
NASA/TM–2012–216045

Sensor-Only System Identification
for Structural Health Monitoring
of Advanced Aircraft

Sunil L. Kukreja
NASA Dryden Flight Research Center

Dennis S. Bernstein
Department of Aerospace Engineering, University of Michigan

August 2012



NASA STI Program . . . in Profile

Since its founding, NASA has been
dedicated to the advancement of
aeronautics and space science. The
NASA scientific and technical
information (STI) program plays a key
part in helping NASA maintain this
important role.

The NASA STI Program operates
under the auspices of the Agency Chief
Information Officer. It collects,
organizes, provides for archiving, and
disseminates NASA’s STI. The NASA
STI Program provides access to the
NASA Aeronautics and Space
Database and its public interface, the
NASA Technical Report Server, thus
providing one of the largest collection
of aeronautical and space science STI
in the world. Results are published in
both non-NASA channels and by
NASA in the NASA STI Report Series,
which includes the following report
types:

• TECHNICAL PUBLICATION.
Reports of completed research or a
major significant phase of research
that present the results of NASA
programs and include extensive data
or theoretical analysis. Includes
compilations of significant scientific
and technical data and information
deemed to be of continuing reference
value. NASA counterpart of
peer-reviewed formal professional
papers, but having less stringent
limitations on manuscript length and
extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that
are preliminary or of specialized
interest, e.g., quick release reports,
working papers, and bibliographies
that contain minimal annotation.
Does not contain extensive analysis.

• CONTRACTOR REPORT.
Scientific and technical findings by
NASA-sponsored contractors and
grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings
sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION.
Scientific, technical, or historical
information from NASA programs,
projects, and missions, often
concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English- language translations of
foreign scientific and technical
material pertinent to NASA’s
mission.

Specialized services also include
creating custom thesauri, building
customized databases, and organizing
and publishing research results.

For more information about the NASA
STI Program, see the following:

• Access the NASA STI program home
page at http://www.sti.nasa.gov

• E-mail your question via the Internet
to help@sti.nasa.gov

• Fax your question to the NASA STI
Help Desk at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace
Information
7115 Standard Drive
Hanover, MD 21076–1320



NASA/TM–2012–216045

Sensor-Only System Identification
for Structural Health Monitoring
of Advanced Aircraft

Sunil L. Kukreja
NASA Dryden Flight Research Center

Dennis S. Bernstein
Department of Aerospace Engineering, University of Michigan

National Aeronautics and
Space Administration

NASA Dryden Flight Research Center, Edwards, California 93524-0001

August 2012



The use of trademarks or names of manufacturers in this report is for accurate reporting and
does not constitute an offical endorsement, either expressed or implied, of such products or
manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802



Abstract

Environmental conditions, cyclic loading, and aging contribute to struc-
tural wear and degradation, and thus potentially catastrophic events.
The challenge of health monitoring technology is to determine incipient
changes accurately and efficiently. This project addresses this challenge
by developing health monitoring techniques that depend only on sensor
measurements. Since actively controlled excitation is not needed, sensor-
to-sensor identification (S2SID) provides an in-flight diagnostic tool that
exploits ambient excitation to provide advance warning of significant
changes. S2SID can subsequently be followed up by ground testing to
localize and quantify structural changes.

The conceptual foundation of S2SID is the notion of a pseudo-transfer
function, where one sensor is viewed as the pseudo-input and another
is viewed as the pseudo-output. This approach is less restrictive than
transmissibility identification and operational modal analysis since no
assumption is made about the locations of the sensors relative to the
excitation.

1 Purpose

The safety and reliability of aircraft depend on the health of structural
components. Environmental conditions, cyclic loading due to takeoff and
landing, and aging all contribute to structural wear and degradation,
leading to potentially catastrophic events.

Structural health monitoring (SHM) techniques address this need
[1]. SHM typically involves ground-based testing, scheduled according
to flight history, that is, flight hours and takeoff/landing cycles [2]. This
approach allocates maintenance based on statistical models of wear and
aging that predict incipient failure modes. However, anomalous failure
modes may be difficult to detect between scheduled maintenance.

To overcome these shortcomings, the goal of this project is to develop
a new approach to analyzing flight data for SHM called sensor-to-sensor
system identification (S2SID). This technique can decrease the need for
costly maintenance that takes the aircraft out of service, while providing
the means for detecting potential failure events that may occur between
traditionally scheduled testing.

2 Background

In standard system identification, measurements of input and output sig-
nals are used to fit a model of a chosen structure and dynamic order. In
many applications, however, the input signal is unknown, and thus sen-
sor measurements are the only available data. If a statistical description
of the unknown input is available, then sensor-only (also called “blind”)
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identification techniques can be used to detect changes in the dynamics
of the system [3–6]. For structural dynamics applications, sensor-only
identification is known as operational modal analysis (OMA) [7–11].

In contrast to blind identification, S2SID requires no knowledge of the
statistical properties of the input. For applications where the excitation
is unknown and only sensor measurements are available, S2SID desig-
nates one measurement as the pseudo-input and another measurement
as the pseudo-output. The identified pseudo transfer function (PTF)
typically captures information about only the zeros (anti-resonances)
of the structure. Although pole locations are generally not estimated,
S2SID has the advantage of not requiring knowledge of the system exci-
tation. In fact, the unknown ambient system excitation plays the neces-
sary role of providing excitation that can be used to identify PTFs within
S2SID [12, 13]. Extensions to multi-input, multi-output PTF identifica-
tion, which is necessitated by non-scalar excitation, is considered in [14].

S2SID is related to transmissibility identification [9, 15, 16]. In the
simplest situation, measurements of transmissibilities assume that one
of the sensors is colocated with the controlled displacement excitation.
The resulting transmissibility involves both resonance (pole) and anti-
resonance (zero) features of the structure. However, transmissibility
identification can also be performed with arbitrary arrangements of sen-
sors, without regard to the location of the external excitation. In this
case, only anti-resonance (zero) information is captured, and the goal
is to construct a transmissibility that relates one set of measurements
to another set so that the resulting transmissibility is independent of
the forcing function. This objective is thus a specialization of S2SID to
the case of identical sensors (for example, all accelerometers). For the
case of more than two sensors, transmissibility identification is described
in [15]; however, the construction of the PTF in [15] is incorrect since
the structure of the PTF does not correctly cancel the unknown forc-
ing to obtain a transmissibility that is independent of the details of the
forcing function. A correct construction is given in [14]. Furthermore,
S2SID is more general than transmissibility identification since S2SID
is applicable to arbitrary collections of sensors, such as accelerometers,
displacements sensors, and strain gauges. Finally, like transmissibility
identification, S2SID does not perform modal analysis as in the case of
operational modal analysis [7–11]. Instead, S2SID can be applied with-
out knowledge of the structural geometry as long as the sensors are in
close enough proximity to facilitate PTF identification.

Impact and Benefits to NASA or Aeronautics
This work is aligned with the Aviation Safety Program (AvSP), whose
goals are to predict and prevent safety issues, to monitor for safety issues
in-flight and mitigate against them should they occur, to analyze and
design safety issues out of complex system behaviors, and to constantly
analyze designs and operational data for potential hazards. Moreover,
AvSP strives to advance state-of-the-art design tools to detect, avoid,
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and protect against loss-of-control due to potential adverse events in-
cluding atmospheric and vehicle system factors, and develops advanced
capabilities for detection and mitigation of aging-related hazards be-
fore they become critical. These goals are addressed in our research
by providing in-flight health monitoring without relying on controlled
excitation.

This research will provide significant cost and time savings for aircraft
health monitoring while improving safety and reliability. In addition, this
work will contribute to the following NASA and national goals.
National Security & Homeland Defense R&D Goals & Objectives.
Demonstrate innovative airframe structural concepts for efficient high-
altitude flight.
Aviation Safety R&D Goals & Objectives.
Develop technologies to reduce accidents and incidents through enhanced
vehicle design, structure, and subsystems.

3 Approach

The approach taken for this investigation was a government-academia
collaboration that consisted of a partnership between NASA Dryden
Flight Research Center (DFRC) and the Department of Aerospace En-
gineering at the University of Michigan. Both partners provided the
theoretical analysis of the problem, algorithmic development, and val-
idation. In addition, NASA facilitated the strategic research task and
provided flight-test data from the SOFIA (Stratospheric Observatory for
Infrared Astronomy) aircraft for algorithmic validation.

4 Summary of Research

This project focused on theoretical, algorithmic, and implementation is-
sues that are critical to making sensor-to-sensor system identification
(S2SID) SHM a viable technology for aircraft SHM. The theoretical and
algorithmic issues in S2SID-SHM are described in Aim 1. Aim 2 fo-
cuses on validating S2SID-SHM based on simulated data. Aim 3 applies
S2SID-SHM to flight data for further validation. These descriptions are
taken from the Phase I proposal.

Aim 1: Theoretical and Algorithmic Extensions of S2SID-SHM.

Issue 1: Persistency and identifiability. Since S2SID depends on
freely available and unknown ambient excitation, it is necessary to ascer-
tain that this excitation is sufficiently persistent (despite being otherwise
unknown) to facilitate estimation of key parameters. In addition, key pa-
rameters must be identifiable, that is, estimated without ambiguity. We
will address both issues through analysis of the algorithm based on the
aircraft’s flight envelope and the expected ambient excitation spectrum.
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Status: This issue was addressed by analysis of SOFIA data. We
performed coherence, correlation, and detrend analysis of the data, and
we discovered a direct relationship between correlation and proximity of
sensors. Although this finding was not surprising, it demonstrated the
integrity of the data, building confidence in its usefulness and limitations
for PTF identification. With regard to persistency and identifiability, the
data was found to be rich in spectral content, and thus sufficient for use
in PTF identification.

Issue 2: Sensor noise. Identification accuracy depends on the ability
to obtain consistent estimates of key parameters, that is, asymptotically
vanishing estimation bias as increasingly larger data sets are used. A
technique that ensures consistency was demonstrated in [17]; however,
[17] assumes knowledge of the autocorrelation (coloring) of the sensor
noise. Our goal is to alleviate the need for this assumption.

Status: Significant effort was devoted to this issue, which is chal-
lenging due to the fact that sensor noise is unknown and affects all
sensors. Estimation of the impulse response is a well-studied problem;
we compared various techniques with regard to their sensitivity to sen-
sor noise in [18]. Analysis of the SOFIA data indicated measurement
quantization as a result of sensor resolution constraints, but otherwise
the noise statistics are unknown. We performed extensive least-squares
fits of sensor data, using both Infinite-impulse-response (IIR) and finite-
impulse-response (FIR) model structures. The main finding is that the
best prediction errors were obtained using an FIR model structure. This
finding is consistent with theoretical results that show that transfer func-
tion identification with a white input signal and with noise corrupting
the output sensor yields consistent estimates of the impulse response.
However, in the case of PTFs, the input signal is not white, and sensor
noise may corrupt both the input and output signals.

Issue 3: Nonlinearity. Thus far, S2SID is based on linear models.
Recent work [19] shows that consistent estimates are achievable despite
the presence of certain types of nonlinearities. For S2SID, we will inves-
tigate the accuracy of the estimated PTFs by developing modifications
to the algorithm that ensure that the PTF estimates are independent of
the unknown excitation in the presence of nonlinearities. The goal is to
demonstrate the robustness of S2SID to nonlinearities in the structural
response. Extensions to nonlinear PTFs can also facilitate this goal.

Status: We applied techniques for detecting whether the PTF in-
cludes significant nonlinearities. In particular, we applied two different
techniques for identifying Hammerstein systems, which are systems in-
volving the cascade of a static input nonlinearity and a linear dynamic
subsystem [19]. The static input nonlinearity provides an indication of
distortion present in the PTF. These techniques showed that no signifi-
cant nonlinearity was present in the PTFs between the sensors that were
selected.
Aim 2: Validation with Simulated Data. The performance of
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S2SID-SHM will be assessed and demonstrated by using synthetic data
sets generated from simulated mass-spring-damper truth models of var-
ious geometries with simulated sensor noise and nonlinearities. For each
geometry, we will perform statistical analysis of the accuracy of the
method. The estimated PTFs will be compared to the true PTFs to
assess the effectiveness of S2SID-SHM. This phase will provide a means
for quantifying damage by providing estimates of the structural param-
eters.

Status: We performed extensive tests of synthetic data sets in con-
junction with the analysis of SOFIA data. The approach taken was to
apply identification techniques to SOFIA data, and then use synthetic
data sets to probe the underlying model properties. Results of this type
are described later in the next section.
Aim 3: Application to Experimental Flight-Test Data. We will
apply S2SID-SHM to experimental flight-test data from NASA DFRC’s
SOFIA program. The SOFIA data, which were collected to observe
structural loads during missions, is ideally suited for assessing how the
structural dynamics and parameters change during the aircraft’s flight
history. In contrast to simulated data, the truth model is unknown, and
thus successful demonstration of this approach to the analysis of flight
data will serve to validate the utility of S2SID-SHM to NASA for mission
readiness and safety assurance.

Status: We applied S2SID to flight data obtained from the SOFIA
aircraft located at NASA DFRC. SOFIA is a highly modified Boeing
747SP, housing an infrared telescope in the aft fuselage. The telescope
is isolated from the onboard scientific staff and equipment by means of
a pressure dome, thus allowing a door to open and permit astronomical
observations. Due to long flight durations of 10 hours or more and the
stress of opening the telescope door in-flight, structural health monitor-
ing of both the aircraft and telescope are of concern. As such, a suite
of accelerometers have been placed at various locations throughout the
aircraft to provide data for post-flight stress analysis. We obtained three
data sets from SOFIA flights.

In particular, experimental flight data were gathered during a rou-
tine flight at 12,192–15,240 m (40,000–50,000 ft) to conduct astronomical
observations onboard SOFIA. Data were collected by the sensors under
ambient conditions during flight. The accelerometer data used in this
study were collected from sensors located at the right horizontal stabilizer
tip, rear spar (vertical direction), and vertical stabilizer front and rear
spars (lateral direction). The sensor data were filtered by a sixth-order
antialiasing Butterworth filter with a cut-off at 1 kHz and recorded at 5
kHz. Data were collected while the aircraft operated in the Mach num-
ber range M = 0.4–0.7 and dynamic pressures Q = 260–390 psf (pounds
per square foot). Data were preprocessed to remove the linear trend,
mean, and outliers. The preprocessing step ensured that all unwanted
low-frequency disturbances, offsets, trends, and drifts were removed to
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enhance the accuracy of the identified models. Coherence between sig-
nals was studied with and without preprocessing. We applied S2SID
with and without preprocessing in order to ascertain the effects of these
procedures. We also estimated the level of error in the data due to the
sensor resolution. In particular, the output resolution is the smallest
distance between signal measurements. Dividing the output range by
the output resolution gives the dynamic range, which is the maximum
number of distinct sensor output values over the output range.

5 Accomplishments

Results of PTF Identification PTF identification is based on least squares
optimization in conjunction with specialized model structures. In the
following discussion we assume that the system being identified is lin-
ear, and we focus on linear model structures for system identification.
Although there are various ways to represent systems with inputs and
outputs, system identification typically uses discrete-time, time-series
models, where the current output is a linear combination of past inputs
and outputs. Special cases of these models include moving average (MA)
models, autoregressive (AR) models, and autoregressive/moving average
with exogenous input (ARMAX) models. Time series models can be rep-
resented as transfer functions, where the numerator coefficients weight
the past inputs, and the denominator coefficients weight the past out-
puts. In contrast to state space models, time-series models do not involve
an explicit internal state.

Two types of time-series models are used for system identification.
Infinite-impulse-response (IIR) models possess an impulse response that
requires an infinite number of steps to decay to zero. The impulse re-
sponse of a time-series model consists of numbers called impulse response
parameters, which are denoted by H1, H2, . . . . Impulse response parame-
ters are also called Markov parameters. A specialized form of IIR models
is given by the µ-Markov model [18,20–22], whose numerator coefficients
include a collection of impulse response parameters. Finally, a finite-
impulse-response (FIR) model is a discrete-time, time-series model with
the special property that its impulse response reaches and remains at
zero after a finite number of steps. All of the coefficients of an FIR
model are Markov parameters. µ-Markov models provide a bridge be-
tween IIR models and FIR models in the sense that, as µ increases, the
µ-Markov model increasingly mimics the form of an FIR model.

The accuracy of least-squares identification of time-series models de-
pends on various aspects of the problem. For example, the model order
may be unknown, and errors may be incurred by overestimating or under-
estimating the order. Next, the inputs to the system must be sufficiently
persistent to allow estimation of the model coefficients. Furthermore,
beyond persistency, for the case in which the input to the system is

6



0 50 100 150 200 250 300
15

15.5

16

16.5

17

17.5

18

18.5

19

Output Delay

P
re

d
ic

ti
o

n
 E

rr
o

r 
(P

E
)

Figure 1. This plot shows the prediction error (cross validation) for FIR
model fits as a function of output delay. Delaying the output relative
to the input improves the accuracy of the model fit as measured by a
prediction error criterion.

stochastic, the statistical properties of the input can affect the accuracy
of the parameter estimates. And, finally, the nature of the noise cor-
rupting the input and output of the system impacts the accuracy of the
parameter estimates. The most challenging situation arises when both
the input and output signals are corrupted by noise that is mutually cor-
related. (We note that “sensor noise” on the input refers to uncertainty
about the input signal due to actuator noise.)

In [18] we compared least-squares techniques with various time-series
models under different types of inputs and sensor noise. In the case of
a persistent but otherwise arbitrary input signal and in the presence of
noise on both the input and the output, it is shown in [17] that consis-
tent parameters can be obtained if the statistical nature of the input and
output noise is known. However, this knowledge is usually not available
in practice. In the more realistic case in which the statistical proper-
ties of the input and output noise are unknown, it is shown in [18] that
consistency of the impulse response parameters can be achieved using
µ-Markov models under more restrictive assumptions, namely, if the in-
put signal is white noise and only output noise is present. This result
motivates interest in using µ-Markov models for system identification.
If, in addition, input noise is present, then it is shown in [19] that semi-
consistency can be achieved, where semi-consistency refers to consistency
up to an unknown multiplicative constant. In view of these issues, it is
clear that the challenging aspects of S2SID are 1) the input signal is not
white, 2) the input and output are corrupted by correlated noise, and 3)
the statistical properties of the sensor noise is unknown.

Using SOFIA data to guide the Phase I investigations, we found that
the most accurate model fits, as determined by prediction error (cross
validation) were obtained from least-squares optimization of FIR time-
series models. However, these investigations provided an unexpected
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Figure 2. This plot shows the PTF impulse response of the FIR model
fit corresponding to a chosen output delay of 298 steps. The surprising
feature of this impulse response is that it has a significant noncausal
component, which appears to the left of the delay of 298 steps.

feature illustrated in Figure 1. Specifically, Figure 1 shows that the pre-
diction error decreases as the output delay is increased relative to the
input. The reason for this surprising effect becomes clear only upon plot-
ting the impulse response of the FIR model. As shown in Figure 2, the
impulse response of the fit model has a significant noncausal component,
plotted to the left of the chosen delay step.

To confirm that the noncausal component of the SOFIA impulse
response is contributing to the prediction error, we remove the noncausal
component and then re-include it one impulse parameter at a time; this
is done by including the impulse response parameters one at a time from
the left of the chosen delay step in Figure 2. Figure 3 shows that the
prediction error decreases as noncausal impulse response parameters are
included in the identified FIR model.

Source of the Noncausal Impulse Response As shown above, the non-
causal component of the impulse response estimated by identification
with an FIR model structure provides a significant improvement to the
identification accuracy as measured by the prediction error. This is a sur-
prising observation since it suggests that the PTF between the pseudo-
input and pseudo-output is not physically meaningful. To investigate
this issue, we constructed synthetic data sets by simulating the lumped
mass-spring-damper systems shown in Figure 4. Specifically, we excite
this structure with an external force, and we record the velocities of two
masses for use in PTF identification. We consider parameters for two
cases. In the first case, Figure 5 shows that delaying the pseudo-output
does not lead to a noncausal component of the impulse response. How-
ever, in the second case, Figure 6 shows that delaying the pseudo-output
does in fact produce a noncausal component of the impulse response.
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Figure 3. The prediction error is plotted here as an increasing number
of noncausal impulse response parameters are included in the model.
This plot confirms that the noncausal component of the estimated model
contributes to the prediction accuracy.
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Figure 4. Mass-spring-damper structure. This example is used to pro-
duce synthetic data for developing and testing PTF identification meth-
ods. By adjusting the parameters, stable and unstable PTFs can be
constructed.

The key distinction between the PTFs in these two cases is the fact that
in the former case the PTF is stable, whereas, in the latter case, the
PTF is unstable.

Although the mass-spring-damper system is stable, the transfer func-
tion from force to a velocity measurement may be nonminimum phase,
that is, it may have zeros outside of the unit circle. In this case, the
PTF may be unstable, although the pseudo-input and pseudo-output
data used to identify the PTF are bounded. Applying system identifi-
cation to fit the PTF yields an FIR model with a significant noncausal
component. This noncausal component is an artifact of the use of an FIR
model structure. Although an IIR model structure can be used to avoid
the noncausal component, the presence of noise corrupting the sensors
yields inaccurate IIR model fits, whereas FIR model fits are significantly
more accurate.
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Figure 5. PTF identification is applied to the structure in Figure 4 with
the parameters m1 = 9 kg, m2 = 4 kg, m3 = 2 kg, k1 = 99 N/m, k2 = 28
N/m, k3 = 310 N/m, k4 = 101 N/m, c1 = 0.9 N-sec/m, c2 = 5.1 N-
sec/m, c3 = 0.8 N-sec/m, c4 = 5.2 N-sec/m and discretization time step
of 0.2 sec. A random white noise force excitation is applied to m2. The
pseudo-input is the velocity of m3, and the pseudo-output is the velocity
of m1. The estimated PTF impulse response is found to be causal.
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Figure 6. PTF identification is applied to the structure in Figure 4 with
the parameters as in Figure 5 except that now m3 = 14 kg. In this case,
the estimated impulse response is found to be noncausal. The noncausal
component of the impulse response is due to the fact that one of the
transfer functions from excitation to measurement is nonminimum phase,
and therefore the PTF from the pseudo-input to the pseudo-output is
unstable. The instability of the PTF induces a noncausal component in
the PTF impulse response.
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6 Next Steps

The proposed Phase II research is aimed at refining and demonstrating
this approach, thereby moving S2SID to an enhanced readiness status
for transition to NASA applications, with potential applications to non-
aerospace structures for infrastructure monitoring. The objectives of the
proposed Phase II project are as follows:

Task 1. Refine the prediction error of the identified PTFs. The
approach developed in Phase I indicates the ability to construct models
that provide high-fidelity predictions of the response of one sensor based
on another sensor. Our goal is to continue to improve the accuracy of
these predictions, which is essential to the next two objectives.

Task 2. Develop detection metrics to assess PTF structural changes.
Once system identification is used to construct an empirical PTF, the
next crucial step is to develop metrics for assessing changes to the aircraft
that warrant inspection. Metrics can be based on either changes to the
PTF or its prediction error. This is the primary objective of Phase II.

Task 3. Apply S2SID to flight data to determine threshold criteria.
We plan to continue working with data from SOFIA [23] along with other
aircraft to assess sensitivity to flight conditions and possible long-term
changes in the structural dynamics.

7 Applicable NASA Programs/Projects

This research complements the Vehicle Systems Safety Technologies (VSST)
Project, whose goal is to detect, mitigate, and recover from hazardous
flight conditions, while maintaining airworthiness and health. These
goals will be addressed in our research by providing in-flight health mon-
itoring without relying on controlled excitation. In addition, we envision
our S2SID approach to SHM to be tested and refined inflight on-board
the NASA DFRC flexible MUTT research aircraft.
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