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José R. Celaya∗ and Abhinav Saxena†

SGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA

Kai Goebel‡

NASA Ames Research Center, Moffett Field, CA, 94035, USA

This article discusses several aspects of uncertainty representation and management for
model-based prognostics methodologies based on our experience with Kalman Filters when
applied to prognostics for electronics components. In particular, it explores the implications
of modeling remaining useful life prediction as a stochastic process and how it relates to
uncertainty representation, management, and the role of prognostics in decision-making.
A distinction between the interpretations of estimated remaining useful life probability
density function and the true remaining useful life probability density function is explained
and a cautionary argument is provided against mixing interpretations for the two while
considering prognostics in making critical decisions.

Nomenclature

R Remaining useful life random variable
tp Time of remaining useful life prediction
R(tp) Remaining useful life prediction at time tp
x̂k Optimal state estimator from Kalman filter
x̃k(l) lth step ahead forecast from xk
tEOL Time at end-of-life
x(t) Scalar continuous state variable for filter model
x(t) Vector continuous state variable for filter model
xk Scalar discrete-time state variable for filter model
F Failure threshold
N(µ, σ2) Normal distribution with mean µ and variance σ2

I. Introduction

Model-based prognostics methodologies in electronics prognostics have been developed based on Bayesian
tracking methods such as Kalman Filter, Extended Kalman Filter, and Particle Filter. The models used

in these methodologies are mathematical abstractions of the time evolution of the degradation process and
the cornerstone for the estimation of remaining useful life. The Bayesian tracking framework allows for esti-
mation of state of health parameters in prognostics making use of available measurements from the system
under consideration. In this framework, health parameters are regarded as random variables for which, in the
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case of Kalman and Extended Kalman filters, their distribution are regarded as Normal and the estimation
process focuses on computing estimates of the expected value and variance as they relate to the mean and
variance that fully parametrize the Normal distribution. In addition to the health estimation process, fore-
casting of the health parameters is required up to a future time that results in crossing of the pre-established
failure condition threshold. This is ultimately required in order to compute remaining useful life.

Previous work applied to electrolytic capacitor and power MOSFETs (Metal-Oxide Semiconductor Field-
Effect Transistor) has focused on implementation of the previously described process and has presented
remaining useful life results without any uncertainty measure associated to them.1–4 Other work on prog-
nostics based on particle filtering has been presented regarding remaining useful life as a random variable
and presenting corresponding uncertainty estimates.5,6 This work focuses on reviewing uncertainty represen-
tation techniques used in model-based prognostics and on providing an interpretation of uncertainty for the
electronics prognostics applications previously presented, and based on Kalman filter approaches for health
state estimation.

The Bayesian tracking framework allows for modeling of sources of uncertainty in the measurement pro-
cess and also on the degradation evolution dynamic model as applied on the application under consideration.
This is done in terms of an additive noise in the model, which is regarded as zero mean and normally dis-
tributed random variable. This allows for the aggregation of different sources of uncertainty for the health
state tracking step. Its implications on the uncertainty estimation for remaining useful life (RUL) including
future state forecasting are discussed in this paper.

A. Model-based prognostics background

As mentioned earlier, a model-based prognostics methodology based on Bayesian tracking consists of two
steps, health state estimation and RUL prediction. The following is a high level description of the process
that will help to provide the appropriate context for the upcoming discussion.

State of health estimation: To initiate the prediction, it is necessary to first establish a starting point,
the current state of health. A model-based algorithm employs dynamic models of the physical behavior of
the system or component under consideration, along with dynamic degradation models of key parameters
that represent the degradation over time. Bayesian tracking algorithms like Kalman filter, extended Kalman
filter, and particle filter are among the algorithms typically employed in a model-based prognostics method-
ology.2,3, 6, 7 In such methodologies, dynamic models of the nominal system and degradation models are
posed as a discrete state-space system in which the state variable x(t) consists of physical variables, and in
some cases, it includes degradation model parameters to be estimated online.

The models consist of a state equation representing the time evolution of the state as shown in Eq. (1a);
where u(t) is the system input and w(t) is a zero-mean and normally distributed additive noise representing
random model error. In addition, the measurement equation (Eq. (1b)) relates the state variable to measure-
ments of the systems y(t). The term v(t) is a zero-mean and normally distributed additive noise representing
the random measurement error. The measurement and model noise normality assumption could be relaxed
when using computational Bayesian methods like particle filtering.

ẋ(t) = f(x(t), u(t)) + w(t) (1a)

y(t) = h(x(t)), u(t)) + v(t) (1b)

The state of the system, as it evolves through time, is periodically estimated by the filter as measurements
y(t) of key variables become available through the life of the system. This is the health state estimation step
of the model-based prognostics algorithm. Typically, a Bayesian tracking algorithm attempts to estimate
the expected value of the joint probability density function of the state x(tp). Different assumptions about
the probability density function are used depending on the filter used.

Remaining useful life estimation (prediction): In order to compute remaining useful life, the state-
equation (Eq. (1a)) of the model is used to compute the state evolution in a forecasting mode until an
end-of-life threshold is reached at time denoted by tEOL. The last state estimate at time tp in the health
state estimation step is typically used as initial state value for forecasting x(t) up to tEOL. Remaining useful
life R(tp) at time of prediction tp is defined as

R(tp) = tEOL − tp, (2)
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where tp is deterministic and known, and tEOL is a random variable function of the failure threshold and
the state estimate x(tp). This function includes the state forecasting step and the identification of when the
failure threshold is crossed.

B. Ideas explored in this paper

In this paper we explore how the state variable should be interpreted during the tracking phase and how it
is related to the process of final RUL prediction. This probability interpretation is often overlooked in the
literature by interpreting the state variable as the health indicator and a threshold is used on this variable
in order to compute EOL (end-of-life) and RUL.

Here, we discuss how the state estimation process is defined in the Bayesian framework. We will, in
particular, focus on the output of the estimation process in the Kalman filter framework. Furthermore, we
try to interpret the objective of the Kalman filter, whether to estimate x(t) as a random variable or to
estimate a parameter of the probability density function of x(t) –such as expected value or variance– or
both.

In addition, we will challenge how we usually think about RUL and how it has been interpreted using
other, similar, methods. The main objective here is to characterize its impact on uncertainty representation
and management. For instance, if RUL is considered as a random variable and we assume that a model-
based prognostics framework based on the Kalman filter generates RUL with a particular variance, then it is
incorrect to arbitrarily expect, assume, or force the variance to be small. The variance of random variables
such as RUL is not under our control as explained in the next section.

These concepts are discussed in the context of prognostics of electronics, particularly, the uncertainty
propagation in power MOSFET and capacitor prognostics applications as presented in Refs. 1,2 and Refs. 3,4
respectively. In these applications, uncertainty has not been explicitly considered in the prediction results
and this paper is an effort towards augmenting the methods used there with an uncertainty management
methodology.

C. Background on Uncertainty Management

There are several different types of sources of uncertainty that must be accounted for in a prognostic system
formulation. These sources may be categorized into following four categories and accordingly require separate
representation and management methods.

1. Aleatoric or Statistical Uncertainties: these uncertainties arise from inherent variability in any
process and cannot be eliminated. They can be characterized by multiple experimental runs but cannot
be reduced by improved methods or measurements. Sampling fluctuations from the characterized
probability density function of a source of aleatoric uncertainty can result in different predictions every
time. Examples of such uncertainties include manufacturing variations, material properties, etc.

2. Epistemic or Systematic Uncertainties: these uncertainties arise due to unknown details that
cannot be identified and hence are not incorporated into a process. With improved methods and deeper
investigations these uncertainties may be reduced but are rarely eliminated. Modeling uncertainties
fall under this category and include modeling errors due to unmodeled phenomena in both system
model and the fault propagation model.

3. Prejudicial Uncertainties: these uncertainties arise due to the way a process is set up and is
expected to change if the process is redesigned. Conceptually these can be considered a type of
epistemic uncertainty, except it is possible to control these to a better extent. Examples for these
uncertainties include sensor noise, sensor coverage, information loss due to data processing, various
approximations and simplifications, numerical errors, etc.

4. Combination: apart from the above three types there are other sources that have characteristics of
more than one of the categories listed above. For instance, uncertainties in future operational load
profiles or future environmental loading fall in this category. While, it may be possible to anticipate
future loads (based on usage profiles) with some epistemic errors they will always have some statistical
variations as well. Likewise, usage history data may include prejudicial uncertainties but what is
collected is expected to be influenced by inherent statistical variations as well.
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While it is possible to reduce some of these uncertainties, it is not possible or practically beneficial to
eliminate them altogether. However, representing them and accounting for them in prognostic outputs is
extremely important. Uncertainties in a prognostic estimate directly affect the associated decision making
process, which is typically expressed through the concept of risk due to unwanted outcomes. Several PHM
approaches quantify risk based on uncertainty quantification in an algorithm’s output and incorporate it
into a corresponding cost-benefit equation through monetary concepts.8

1. Uncertainty management in prognostics

In the context of prognostics and health management uncertainties are talked about from quantification,
representation, and management points of view.9–13 While all three are different processes they are often
confused with each other and interchangeably used.

Uncertainty quantification: Deals with characterizing a source of uncertainty so it can be incorporated
into models and simulations as correctly as possible. A characterization or quantification step may involve
carefully designed experimentation with actual systems observed in realistic and relevant environments.
An accurate quantification of uncertainties is considered very challenging as also acknowledged in Ref. 14.
Quantification of uncertainty from various sources in a process has been investigated and a sensitivity analysis
conducted to identify which input uncertainty contributes most to the output uncertainty in prognostics for
fatigue crack damage.15 This allows prioritizing and subsequently focusing on more critical uncertainties
instead of all.

Uncertainty representation: Next step is the representation of uncertainty, which is, often times,
guided by the choice of modeling and simulation frameworks. There are several methods for uncertainty
representation that vary in the level of granularity and detail. Some common theories include classical set
theory, probability theory, fuzzy set theory, fuzzy measure (plausibility and belief) theory, and rough set
(upper and lower approximations) theory. However, in the PHM domain the representation of uncertainties
is dominated by probabilistic measures,5,12,16 which offer a mathematically rigorous approach but assume
availability of a statistically sufficient database. Other approaches, such as possibility theory (Fuzzy logic)
and Dempster-Shafer theory, can be employed when only scarce or incomplete data are available.17 Further-
more, the choice of type of probability density function affects the quality of prognostic outputs. Several
approaches in the literature resorted to assuming Normal probability density functions, however this choice
should be guided by the results of the uncertainty characterization and quantification step.

Uncertainty management: The most loosely used term in the PHM literature in the context of
uncertainty is that of uncertainty management. Uncertainty management includes two main functions, to
incorporate all relevant and/or significant sources of uncertainty into prognostic models and simulations.
Therefore, the problem formulation stage itself lays a foundation for an effective uncertainty management.
Once all relevant sources of uncertainty are identified and included, the uncertainty propagation is the
next component towards effective management. Various measures of uncertainty must be combined in an
appropriate manner in the prognostic model as the input variability filters through a complex (possibly
non-linear) system model.

If, in a perfect situation, all sources of uncertainties are identified, modeled, and managed correctly, the
output probability density function for random variables like RUL or End-of-life (EOL) would match the true
spread and would not change from one experiment to another. This is, however, in practice impossible to
achieve because no model is perfect and not all sources of uncertainties can be characterized. Furthermore,
an exhaustive sampling-based method such as a Monte Carlo simulation would be computationally, pro-
hibitively expensive. This has inspired the development of intelligent sampling based algorithms5,12,16 and
mathematical transformations, such as Support vectors18 and Principle Component analysis,19 that result
in minor approximations but capture most details of the true variability. It may not be possible to identify
and accurately characterize all sources of uncertainty and hence use of a sensitivity analysis is recommended
to isolate the most important factors.13,15,20 Through effective uncertainty management practices one can
at most strive towards bringing the predicted estimate close to the true spread and not arbitrarily reducing
the spread of RUL itself. What can be minimized, is the variability in the estimate of a given parameter of
interest, not the variability in the parameter of interest itself.
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II. Remaining useful life stochastic modeling

Remaining useful life in a prognostics context is defined differently than in a reliability context. In
prognostics, it is implied that remaining useful life at time tp is a condition-based estimation of the usage
time left until failure, using measurements of key variables and past usage information up to time tp. This
process typically consists of forecasting the future state of health beyond tp and identifying when the state
of health will cross a failure threshold representative of a functional failure. In addition, RUL in prognostics
considers –implicitly or explicitly– future usage conditions. This is not the case in the reliability context.
Given the many sources of uncertainty evident from a quick assessment of all that is involved in computing
RUL for a system, it is common to consider RUL as a non-deterministic quantity. Furthermore, RUL is
also a time evolving process, meaning that RUL at time tp will be different than RUL for t 6= tp. This can
be well illustrated with the use of the alpha-lambda prognostics metric21 as seen in various publications on
prognostics.1,3

A. Remaining useful life as a random process

A random process or stochastic process is defined as a collection of random variables. Following the defi-
nition presented in Ref. 22, a random process is a “mathematic abstraction of an empirical process whose
development is governed by probabilistic laws”. Furthermore, it is defined as a family of random variables
{X(t), t ∈ T} where T is the time range and X(t) is the state of the process at time t. The time range could
be discrete or continuous.

A random process is also used in the signal-processing context to represent non-deterministic (stochastic)
signals.23 From Ref. 24 we get the following explanation as it relates to filtering: “Intuitively, a random
process is simply a set of random variables which are indexed in such a way as to bring the notion of time
into the picture”.

In several applications, RUL prediction is a process in which periodic computations of RUL are generated
through the life of the system under consideration. In our previous work on power MOSFET prognostics,1

periodic measurements (up to every minute) are available. RUL is computed periodically and can be con-
sidered as a random process R(t). In contrast, in our previous work on electrolytic capacitor prognostics,3

measurements are not available at regular time intervals. RUL computations are made multiple times when-
ever a measurement is available. In this case, R(t) can also be considered as a random process but the set
T will contain only the times at which RUL was computed.

B. Implications on uncertainty management

The definition of RUL as a random variable or random process has many implications on uncertainty man-
agement and in the representation of uncertainty in a particular model-based prognostics methodology. If
RUL is not modeled within a probability framework, like a fuzzy variable or just a deterministic variable,
uncertainty management activities will differ. To illustrate, let us consider a simple point estimate example
from basic mathematical statistics.25

A parameter estimation example: Let us assume that we can perform a set of run to failure exper-
iments with high level of control, ensuring same usage and operating conditions. In addition, remaining
useful life at time tp is computed by measuring the elapsed time from tp until failure for all the n samples
(R1, . . . , Rn) on the set of run to failure experiments. Assuming that these random samples come from a
probability density function fR(r), with expected value E(R) = µ and variance V ar(R) = σ2.

Let θ1 be a parameter estimator of the mean µ of fR, with expected value E(θ1) = µθ1 and variance
V (θ1) = σθ1

2. This estimator will be a function of all the sample values and will have a probability density
function fθ1 . θ1 is a point estimate of the random variable R such as the sample mean, the median or some
other location statistic. Now, from the uncertainty management perspective in prognostics, it is necessary
to judge the ability of the algorithm to properly compute the point estimate of the process, in this case,
to properly estimate µ. So it is expected that this estimate θ1 has the least variability, the least variance
possible, therefore making θ1 less uncertain. As a result, σθ1

2 should be as small as possible. It is, on the
other hand, incorrect to expect the estimation process to reduce σ2 itself.

This is often misinterpreted for prognostics methodologies base on computational statistics that do not
directly focus on a point estimate but on generating an approximation of the distribution of R. Since the
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variability can be assessed by a measure of spread like the sample standard deviation computed directly
from the sample distribution of R, again, this variation should not be arbitrarily decreased by tuning of the
algorithm since it is intended to represent the real statistical uncertainty of the process.

The previous discussion applies to RUL predictions without loss of generality as long as they are modeled
as random variables, which is typically the case. The concept can be further described considering the sample
average R̄ as the estimator (θ1 = R̄). From basic probability theory,25 one can observe that µθ1 = µ and
the σθ1

2 = σ2/n. This estimator is unbiased, and its variance σθ1
2 can be reduced by increasing sample size.

But σ2 cannot be reduced because it is the inherent variability in the random variable R.

C. Implications on how RUL is computed by statistical models

Let us now consider the complete RUL computation algorithm including state estimation and prediction
steps, i.e., the prognostics algorithm is a black box estimation of RUL. This statistical model can have
different focus in providing estimations of R(t). The following situations (although not exhaustive) are
considered here:

1. R(t) could be assumed to be a known random variable with a known probability density or mass
function (parametric case). Therefore, the statistical model will focus on providing the best possible
estimator of the parameters or key quantities function of the random variable as the expected value
and the variance. For instance, if R(t) is presumed Normal, then the statistical model will provide
an estimate of the mean and the standard deviation since they fully parametrize the Normal random
variable.

2. A computational statistics model could be used to avoid making assumptions about the distribution
of R(t) therefore focusing on computing an approximation of the probability density/mass function
of R(t). This will be a choice for the cases in which there is no knowledge about the distribution or
the non-parametric case is preferred. It will also be the case for when there is no analytical solution
tractable for the statistical model structure therefore the use of a computational model, based on Monte
Carlo simulation approaches, is needed.

The uncertainty management focus will differ under the two situations described above. In case one, where
distribution parameters are estimated, the uncertainty management should focus on properly estimating the
spread parameter θs of R(t). A spread parameter θs could be variance or some other estimator focused on
representing the variability of the distribution. This estimator should properly aggregate all the previously
identified sources of uncertainty, like measurement, model, future input and environment uncertainty. From
the uncertainty management perspective, one should not expect θs to be small. Instead, one should expect
it to be an accurate representation of the real uncertainty in the real RUL of the system. A similar situation
arises in the second case. In this case an approximation of the distribution of R(t) is computed. Its shape
and therefore the spread or variability represented by this approximation, should be the real uncertainty of
the RUL in the system and should not be made arbitrarily small either by tuning the statistical method to
do so or by any other arbitrary transformation to make this approximation more crisp around the location
parameter.

D. Implications on decision-making

Being able to capture the uncertainty correctly is of paramount importance in prognostics. This might
not always be the case for other applications involving parameter estimation. For instance, in a control
application, the frequency of the compensation loop is generally high enough to be able to dampen the
effects of uncertainty in the parameter estimation process. For prognostics, this will typically not be the
case. If the prognostics situation under consideration is used for contingency management, in which safety
of operation is at stake; properly estimating the uncertainty of the true RUL is necessary. If the uncertainty
estimation is incorrect, then this can lead to risky decision-making, leading to reduced safety and possibly
increasing the change of catastrophic failure. A similar argument can be made if prognostics is used in a
logistics settings such as condition-based maintenance in manufacturing systems or in military operations.

The previous argument can also be made from the opposite end by considering the implications of the
decision-making method on how RUL is computed and how uncertainty management is performed. For the
last few years, research in prognostics and health management (PHM) has mainly focussed on the prognostics
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element, which deals with methods to predict RUL. There have been several methodologies published and
many more under development for a variety of man-made systems. As a result of the previous effort,
prognostics methodologies have been developed in a sort of unbounded or unguided way with respect to how
the actual method is going to be used in the decision-making process. This meas that input from the types of
decisions that will use the prognostics information and from the overall optimization of system performance
have so far not been considered.

The type of decision-making application may dictate the prognostics methodology as well as the types
of estimates to be generated (recall cases in section II.C). Consequently, this will also have an impact on
requirements generation. For instance a fleet based optimization of aircraft maintenance operations considers
very different decisions as compared to an unmanned aerial vehicle (UAV) mission reconfiguration based on
prognostics indication on power train failures. Following the same argument, it is clear that different decision-
making methodologies will have different capabilities in terms of handling the prognostics information. For
instance, an optimization of a particular decision process might not be able to work with random variables,
therefore a point estimate would be provided. This will be different if the optimization itself is able to deal
with RUL as a random variable, in this case, the computation distribution function of R(t) or the estimators
of the parameters that fully parametrize it would be provided. If the decision-making process, can further
use information about how reliable the prognostics information is, then information about a measure of
quality of the estimators, which is different than just bias, would be provided.

III. Uncertainty management in model-based prognostics for electronics
based on Kalman filter

Model-based prognostics methodologies for electronics components like electrolytic capacitors3,4 and
power MOSFETs1,2 have been previously introduced. The methodologies make use of empirical degradation
models and a single precursor to failure parameter to compute RUL. These methodologies rely on accelerated
aging experiments to identify degradation behavior and to create time dependent degradation models. The
process followed in these methodologies is presented in the block diagram in Figure 1.

Accelerated 
Aging

Degradation 
Modeling

Training 
Trajectories

Test 
Trajectory

Parameter 
Estimation

State-space 
Representation

Prognostics

Dynamic
System

Realization

Health State 
Estimation

RUL 
Estimation

{α̃i, β̃i}

D

D

Figure 1. Methodology for electronics component prognostics development.

Accelerated aging tests provided measurements throughout the aging process, including measurements
at pristine condition and measurements after failure condition. Empirical degradation models that are based
on the observed degradation process during the accelerated aging tests are developed. The objective of the
models is to generate a parametrized model of the time-dependent degradation process for these components.
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The time dependent degradation model is transformed into a discrete-time linear dynamic system in order
to be used in a Bayesian tracking setting. The Kalman filter algorithm is used to track the state of health
and the degradation model is used to make predictions of remaining useful life once no further measurements
are available.

A. Prognostics methodology

The methodology consists of the three main steps described below and it is depicted in Figure 2. This is the
explanation of what it is considered inside the prognostics block in Figure 1.

This methodology follows from the general concepts of model-based prognostics described in section I.A.
In the electronics component case, the system dynamics consists only of the degradation process dynamics
since the prognostics focuses at the component level only.

1. State tracking (Kalman Filter): The state variable in the degradation model D is a precursor of failure
parameter represented by Eq. (3a). When the degradation model uses static parameters (parameters
not estimated online by the filter), then the state variable is a scalar quantity and the state evolution
equation is scalar. The degradation model is expressed as a discrete time dynamic model in order to
estimate the state as new measurements become available. The simplified Kalman filter model set up
is given as

xk = Axk−1 +Buk−1 + wk−1, (3a)

yk = Hxk + vk. (3b)

The output of this step is the optimal state estimate x̂p.

2. Health state forecasting: It is necessary to forecast the state variable once there are no more measure-
ments available at the time of RUL prediction tp. This is done by evaluating the degradation model
(Eq. (3a)) through time using the state estimate x̂p from the previous step as the initial state value
for forecasting.

3. Remaining life computation: RUL is computed as the time between time of prediction tp and the time
at which the forecasted state crosses the failure threshold value F .

This process is repeated for different values of tp through the life of the component under consideration.

Kalman
Filter

Health State 
Forecasting

RUL
Computation

RUL(tp)

{α̃, β̃}D2

x̂(tp)

{y(t0), . . . , y(tp)}

{x̂(tp+1), . . . , x̂(tp+N )}

Failure
Threshold

Figure 2. Model-based prognostics methodology

B. Kalman Filter Background

The Kalman filter framework is based on Bayesian parameter estimation. A Bayes estimator allows to
estimate parameters based on prior knowledge about the parameter distribution. In the tracking problem,
system measurements serve as a form of prior knowledge, therefore the objective is to estimate the state x(t)
conditional to all the previous measurements of the system. The Bayes estimation framework is based on
the concepts of risk and loss functions in which the risk is defined as the expected loss.25 This background
information is relevant since it helps to understand the statistical origins of the Kalman filter framework
which is the focal point of the discussions in this paper. Based on the seminal paper for the Kalman filter,24
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the optimal state estimate is given as x∗(t) = E[x(t)|y(to), · · · , y(t)]. This is the solution that minimizes
the risk (expected loss), for a loss function based on the estimation error. Furthermore, the random process
for the state and for the process noise are Normal. Additional details on the problem formulation and
assumptions are presented in Ref. 24.

Implications on Kalman filter for prognostics: Considering a scalar implementation of the Kalman
filter over discrete-time model as in Eqs. (3). The output of the filter referred to as the optimal state estimate
x∗k is basically given by the conditional state estimate x̂k = E[xk|yk] and the state conditional probability
density function is given by,

p(xk|yk) ∼ N(x̂k, Pk), (4)

where Pk is the filter’s estimate of the error variance.
The output of the filter is the estimate of the expected value x̂k, and the estimation error covariance Pk.

The state random variable xp is normally distributed with mean x̂k and variance Pk.

C. Uncertainty propagation in prognostics

Based on the previous discussion regarding the interpretation of the Kalman filter output in terms of proba-
bilities, it can be observed that the health state estimation output is a Normal random variable with known
parameters considering the sources of uncertainties derived from modeling error and measurement error.

Uncertainty in the health state estimation step: We assume here a scalar case for state estimation,
like in the case of the capacitor prognostics method where the health indicator is a scalar state variable.3

Time index p is defined as the time of RUL prediction tp, which is also the time of the last available
measurement in the state estimation step. The state estimate xp is a normally distributed random variable
with mean x̂p and variance Pk.

xp ∼ N(x̂p, Pk) (5)

This variable includes the propagation of measurement uncertainty and also model error uncertainty as
included in the Kalman filter implementation.

Uncertainty in the health state forecasting step: Forecasting is needed for the state variable to
be able to estimate its value at a future time until it crosses a pre-established failure threshold F . The
forecasting process is carried out using the state equation (Eq. (3a)) recursively, using the last health state
estimate x̂p as initial value. Let x̃p(l) be the lth step ahead forecast starting from xp. From the uncertainty
propagation point of view and focusing on a one step ahead forecasting using Eq. (3a), the forecast value is
given by

x̃p(1) = Axp +Bup + wp. (6)

Variables xp and wp are Normal and independent with known mean and variance. Following from basic
probability theory, the forecast x̃p(1) is also Normal. In general, the lth step ahead forecast x̃p(l) will have
a Normal distribution as well. It should also be noted that x̃p(l) is a function of the last state estimate
(x̃p(l) = f(xp)). Considering the forecast variables as random variables and given the analytical properties
of the Normal distribution, the probability density function fx̃p(l) can be derived analytically and is given
by,

x̃p(l) ∼ N(µl, σl
2); (7)

where the mean is given by

µl = Alx̂p +Bup +

l−1∑
i=0

Ai, (8)

and the variance is given by

σl
2 = (A2)lPk +

l−1∑
i=1

(A2)iσw
2 + σw

2. (9)
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Uncertainty in RUL: Computing the uncertainty in the RUL is more complicated from an analytical
point of view. Defining R(tp) as the remaining useful life,

R(tp) = tEOL − tp. (10)

The time at end-of-life (tEOL) is a continuous variable which is computed from the forecast x̃p(l).
Let x̃p(j) be the first forecast value to cross the failure threshold F . An interpolation between x̃p(j) and

x̃p(j−1) is used to compute tEOL. Considering that the forecasts are functions of xp, RUL is also a function
of xp.

R(tp) = g(xp). (11)

From the random variable uncertainty propagation point of view, R(tp) is a function g of a normally
distributed random variable, therefore, it is also a random variable. It is nevertheless difficult to derive
its probability density function analytically. There is also no information that suggests that R(tp) will
be Normal. The probability density function of R(tp) can be approximated using computational statistics
methods. This can be done by taking N samples from xp and computing R(tp) for each sample. An histogram
can be built from the N computed R(tp) values and a density estimation method could be used to generate
the approximation of the probability density function.

D. Discussion

From the analytical results presented for the first two steps of the prognostics process (section III.C), it can
be observed that the variance will be larger after the forecasting process. In addition, there is no evidence
to suggest that R(tp) will be Normal and further investigation is needed to explore its dependance on the
forecasting process, like number of steps ahead forecasts and step length. It is also clear, that simply defining
the variance of R(tp) as Pk or σl

2 is not an accurate representation of the uncertainty in the process.
The model-based methodology for electronics prognostics based on the Kalman filter is able to capture

additive degradation model error uncertainty and additive measurement uncertainty. In order for the ap-
proximation of the probability density function of R(tp) to be a true representation of the system uncertainty,
the variances of the measurement noise and modeling noise should be properly estimated. If considered as
tuning parameters, then the generated uncertainty in R(tp) will not be representative of the real process.

IV. Conclusion

This article presented a discussion on uncertainty representation and management for model-based prog-
nostics methodologies based on the Bayesian tracking framework and specifically for a Kalman filter appli-
cation to electronics components. In particular, it explores the implication of modeling remaining useful
life prediction as a stochastic process and how it relates to remaining useful life computation by statistical
models, to uncertainty representation and management, and to the role of prognostics in decision-making.
A discussion on how uncertainty propagates from the health state estimation process through the health
state forecasting process is provided. Remaining useful life computation steps under uncertainty are pre-
sented and analytical results on uncertainty quantification are provided under a simplified scenario. A proper
propagation of uncertainty through the RUL prediction step as well as its correct interpretation are key to
developing decision-making methodologies that make use of the remaining useful life prediction estimates and
their corresponding uncertainties in order to make actionable choices that will optimize reliability, operations
or safety in view of the prognostics information.
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This paper presents a review on current uncertainty representation techniques in 
model-based prognostics algorithms based on Bayesian estimation/tracking 
framework. This framework consists of two steps, a) the state estimation step 
based on measurements of key variables of the system up to time tp; and b) 
prediction of remaining useful life (RUL) at prediction time t p ' defined as R(tp ). The 
uncertainty representation in the state estimation step is well understood and 
typically expressed as additive noise for measurements (v(k)) and modeling error 
w(k) as described in equation (1). The interpretation of the state estimation process 
from the statistical perspective is at times misunderstood for prognostics. This issue 
propagates through the RUL prediction step and further interpretation is need in 
order to properly develop decision making methodologies that make use of the RUL 
prediction estimates and its corresponding uncertainty in order to make actionable 
choices that will optimize reliability, operations or safety in view of the prognostics 
information. 

Background 
State of health estimation: A model-based prognostics algorithm employs dynamic 
models of the physical behavior of the system or component under consideration, 
along with dynamic degradation models of key parameters that represent the 
degradation over time. Bayesian tracking algorithms like Kalman, extended Kalman 
and particle filters are among the algorithms typically employed in a model-based 
prognostics methodology. In such methodologies, dynamic models of the nominal 
system and degradation models are posed as a discrete state-space system in which 
the state variable x(k) consists of physical variables, and in some cases, it includes 
degradation parameters to be estimated online. The state of the system, as it evolves 
through time, is periodically estimated by the filter as measurements y(k) of key 
variables become available through the life of the system. This is the health state 
estimation part of the model-based prognostics algorithm. Typically, a Bayesian 
tracking algorithm attempts to estimate the expected value of the joint probability 
density function of the state x(tp ) under different assumptions about the probability 
density function depending of the filter used. 



Remaining useful life estimation: In order to compute remaining useful life, the 
state-equation of the model is used to compute the state evolution in a forecasting 
mode until an end-of-life threshold is reached. The expected value estimate 
computed on the health state estimation step is typically used as initial state value in 
used the state equation of (1) to forecast the state until it crosses the predefined 
failure threshold. 

x(k + 1) = !(x(k), u(k)) + w(k), 

y(k) = h(x(k)) + v(k), 

Expected Results 

(1) 

Run to failure datasets for Electrolytic Capacitors and for Power MOSFETs under 
accelerated aging regimes will be used as case studies. Different degradation models 
based on an exponential time dependent behavior will be presented in order to 
explore the degradation model implications in the uncertainty representation for 
health state estimation and its corresponding interpretation in the RUL forecasting 
stage. In addition, an investigation of degradation model timescales will be 
presented. Typically, prognostics algorithms are developed using empirical models 
from accelerated aging tests, in real operation, these timescale will be different and 
will results in different performance of the estimation process. Finally, this paper 
will present recommendation on the uncertainty representation of different 
Bayesian tracking algorithms for prognostics and how to properly interpret RUL 
estimation results for post-prognostics decision-making. 


