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Abstract 

 

Thermocapillary convection in a liquid bridge, which is suspended between two coaxial disks 

under zero gravity, has been investigated numerically. The Navier-Stokes equations coupled with 

the energy conservation equation are solved on a staggered grid, and the level set approach is 

used to capture the free surface deformation of the liquid bridge. The velocity and temperature 

distributions inside the liquid bridge are analyzed. It is shown from this work that as the 

development of the thermocapillary convection, the center of the vortex inside the liquid bridge 

moves down and reaches an equilibrium position gradually. The temperature gradients in the 

regions near the upper center axis and the bottom cold corner are higher than those in the other 

regions. 

 

1. Introduction 

 

Thermocapillary flow is often encountered in the production of single crystals using the 

floating-zone method, and the oscillatory thermocapillary convection is responsible for the 

periodic variations in striations in the production process. The oscillatory thermocapillary 

convection becomes significant and causes detrimental striations in the chemical composition of 

the finished crystal. Schwabe and Scharmann
1
 and Chun and Wuest

2
 observed, for the first time, 

the three-dimensional time-dependent state in thermocapillary convection in their experiments. 

Since the first observation, many studies have been done on the half-zone model where a liquid 

drop is held between two coaxial rods remained at different temperatures to impose an axial 

temperature gradient on the free surface, and the liquid drop is held by surface tension force 

between two rods. The studies found in the literature mainly concerned with the following 

aspects, 

1. The transition and the successive mode structures of the flow field
3-6

, 

2. The flow structures at a region close to the critical point of the transition, 

3. The information regarding the flow fields far beyond the critical point
7
. 

In the high Pr range (Pr>10), although many experimental data can be found in literature, no 

accurate stability analyses nor numerical simulations of the oscillation phenomenon are currently 

available. One important aspect is that the dynamic free surface deformation was not considered, 

although it may play an important role in the oscillation mechanism. In the present paper, the 

temperature and velocity fields in the liquid bridge under zero gravity are investigated 

numerically considering the free surface deformation and the ambient air by using the level set 

method. The present study aims at understanding the time dependent thermal fluid phenomena 

with dynamic free surface deformation in the half-zone liquid bridge by a direct nonlinear 

numerical simulation. 

 

2. Governing Equations 

 

The half-zone model consists of an initially cylindrical liquid bridge suspended between the hot 

and cold circular disks as shown in Figure 1. The ambient air is included in the computational 

region. The diameter of the top and bottom disks ( D ) is 5.0 mm, and the aspect ratio of the 

liquid bridge (H/D) is 0.7, where H  is the height of the liquid bridge. The temperature 

difference between two disks is defined as T . The general governing equations of the problem 
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for Newtonian incompressible flow conditions under zero gravity are given by the following 

non-dimensional Navier-Stokes, the continuity and the energy conservation equations
8
. 
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Figure 1. Schematic of a thermocapillary convection model 
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where ( , )u vu  is the fluid velocity, ( , )t  x  is the fluid density, ( , )t  x  is the fluid 

viscosity, D  is the viscous stress tensor,   is the curvature of the interface, d  is the normal 

distance to the interface,   is the Dirac delta function, n  is the unit normal vector at the 

interface, t is the time, p  is the pressure. The key parameters are Re
l l
U D 


 , Reynolds 

number, where D  is the initial diameter of the liquid bridge and U


 is the characteristic 

velocity defined as /
T l

U T 

   in microgravity conditions, where 

T
  is the temperature 

dependency of surface tension, 
t b

T T T    is the temperature difference between the top and 

bottom disks; 
2

W e
l

U D  


 , Weber number; Pr
l l

a  , Prandtl number, where a  is the 

thermal diffusivity; Ca
l
U 


 , Capillary number; Re PrMa  , Marangoni number. We 

denote   as the surface tension,  c T b
T T     , where 

c
  is a reference value of 

surface tension, and   as the excess temperature, ( )
b

T T T    . Here 
l

  and 
l

  are the 

dimensional liquid density and viscosity, respectively. 
g

  and 
g

  are the dimensional density 

and viscosity of ambient air, respectively. 

 

3. Level Set Function and Its Formulation 

 

The level set method was originally introduced by Osher and Sethian (1988)
9
 to numerically 

predict the moving interface ( )t  between two fluids. Instead of explicitly tracking the 
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interface, the level set method implicitly captures the interface by introducing a smooth signed 

distance from the interface in the entire computational domain. The level set function ( , )t x  is 

taken to be positive outside the liquid bridge, zero at the interface and negative inside the liquid 

bridge. The interface motion is predicted by solving the following convection equation for the 

level set function of ( , )t x  given by
10

,  

 

t
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For smooth data, we have 
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In addition, the model of Continuum Surface Force (CSF) is employed to treat the surface 

tension force on the interface, which interprets the surface tension force as a continuous body 

force across the interface rather than as boundary conditions in normal and tangential directions 

to the interface. By using the level set function, body force due to surface tension can be 

expressed as, 

                            
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The curvature of the interface is evaluated from 

        n     





 
        

n  

 

The Dirac delta function is defined as  

 
  

1
1 cos ,

2

0,



    
 


 

 




if

otherw ise

 

 

 

4. Boundary and Initial Conditions 

 

The flow in the liquid bridge is assumed to be axis-symmetric initially, and the hot and cold 

disks are maintained at constant temperature 
t

T  and 
b

T , respectively.  
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0 ( 0)z                                     

 

1.0 ( 1.0)z                                   

 

The adiabatic condition is adopted on the all other boundary walls expect for the hot and cold 

disks. The initially stationary liquid bridge and the ambient air are considered with the initial 

condition 

 

( 0) 0t  u                                    

 

The non-slip condition is used for all walls of the computational domain 

 

0u                                        

The present strategy is further summarized below. The mass conserving level set methods is 

applied to analyze the free surface motion of the liquid bridge. The Navier-Stokes equations in 

primitive variable formulations and energy conservation equation are solved on a staggered grid 

by the method of lines. The advection terms are discretized by the quadratic upstream 

interpolation for convective kinematics (QUICK) method and the other terms by the central 

finite difference method except for the body force, and a second-order Adams-Bashforth method 

is used as the time integration scheme. The higher essentially non-oscillatory (ENO) scheme is 

also adopted to solve the convection term of the level-set function. The Poisson equations are 

solved by means of the Successive Over Relaxation (SOR) approach. The Continuum Surface 

Force (CSF) model is employed to treat the surface tension force at the interface. 

 

5. Code Validation 

 

In present study, the numerical model and code have been carefully tested again by comparing 

the isotherms and velocity vectors in the liquid bridge of 2cSt silicone oil obtained from the 

present study with those reported by Kawamura et al.
11

. In the comparison, the initial liquid 

bridge and the ambient air are denoted to be stationary and axis-symmetric. The radii and height 

of the liquid bridge are 5 mmR  , 5 mmH  , respectively. The temperature difference 

between the top and bottom disks is 30T C   . The Marangoni number is 4
4 10M a   , and 

the Prandtl number is Pr 28.0 . The temperature contour and velocity vectors obtained from 

the present work under zero gravity is shown in Figure 2, and the agreement between the present 

results and those from Kawamura et al. can be qualified as quite acceptable (see Fig. 5(b) of 

Kawamura et al. (2007)). 

 

6. Results and Discussion 

 

The mechanism of thermocapillary convection in a liquid bridge of high Prandtl number under 

zero gravity is investigated. The key parameters used are as follows: Pr 50 , 5000Ma  , 

15We  , 328
t

T K , 298
b

T K . Diameter of the top and bottom disks is 5.0D mm , and the 

aspect ratio ( /H D ) is 0.7. In this section, we study the flow structure inside the liquid bridge 

under the present computational conditions. 
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Figure 2. Temperature contour and velocity vectors (2cSt silicone oil, 4

4 10 M a , Pr 28.0 ) 
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t=2.0                   t=15.0                  t=200.0 

Figure 3 Time evolution of isothermals ( Pr 50 , 5000Ma , 15We , 328
t

T K , 

298
b

T K , 5.0D mm , / 0.7H D ) 

 

Figure 3 illustrates time evolution of isothermals inside the liquid bridge, where only half of the 

liquid bridge is plotted. Since the temperature of the top disk is higher than that of the bottom 

disk, the heat flux moves from the top disk toward the bottom disk, and the flow is driven in the 

hot corner. On the other hand, the surface flow is developed due to the temperature gradient on 

the free surface, which results in a return flow inside the liquid bridge. The return flow generates 

a radial convection, which tends to make the bulk fluid temperature distribution rather uniform 

near the free surface. It can be found from Figure 3 that the temperature gradients in the regions 

near the upper center axis and the bottom cold corner are higher than those in the other regions. 

 

 
t=2.0                    t=50                  t=100.0 

Figure 4 Time evolution of velocity vectors ( Pr 50 , 5000Ma , 15We , 328
t

T K , 

298
b

T K , 5.0D mm , / 0.7H D ) 
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Figure 5 Time evolution of surface velocity in axial direction ( Pr 50 , 5000Ma , 15We , 

328
t

T K , 298
b

T K , 5.0D mm , / 0.7H D ) 

 

The velocity vectors in the liquid bridge and ambient air at t=2.0, t=50.0, and t=100.0 are 

presented in Figure 4. Note that only half of the computational domain is plotted in Figure 4 due 

to the symmetric property. The free surface remains straight shape due to the zero gravity. Two 

vortexes are generated due to the thermocapillary convection inside the liquid bridge and 

ambient air, respectively, and the vortex center inside the liquid bridge locates near the hot 

corner initially (t=2.0) as shown in Figure 4. As the development of the thermocapillary 

convection, the vortex center inside the liquid bridge moves down and reaches an equilibrium 

position gradually (t=50.0, t=100.0). The larger velocity vectors can be found mainly around the 

free surface because the flow is driven by the surface flow generated near the free surface. Figure 

5 shows the surface velocities in axial direction. It can be seen that the values of the surface 

velocities in axial direction are all negative, showing that the direction of the surface flow is 

from the top disk toward the bottom disk. The surface velocities in axial direction at the top disk 

and the bottom disk are zero due to the no-slip conditions in there. As the time proceeds (t=8.0, 

t=10.0, t=25.0, t=100.0), the levels of the surface velocities in axial direction rise, showing the 

enhancement of the surface flow gradually. After that, the profiles at t=100.0, t=150.0, and 

t=200.0 are very close, showing the surface flow approaches the equilibrium state after t=100.0. 

The maximum of the surface velocities in axial direction can be obtained on the surface position 

of about z=0.65 at every time, where z is the non-dimensional distance from the cold disk. 

 

7. Conclusions 

 

Thermocapillary convection in a liquid bridge of Pr 50  under zero gravity has been 

investigated numerically. From this work, the following conclusions can be drawn. 

1. The temperature gradients in the regions near the upper center axis and the bottom cold 

corner are higher than those in the other regions. 

2. As the development of the thermocapillary convection, the vortex center inside the liquid 

bridge moves down and reaches an equilibrium position gradually. 

3. As the time proceeds, the levels of the surface velocities in axial direction rise, showing the 

enhancement of the surface flow gradually. After that the surface flow approaches the 

equilibrium state. The maximum of the surface velocities in axial direction can be obtained on 
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the surface position of about z=0.65 at every time, where z is the non-dimensional distance from 

the cold disk. 
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