft in airspace  

using a 30 nmi separation standard 
 

Figure 9 shows the average system fuel savings for all equipped aircraft, a very different picture than for the 

unequipped aircraft.  Most visibly, the slopes for all of the data curves are positive indicating that regardless of 

density or ADS-B equipage, less fuel was burned than in the 0_0 baseline.  Finally, there is a clear positive trend 

with ADS-B IN equipage.  For example, a system fuel savings of approximately 9,200 pounds for the 1.5X and 

30_10 ADS-B equipage level condition was experienced.  Applying this savings to the 9.3 (93.7 * 10%) ADS-B IN 

equipped aircraft results in just under 1,000 pounds of fuel per aircraft, two orders of magnitude greater than the 

unequipped aircraft average of 11.5 pounds per aircraft.  In terms of SA, the curves for the SA+ITP data are sloped 

higher than the SA only data.  The ITP and separation standard do provide some additional benefit, but it is 

overwhelmed by the increased ability to make informed requests.  The system fuel savings for the 50 nmi 

environment followed the same trends as the 30 nmi separation environment. 
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Figure 9: System fuel savings for equipped aircraft in airspace  

using a 30 nmi separation standard 

 

IV. Conclusions 

This study, which simulated the Oakland managed portion of the PACOTS, suggests that there are potential benefits 

of equipping aircraft with the ADS-B ITP and supporting systems in the PACOTS due to a considerable increase in 

time spent at optimum altitude and associated fuel savings.  The data from this experiment showed that aircraft 

equipped with the ADS-B ITP and supporting equipment can make more informed requests and subsequently can 

maneuver more than unequipped aircraft.  This ability to maneuver towards the optimum altitude increased the time 

spent at the optimum for the equipped aircraft from 28% to over 70%.  This increased time at the optimum altitude 

resulted in significantly more fuel savings (1,000 pounds) than experienced by the unequipped aircraft (11.5 

pounds).  This increased savings is primarily due to the improved SA allowing for more informed altitude change 

requests.  These benefits for the equipped aircraft had no detrimental impact to the unequipped aircraft.  The system 

benefits from the ADS-B ITP increase with increased traffic density, ADS-B OUT equipage, and ADS-B IN 

equipage.  The ADS-B ITP benefits decrease as the minimum separation standard decreases because track capacity 

(and therefore traffic density) increases enabling fewer opportunities for the ITP. 
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