













![](_page_3_Picture_2.jpeg)

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_2.jpeg)

![](_page_5_Figure_1.jpeg)

| Propellants                                                                                                                                                                                                       |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>Propellants are the materials that are combusted by the engine<br/>to produce thrust.</li> </ul>                                                                                                         |    |
| <ul> <li>Bipropellant liquid rocket systems consist of a <i>fuel</i> and an<br/>oxidizer. They are the most common due to their high<br/>performance, but are more complex.</li> </ul>                            |    |
| <ul> <li>Several propellants can be used singularly as monopropellants<br/>(i.e. HTP, N<sub>2</sub>H<sub>4</sub>, UDMH), which release energy when they<br/>decompose either when heated or catalyzed.</li> </ul> |    |
| <ul> <li>The mission / requirements of the vehicle will directly effect the<br/>selection of propellants and configuration (power cycle) of the<br/>propulsion system(s).</li> </ul>                              |    |
| <ul> <li>The primary propellant types to be discussed are:</li> </ul>                                                                                                                                             |    |
| - Storable                                                                                                                                                                                                        |    |
| <ul> <li>Space Storable</li> </ul>                                                                                                                                                                                |    |
| – Cryogenic                                                                                                                                                                                                       | 1  |
|                                                                                                                                                                                                                   | 12 |
| National Aeronautics and Space Administration                                                                                                                                                                     |    |

![](_page_6_Figure_1.jpeg)

![](_page_6_Picture_2.jpeg)

![](_page_7_Figure_1.jpeg)

![](_page_7_Picture_2.jpeg)

![](_page_8_Figure_1.jpeg)

![](_page_8_Figure_2.jpeg)

## Density vs. I<sub>sp</sub>

- Liquid bipropellant combinations offer a wide range of performance capabilities.
- Each combination has multiple factors that should be weighed when selecting one for a vehicle.
  - Performance (I<sub>sp</sub>)
  - Density (higher is better)
  - Storability (venting?)
  - · Ground Ops (hazards?)
  - Etc.

RIAS/

- One of the more critical trades is that of performance versus density.
- LO<sub>2</sub>/LH<sub>2</sub> offers the highest I<sub>sp</sub> performance, but at the cost of poor density (thus increasing tank size).
- Trading I<sub>sp</sub> versus density is sometimes referred to as comparing "bulk impulse" or "density impulse".

 As an example, the densities and I<sub>sp</sub> performance of the following propellant combinations will be compared.

| ·        | Density<br>(g/ml) | Density<br>(Ib/ft <sup>3</sup> ) |
|----------|-------------------|----------------------------------|
| Hydrogen | 0.07              | 4.4                              |
| Methane  | 0.42              | 26.4                             |
| RP-1     | 0.81              | 50.6                             |
| Oxygen   | 1.14              | 71.2                             |

| Pc = 300 psia<br>expanded to<br>14.7 psia | MR<br>(O/F) | l <sub>sp</sub><br>(sec) |
|-------------------------------------------|-------------|--------------------------|
| LO,/LH,                                   | 3.5         | 3470                     |
| LO,/CH                                    | 2.33        | 263¤                     |
| LO <sub>2</sub> /RP-1                     | 2.4         | 263m                     |
|                                           | (1) SC      | (2) FC                   |

19

National Acronautics and Space Administration

![](_page_9_Figure_16.jpeg)

![](_page_10_Figure_1.jpeg)

| Single Chamber<br>Tripropellant                                                                                                                                                   | Staged Combustion,<br>Dual Preburner                                                                                                                                                           | Staged Combustion,<br>Single Probumer                                                                                                   | Gas Generator                                                                                                                 | Expander                                                                                              | Tsp∙off                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Highest integrated<br>performance available<br>(closed cycle).<br>Maximizes propellant<br>bulk density and Isp.                                                                   | High performance<br>(closod cycle). Vary<br>attractive for reusable<br>applications. Eastier MR<br>and thrust level threating<br>characteristics.                                              | High performance<br>(closed cycle). Simplier<br>than mult preburner<br>options to left. Very<br>attractive for reusable<br>applications | Simple cycle, low<br>production costs, easier<br>to develop                                                                   | High roliability, benign<br>failure modes<br>(containted), simple<br>cycle                            | Simple cycle with fewer<br>parts, lower production<br>costs, caster<br>maintainability                                                    |
| Most difficult to develop.<br>Will be very expensive.<br>Production cost makes<br>reusable applications<br>mandatory. Vehicle mus<br>be very performance<br>driven such as SST O. | More difficult to develop<br>than single PB. Tends to<br>be very expansive.<br>Failure modes tend to be<br>more involved.<br>Producton coatmakos<br>reusable applications<br>almost mandatory. | More difficult to develop<br>Tends to be more<br>expensive, Failure<br>modes tend to be more<br>involved.                               | Lower performance<br>because of open cycle.<br>Performance level makes<br>this unattactive for most<br>reusable applications. | Limited to LOXAH2<br>propellants only, Limited<br>performance because of<br>heal transfer limitations | Hot gas duct that leps of<br>from the MCC and mixes<br>diffuent fuel to regulate<br>gas temperature. Lower<br>performance (Open<br>cycle) |
| Reusable SSTO.                                                                                                                                                                    | Booster or upperstage,<br>reusablo rockets                                                                                                                                                     | Booster or upperstage,<br>reusable or expendible<br>rockets (May depend on<br>propellant choices)                                       | Booster or upper stage,<br>expendible reckets                                                                                 | Booster or upperstage,<br>reusable or expendible<br>rockets                                           | Booster or upper staga,<br>axpandibla rockets                                                                                             |

![](_page_11_Figure_1.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_1.jpeg)

| J-2X: Adding a New Member to the Family |           |                               |              |                |
|-----------------------------------------|-----------|-------------------------------|--------------|----------------|
|                                         | Alegenter |                               |              |                |
|                                         | 1960-1970 | 1965-1971                     | 1996-2001    | 2006-          |
| Configurati                             | on J-2    | J-2S                          | X-33         | J-2X           |
| Thrust                                  | 230 klb   | 265 klb                       | 261 klb      | 294 klb        |
| lsp                                     | 425 sec   | 436 sec                       | 419 sec      | 448 sec        |
| Mass                                    | 3,492 lb  | 3,800 lb                      | 7,500 lb     | 5,450 lb       |
| Length                                  | 116 in    | 116 in                        | 79 in        | 185 in         |
|                                         | Natio     | nal Aeronautics and Space Adv | ministration | Requirements40 |

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_20_Figure_1.jpeg)

| NASA | J-2X Basic S                                                                                                                                                                                                                                                                                                                  | Statistics                                                                                                                           |                                                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|      | <ul> <li>Cycle</li> <li>Thrust, vac</li> <li>Isp, vac (min)</li> <li>Pc</li> <li>MR</li> <li>AR (geometric)</li> <li>Weight (max)</li> <li>Secondary Mode MR</li> <li>Secondary Mode PL</li> <li>Restart</li> <li>Service Life Starts</li> <li>Service Life Seconds</li> <li>Length (max)</li> <li>Exit Dia. (max)</li> </ul> | •English<br>GG<br>294 klbs<br>448 s<br>1,337 psia<br>5.5<br>94.4<br>5,450 lbs<br>4.5<br>82%<br>1<br>8<br>2,600 s<br>185 in<br>120 in | •Metric<br>GG<br>1308 kN<br>448 s<br>9.218 MPa<br>5.5<br>94.4<br>2472 kg<br>4.5<br>82%<br>1<br>8<br>2,600 s<br>4.699 m<br>3.048 m |
| N    | lational Aeronautics and Space Administrat                                                                                                                                                                                                                                                                                    | ion                                                                                                                                  |                                                                                                                                   |

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_30_Figure_1.jpeg)

.

.