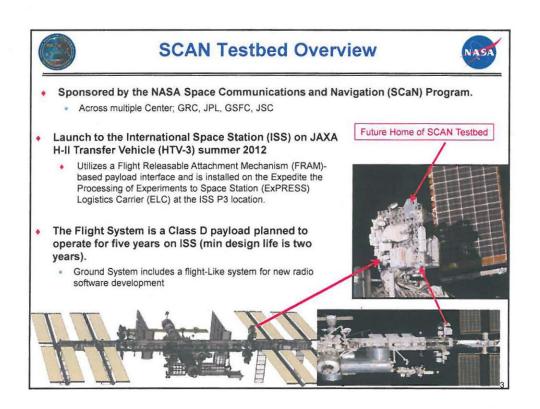


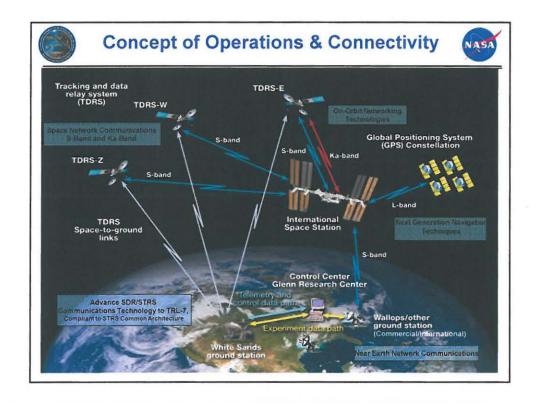
SCAN Testbed, Overview and Opportunity for Experiments

Richard Reinhart SCAN Testbed Principal Investigator

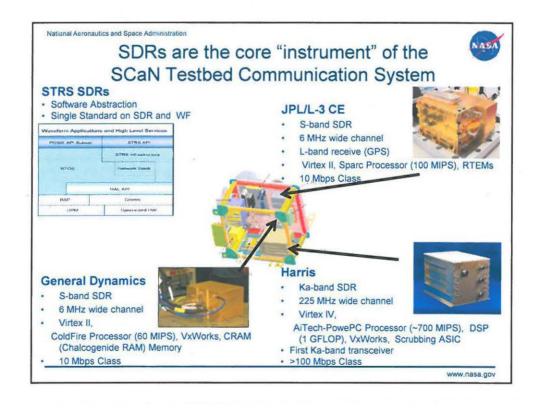
Sandra Johnson, Deputy Principal Investigator NASA Glenn Research Center, Cleveland, Ohio

Co-Principal Investigators: James Lux, Greg Heckler, Jacqueline Myrann
ISS Research & Development Conference
Denver CO, June 2012


www.nasa.gov

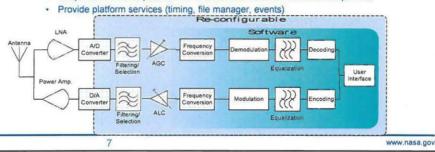

National Aeronautics and Space Administration

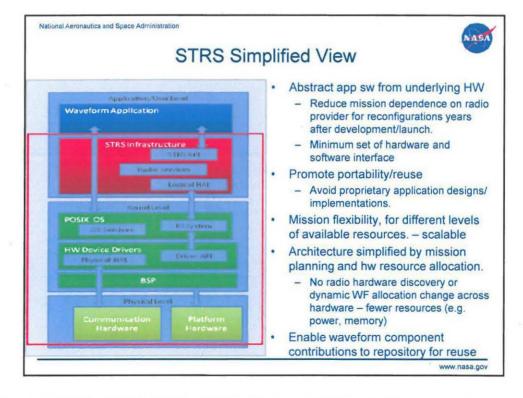
SCAN Testbed Research & Technology Goals & Objectives

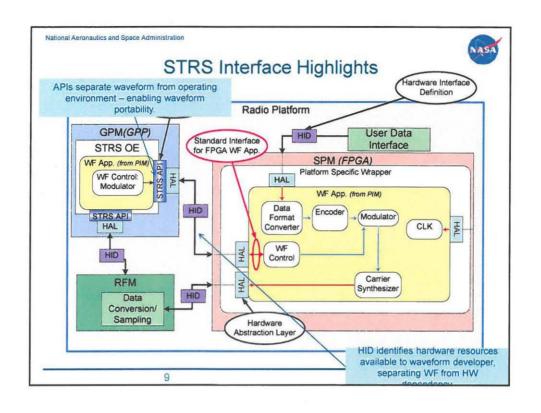


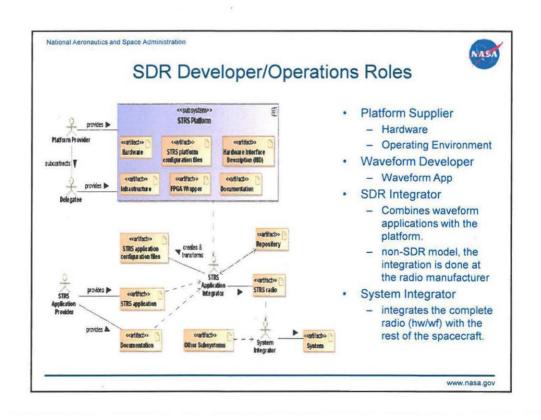
- INVESTIGATE the APPLICATION of SDRS TO NASA MISSIONS
 - Mission advantages and development/verification/operations aspects
 - On-Orbit Reconfiguration
 - More process intensive functions within the radio subsystem
- SDR TECHNOLOGY DEVELOPMENT
 - SDR Platforms to TRL-7
 - SDR platform hardware & waveform compliant to STRS. Foster Agency adoption
 - Understand/characterize space effects and SDR performance
- VALIDATE FUTURE MISSION OPERATIONAL PABILITIES
 - Capability representative of future missions
 - Comm data rate, performance, navigation
 - Understand SDR performance (reliability, SEE, telement transmission)
 - Multiple and simultaneous RF Links (Ka-band, S-band, L-band/GPS)
 - Experimenter sw applications (On-board networking, DTN, routing, and security assessments)

Software Defined Radio "SDR 101" Hardware and software that converts user data to over-the-air signals Hardware - Signal processing, RF, power, thermal - Shift from fixed hardware to flexible, reprogrammable hardware (FPGA, processor)


National Aeronautics and Space Administration


- Traditional hardware remains at RF front end (ADC, DAC, filters, amplifiers)


NASA


- Software Application (aka waveform), Managing (STRS)

 - Application Software communication, navigation, networking functions
 - · e.g. modulation, coding, filtering, data framing, routing, orbit determination
 - Managing Software Controls the application software on the radio platform.
 - · Loads/unloads application code and data to/from memory
 - · Responsible for interprocess communications between software components

SCaN Testbed Experiment Waveforms

(Launch Capability)

TDRSS Mode	Platform Provider	Waveform Provider	Transmit (Return) Link		Receive (Forward) Link		
			Modulation	User Data Rate (kbps)	De- modulation	User Data Rate (kbps)	Coding/ Decoding
S-band DG1, Mode 1	GD	GD	SQPN	24, 192	QPSK	18, 72	Rate 1/2 Viterbi
S-band DG1, Mode 2	GD	GD	SQPN	24, 192	QPSK	18, 72	Rate 1/2 Viterbi
S-band DG1, Mode 3	GD	GD	QPSK	<1000	QPSK	1000	Rate 1/2 Viterbi
S-band DG2	GD	GD	SQPSK	<1000	QPSK	1000	Rate 1/2 Viterbi
S-band DG1 Mode 2	JPL	GRC/GSFC	BPSK	24	BPSK	18	Rate 1/2 Viterbi
S-band DG2	JPL	GRC/GSFC	BPSK	192	BSPK	155	Rate 1/2 Viterbi
Ka-band DG2	Harris	Harris	SQPSK	100 Mbps 12.5 Mbps	BPSK	12.5 Mbps 3 Mbps	Rate 1/2 Viterbi

Specific waveform variations lead to numerous (>100) configurations

www.nasa.gov

National Aeronautics and Space Administration

Flight Test and Measurements Provide Validation of New Technologies

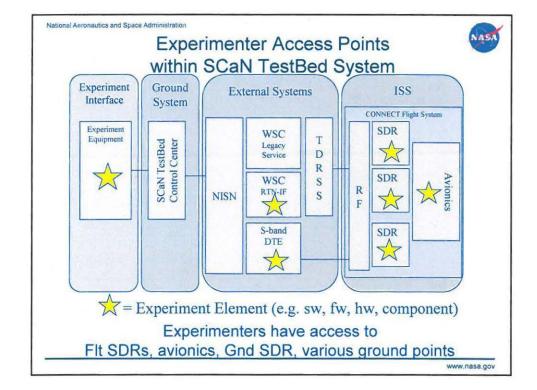
SDR Platform Technology

- Reconfiguration (time, reliability, operations)
- Application Integration
- Space Effects (SEU, processing, memory, thermal, power)

System Architectures

- Connectivity: TDRSS and ground...relay and surface
- Multi-band, multi-TDRSS links
- Multiple access techniques (TDRSS)

Communication Applications


- Link capacity data rate, bandwidth efficiency, coding schemes
- Adaptive communications
- Data link protocol verifications
- Link performance
 - Error performance/rate (BER), Eb/No (SNR)
 - · Error distribution
- Link characterizations

Flight Test and Measurements Provide Validation of New Technologies

- Demo SDR-based GPS
 - Comm and navigation functions time-multiplexed on common hardware
 - Improved position, velocity, time (PVT)
 - TASS enhancement of GPS navigation
 - Re-broadcast of GPS corrections to other s/c
 - Navigation data fusion
- Evaluation of new GPS
 - New signals (L5) to be added without rebuilding hardware
- · Precision relative navigation
 - Rendezvous and docking

- On-Board Routing
 - Connectivity, network characterization, link statistics
- Delay/Disruption Tolerant Networking (DTN)
 - Automated store-n-forward
 - Adaptive routing
 - Traffic prioritization
 - Link layer error control/ cross link optimization
- IP in Space
- Common Command/Data Interface Experiments
- Distributed Processing
 - Efficiency, reliability

Call for Experiment Proposals

- After Commissioning is complete, the testbed will be available for experiments
- Experiment announcement call in mid 2012 for external experiments
 - The call will go to NASA, industry, academic partners and other government agencies
 - Experiments selected will complement experiments already selected from internal to NASA and through the SBIR process
- Goal is to develop an experiments program to utilize the SCaN Testbed for the benefit of the Space Communication and Navigation (SCaN) Program, and NASA

http://www.fedbizopps.gov/

www.nasa.gov

National Aeronautics and Space Administration

Summary - SDR Experiment on ISS

- SCaN Testbed scheduled for launch in mid-2012
- Experiments Program seeks participation by NASA, industry, academia, and OGA to use the SCAN Testbed.
 - Call for experiments released in mid 2012.
- Broad participation will create a forum to exchange ideas and results, create new experiments, new partnerships, and disseminate results
- STRS abstracts waveform from underlying hardware
 - Increase the base of domain experts around a common standard.
 - Seeking input to STRS by other agencies (standardization effort in FY12)
- SCAN Testbed reduces the risk of infusing SDRs and their applications (comm, nav, networking) into NASA missions

Backup

www.nasa.gov

National Aeronautics and Space Administration

Acronym List (1 of 2)

- API Application Programming Interface
- ASIC Application Specific Integrated Circuit
- BER Bit Error Rate
- BPSK Bi-Phase Shift Keying
- BSP Board Support Package
- CE Cincinnati Electronics
- DSP Digital Signal Processing
- DTE Direct to Earth
- DTN Disruptive Tolerant Networking
- EDAC Error Detection and Correction
- ELC EXPRESS Logistics Carrier
- FPGA Field Programmable Gate Array
- FW Firmware

- GD General Dynamics
- · GPM General Processing Module
- GPS Global Positioning System
- GRC Glenn Research Center
- · GSFC Goddard Space Flight Center
- . HAL Hardware Abstraction Layer
- · HID Hardware Interface Definition
- HGA High Gain Antenna
- HPA High power Amplifier
- HW Hardware
- JPL Jet Propulsion Lab
- JSC Johnson Space Center
- LGA Low Gain Antenna

Acronym List (2 of 2)

- OE Operating Environment
- OGA Other Government
- QPSK Quadrature Phase Shift Keying
- PVT Position, Velocity, Time
- RF Radio Frequency
- RTN Return
- RTOS Real Time Operating System
- SDR Software Defined Radio
- SEE Space Environment Effects
- SEU Single Event Upset
- SN Space Network

- SNR Signal-to-Noise Ratio
- SQPN Staggered QPSK PN Spread
- SQPSK Staggered Quadrature Phase Shift Keying
- STRS Space Telecommunications Radio System
- SW Software
- TDRS Tracking Data Relay Satellite
- TDRSS Tracking Data Relay Satellite System
- TRL Technology Readiness level
- TWTA Traveling Wave Tube Amplifier
- V2 Vitex II
- V4 Virtex IV
- WSC White Sands Complex
- WF Waveform

www.nasa.gov

National Aeronautics and Space Administration

SDRs are the core of the SCaN TestBed Communication System

STRS SDRs

- Advance STRS/SDR Platforms to TRL-7
- · Single standard on SDR and WF

Compliance verified w/

-tools -inspection

-observation

JPL/L-3 CE

- L-band receive (GPS)
- S-band SDR
- Tx: 2.2-2.3 GHz, 7W
- Rx: 2.025-2.12 GHz, (6 MHz channels)
- Virtex II, Sparc Processor (100 MIPS), RTEMs OS, EDAC

General Dynamics

- S-band SDR
- Tx: 2.2-2.3 GHz, 8W
- Rx: 2.025-2.12 GHz (6MHz channels)
- Virtex II, ColdFire Processor (60 MIPS), VxWorks OS, CRAM (Chalcogenide RAM) Memory

Harris

- Ka-band SDR
- Tx: 25.650 GHz, 225 MHz
- Rx: 22.680 Ghz, 50 MHz
- Virtex IV, AiTech-PowePC Processor (~700 MIPS), DSP (1 GFLOP), VxWorks OS, Scrubbing ASIC
- · First Ka-band transceiver
- GSE Avionics Comm/Telem Simulator

