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ABSTRACT

A remaining useful life prediction methodology for elec-
trolytic capacitors is presented. This methodology is based
on the Kalman filter framework and an empirical degradation
model. Electrolytic capacitors are used in several applications
ranging from power supplies on critical avionics equipment
to power drivers for electro-mechanical actuators. These de-
vices are known for their comparatively low reliability and
given their criticality in electronics subsystems they are a
good candidate for component level prognostics and health
management. Prognostics provides a way to assess remaining
useful life of a capacitor based on its current state of health
and its anticipated future usage and operational conditions.
We present here also, experimental results of an accelerated
aging test under electrical stresses. The data obtained in this
test form the basis for a remaining life prediction algorithm
where a model of the degradation process is suggested. This
preliminary remaining life prediction algorithm serves as a
demonstration of how prognostics methodologies could be
used for electrolytic capacitors. In addition, the use degrada-
tion progression data from accelerated aging, provides an av-
enue for validation of applications of the Kalman filter based
prognostics methods typically used for remaining useful life
predictions in other applications.

José R. Celaya et.al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

This paper proposes the use of a model based prognostics
approach for electrolytic capacitors. Electrolytic capacitors
have become critical components in electronics systems in
aeronautics and other domains. This type of capacitors are
known for their low reliability and frequent breakdown in
critical systems like power supplies of avionics equipment
and electrical drivers of electro-mechanical actuators of con-
trol surfaces. The field of prognostics for electronics com-
ponents is concerned with the prediction of remaining useful
life (RUL) of components and systems. In particular, it fo-
cuses on condition-based health assessment by estimating the
current state of health. Furthermore, it leverages the knowl-
edge of the device physics and degradation physics to predict
remaining useful life as a function of current state of health
and anticipated operational and environmental conditions.

1.1. Motivation

The development of prognostics methodologies for the elec-
tronics field has become more important as more electrical
systems are being used to replace traditional systems in sev-
eral applications in fields like aeronautics, maritime, and au-
tomotive. The development of prognostics methods for elec-
tronics presents several challenges due to great variety of
components used in a system, a continuous development of
new electronics technologies, and a general lack of under-
standing of how electronics fail. Traditional reliability tech-
niques in electronics tend to focus on understanding the time
to failure for a batch of components of the same type. Just
until recently, there has been a push to understand, in more
depth, how a fault progresses as a function of usage, namely,
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loading and environmental conditions. Furthermore, just un-
til recently, it was believed that there were no precursor of
failure indications for electronics systems. That is now un-
derstood to be incorrect, since electronics systems, similar
to mechanical systems, undergo a measurable wear process
from which one can derive features that can be used to pro-
vide early warnings to failure. These failures can be detected
before they happen and one can potentially predict the re-
maining useful life as a function of future usage and environ-
mental conditions.

Avionics systems in on-board autonomous aircraft perform
critical functions greatly escalating the ramification of an in-
flight malfunction (Bhatti & Ochieng, 2007; Kulkarni et al.,
2009). These systems combine physical processes, computa-
tional hardware and software; and present unique challenges
for fault diagnosis. A systematic analysis of these conditions
is very important for analysis of aircraft safety and also to
avoid catastrophic failures during flight.

Power supplies are critical components of modern avionics
systems. Degradations and faults of the DC-DC converter
unit propagate to the GPS (global positioning system) and
navigation subsystems affecting the overall operation. Ca-
pacitors and MOSFETs (metal oxide field effect transistor)
are the two major components, which cause degradations and
failures in DC-DC converters (Kulkarni, Biswas, Bharadwaj,
& Kim, 2010). Some of the more prevalent fault effects, such
as a ripple voltage surge at the power supply output can cause
glitches in the GPS position and velocity output, and this in
turn, if not corrected can propagate and distort the navigation
solution.

Capacitors are used as filtering elements on power electronics
systems. Electrical power drivers for motors require capaci-
tors to filter the rail voltage for the H-bridges that provide
bidirectional current flow to the windings of electrical mo-
tors. These capacitors help to ensure that the heavy dynamic
loads generated by the motors do not perturb the upstream
power distribution system. Electrical motors are an essen-
tial element in electro-mechanical actuators systems that are
being used to replace hydro-mechanical actuation in control
surfaces of future generation aircrafts.

1.2. Previous work

In earlier work (Kulkarni, Biswas, Koutsoukos, Goebel, &
Celaya, 2010b), we studied the degradation of capacitors un-
der nominal operation. There, work capacitors were used
in a DC-DC converter and their degradation was moni-
tored over an extended period of time. The capacitors were
characterized every 100-120 hours of operation to capture
degradation data for ESR and capacitance. The data col-
lected over the period of about 4500 hours of operation were
then mapped against an Arrhenius inspired ESR degradation
model (Kulkarni, Biswas, Koutsoukos, Goebel, & Celaya,

2010a).

In following experimental work, we studied accelerated
degradation in capacitors (Kulkarni, Biswas, Koutsoukos,
Celaya, & Goebel, 2010). In that experiment the capaci-
tors were subjected to high charging/discharging cycles at a
constant frequency and their degradation progress was mon-
itored. A preliminary approach to remaining useful life pre-
diction of electrolytic capacitors was presented in (Celaya et
al., 2011b). This paper here builds upon the work presented
in the preliminary remaining useful life prediction in (Celaya
et al., 2011a) and experimental studies done in (Celaya et al.,
2012).

1.3. Other related work and current art in capacitor prog-
nostics

The output filter capacitor has been identified as one of the el-
ements of a switched mode power supply that fails more fre-
quently and has a critical impact on performance (Goodman
et al., 2007; Judkins et al., 2007; Orsagh et al., 2005). A prog-
nostics and health management approach for power supplies
of avionics systems is presented in (Orsagh et al., 2005). Re-
sults from accelerated aging of the complete supply were pre-
sented and discussed in terms of output capacitor and power
MOSFET failures; but there is no modeling of the degrada-
tion process or RUL prediction for the power supply. Other
approaches for prognostics for switched mode power supplies
are presented in Goodman et al. (2007) and Judkins et al.
(2007). The output ripple voltage and leakage current are
presented as a function of time and degradation of the capac-
itor, but no details were presented regarding the modeling of
the degradation process and there were no technical details
on fault detection and RUL prediction algorithms.

A health management approach for multilayer ceramic capac-
itors is presented in Nie et al. (2007). This approach focuses
on the temperature-humidity bias accelerated test to replicate
failures. A method based on Mahalanobis distance is used
to detect abnormalities in the test data; there is no prediction
of RUL. A data driven prognostics algorithm for multilayer
ceramic capacitors is presented in Gu et al. (2008). This
method uses data from accelerated aging test to detect poten-
tial failures and to make an estimation of time of failure.

2. PROGNOSTICS METHODOLOGY

The process followed in the proposed prognostics method-
ology is presented in the block diagram in Figure 1. It
is based on a model-based prognostics framework using an
time-dependent empirical degradation model build from ac-
celerated aging tests.

Accelerated Aging: The methodology is based on results
from an accelerated life test on real electrolytic capacitors.
This test applies electrical overstress to commercial, off the
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shelf capacitors, in order to observe and record the degra-
dation process and identify performance conditions in the
neighborhood of the failure criteria in a considerably reduced
time frame. A total of 6 accelerated aging test devices are
available for the development of the proposed methodology.
Electrochemical-impedance spectroscopy (EIS) is used peri-
odically during the accelerated aging test to characterize the
frequency response of the capacitor’s impedance. Several
measurements are available through the aging time, includ-
ing measurements at pristine condition and measurements af-
ter failure condition.

System Identification: A lumped-parameter model (M1)
of the non-ideal capacitor impedance is assumed. This
impedance model includes a capacitance element and an
equivalent series resistance (ESR) parasitic element. The EIS
measurements along with the impedance model structure are
used in a systems identification setting to estimate the model
parameters available throughout the aging test. This results in
time-dependent capacitance and ESR measurements trajecto-
ries reflecting capacitor degradation.

Degradation Modeling: We present here an empirical degra-
dation model that is based on the observed degradation pro-
cess during the accelerated life test. The objective of the
model is to generate a parametrized model of the time-
dependent capacitance degradation as generated by the sys-
tem identification step. A similar degradation model can be
generated for ESR but not considered in this work.

Parameter Estimation: The parameters of the degradation
model are estimated using nonlinear least-squares regression.
The quality of the fit is good enough as to assume these pa-
rameters as static during the prognostics process.

Prognostics: A Bayesian framework is employed to estimate
(track) the state of health of the capacitor based on measure-
ment updates of key capacitor parameters. The Kalman filter
algorithm is used to track the state of health and the degra-
dation model is used to make predictions of remaining useful
life once no further measurements are available.

3. ACCELERATED AGING EXPERIMENTS

Accelerated life test methods are often used in prognostics
research as a way to assess the effects of the degradation pro-
cess through time. It also allows for the identification and
study of different failure mechanisms and their relationships
with different observable signals and parameters. In the fol-
lowing section we present the accelerated aging methodology
and an analysis of the degradation pattern induced by the ag-
ing. The work presented here is based on an accelerated elec-
trical overstress. In the following subsections, we first present
a brief description of the aging setup followed by an analysis
of the observed degradation. The precursor to failure is also
identified along with the physical processes that contribute to
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Figure 1. Methodology for capacitor prognostics.

the degradation.

3.1. Experimental Setup

Since the objective of this experiment is studying the effects
of high voltage on degradation of the capacitors, the capaci-
tors were subjected to high voltage stress through an external
supply source using a specially developed hardware. The ca-
pacitors are stressed under high voltage conditions and spe-
cially developed hardware. The voltage overstress is applied
to the capacitors as a square waveform in order to subject the
capacitor to continuous charge and discharge cycles.

At the beginning of the accelerated aging, the capacitors
charge and discharge simultaneously; as time progresses and
the capacitors degrade, the charge and discharge times vary
for each capacitor. Even though all the capacitors under test
are subjected to similar operating conditions, their ESR and
capacitance values change differently. We therefore moni-
tor charging and discharging of each capacitor under test and
measure the input and output voltages of the capacitor. Fig-
ure 2 shows the block diagram for the electrical overstress
experiment. Additional details on the accelerated aging sys-
tem are presented in (Kulkarni, Biswas, Koutsoukos, Celaya,
& Goebel, 2010).

For this experiment six capacitors in a set were considered
for the EOS experimental setup. Electrolytic capacitors of
2200µF capacitance, with a maximum rated voltage of 10V ,
maximum current rating of 1A and maximum operating tem-
perature of 105◦C were used for the study. These were
the recommended capacitors by the manufacturer for DC-DC
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Figure 2. Block diagram of the experimental setup.

converters. The electrolytic capacitors under test were char-
acterized in detail before the start of the experiment at room
temperature.

The measurements were recorded every 8-10 hours of the to-
tal 180 plus hours of accelerated aging time to capture the
rapid degradation phenomenon in the ESR and capacitance
values. The ambient temperature for the experiment was
controlled and kept at 25◦C. During each measurement the
voltage source was shut down, capacitors were discharged
completely and then the characterization procedure was car-
ried out. This was done for all the six capacitors under test.
For further details regarding the aging experiment results and
analysis of the measured data refer to (Kulkarni, Biswas,
Koutsoukos, Celaya, & Goebel, 2010; Celaya et al., 2011b).

3.2. Physical interpretation of the degradation process

There are several factors that cause electrolytic capacitors to
fail. Continued degradation, i.e., gradual loss of functionality
over a period of time results in the failure of the component.
Complete loss of function is termed a catastrophic failure.
Typically, this results in a short or open circuit in the capac-
itor. For capacitors, degradation results in a gradual increase
in the equivalent series resistance and decrease in capacitance
over time.

In this work, we study the degradation of electrolytic capac-
itors operating under high electrical stress, i.e., Vapplied ≥
Vrated. During the charging/discharging process the capaci-
tors degrade over the period of time. A study of the literature
indicated that the degradation could be primarily attributed
to electrolyte evaporation, leakage current and increase in in-
ternal pressure due to gas released due to chemical reactions
(IEC, 2007-03; MIL-C-62F, 2008; Kulkarni, Biswas, Kout-
soukos, Goebel, & Celaya, 2010a). An ideal capacitor would
offer no resistance to the flow of current at its leads. However,
the electrolyte that fills the space between the plates and the
electrodes produces a small equivalent internal series resis-
tance. Fig. 3 shows the structure of an electrolytic capacitor
in detail. The ESR dissipates some of the stored energy in the
capacitor leading to increase in the internal temperature and
thus causing electrolyte evaporation.

ESR and capacitance are the two main failure precursors that
tipify the current health state of the device. ESR and capac-
itance values were calculated after characterizing the capac-

Anode Foil

Cathode Foil

Connecting Lead

Aluminum Tab

Separator
Paper

Figure 3. Electrolytic capacitor structure.

itors at regular intervals. As the devices degrade due to dif-
ferent failure mechanisms we can observe a decrease in the
capacitance and an increase in the ESR.

The literature on capacitor degradation shows a direct rela-
tionship between electrolyte decrease with increase in ESR
and decrease in capacitance value of the capacitor (Kulkarni,
Biswas, Koutsoukos, Goebel, & Celaya, 2010b). ESR in-
crease implies greater dissipation, and, therefore, a slow de-
crease in the average output voltage at the capacitor leads.

ESR and capacitance values are estimated by using a sys-
tem identification using a lump parameter model consistent
of the capacitance and the ESR in series as shown in Fig-
ure 4. The frequency response of the capacitor impedance
(measured with electro-impedance spectroscopy) is used for
the parameter estimation. It should be noted that the lumped-
parameter model used to estimate ESR and capacitance, is
not the model to be used in the prognostics algorithm; it only
allows us to estimate parameters which provide indications
of the degradation process through time. Parameters such as
ESR and capacitance are challenging to estimate from the in-
situ measurements of voltage and current through the accel-
erated aging test.

CI CR RE

Ideal
Capacitor

Non ideal Capacitor 
with parasitic series resistance

Figure 4. Lumped parameter model (M1) for a real capacitor.

3.3. System identification for real capacitor model

The ESR and capacitance values were estimated from the
capacitor impedance frequency response measured using an
SP-150 Biologic SAS electro-impedance spectroscopy instru-
ment. A lumped parameter model consisting of a capacitor
with a resistor in series was assumed to estimate the ESR and
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capacitance.

The ideal capacitor has complex impedance ZI = 1/sCI
where CI is the ideal capacitance value. The complex
impedance of modelM1 is given by

Z = RE +
1

sCR
, (1)

where RE is the equivalent series resistance and CR is the
real capacitance.

Electrochemical impedance spectroscopy measurements are
available to characterize the electrical performance of the ca-
pacitor. Figure 5 shows Nyquist plots of the impedance mea-
surements for capacitor #1 at pristine condition and after ac-
celerated aging at intervals of 71, 161 and 194 hours. The
degradation can be observed as the Nyquist plot shifts to the
right as a function of aging time due to increase inRE . These
measurement are then used to estimate the parameters of the
impedance modelM1 from eq. (1). The parameter estimation
performed using the EIS instrument software (EC lab). This
is basically and optimization problem using an aggregate of
mean squared error as an objective function. The error is ag-
gregated at different frequencies for which measurements are
available. The optimization is set up to minimize the objec-
tive function by finding optimal values for CR∗ and RE∗.
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Figure 5. Electroimpedance measurements at different aging
times.

This parameter estimation is performed every time an EIS
measurement is taken resulting on values of CR and RE at
different points in time through the aging of the components.
The average pristine condition ESR value was measured to
be 0.056 mΩ and average capacitance of 2123 µF individu-
ally for the set of capacitors under test.

Figure 6 shows percentage increase in the ESR value for all
the six capacitors under test over the period of time. This
value of ESR is calculated from the impedance measurements

after characterizing the capacitors. Similarly, figure 7 shows
the percentage decrease in the value of the capacitance as the
capacitor degrades over the period under EOS test condition
discussed. As per standards MIL-C-62F (2008), a capacitor is
considered unhealthy if under electrical operation its ESR in-
creases by 280 − 300% of its initial value or the capacitance
decreases by 20% below its pristine condition value. From
the plots in Figure 6 we observe that for the time for which the
experiments were conducted the average ESR value increased
by 54%− 55% while over the same period of time, the aver-
age capacitance decreased by more than 20% (the threshold
mark for a healthy capacitor) (see Figure 7). As a result, the
percentage capacitance loss is selected as a precursor of fail-
ure variable to be used in the degradation model development
presented next.
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Figure 6. Degradation of capacitor performance, percentage
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4. DEGRADATION MODELING FOR PROGNOSTICS

This sections presents the details of the degradation model
development. A degradation model is an essential part of a
model-based prognostics algorithm and it is typically appli-
cation dependent. A model is formulated based on the empir-
ical evidence of the degradation process time evolution from
experiments presented in the previous section, particularly,
capacitance loss as described by figure 7.

4.1. Nominal model

The non-ideal capacitor model M1 can be used as part of
electronics circuits that make use of capacitors. An example
is the low-pass filter implementation in figure 8. In this cir-
cuit, input voltage Vi is considered as the voltage to be filtered
and the voltage across the capacitor (this includesRE as well)
is the output voltage Vo which is filtered. Let v(t) = Vo(t)
and u(t) = Vi(t) in the low-pass system circuit with non-
ideal capacitor shown in figure 8. A state-space realization
(M2) of the dynamic system is given by

ż(t) =
−1

CR(R+RE)
z +

1

CR(R+RE)
u(t), (2)

v(t) =

[
1− RE

R+RE

]
z +

RE
R+RE

u(t),

where z(t) = VC(t) is the state variable representing the
capacitor voltage, CR, RE and R are system parameters.
Furthermore, CR and RE are parameters that will change
through time as the capacitor degrades.

R RE

V i(t) Vo(t)

VC

Figure 8. Low pass filter model (M2).

ModelM1 describes the nominal dynamics of a low-pass fil-
ter with a non-ideal capacitor. This model by itself is not
sufficient to implement a model-based prognostics algorithm
since the degradation process as reflected on model parame-
ters is not modeled. Degradation models describing the time
evolution of RE or CR are needed in order to enhance M1

for model-based prognostics. Nevertheless, M1 is useful in
this form for model-based fault detection and isolation which
is not covered in this work.

4.2. Degradation model

The percentage loss in capacitance is used as a precursor of
failure variable and it is used to build a model of the degrada-
tion process. This model relates aging time to the percentage

loss in capacitance. Let Cl be the percentage loss of capaci-
tance due to degradation as shown by figure 7. The following
equation is a degradation model D of the capacitance param-
eter in the real capacitor modelM1.

D1 : Cl(t) = eαt + β, (3)

where α and β are degradation model parameters that will
be estimated from the experimental data of accelerated aging
experiments.

In order to estimate the model parameters, five capacitors are
used for estimation, and the remaining capacitor is used to
test the prognostics algorithm. This results in six leave-one-
out test cases for validation of the prognostics algorithm re-
sults. A nonlinear least-squares regression algorithm is used
to estimate the model parameters. Table 1 presents definition
of the test cases and the parameter estimation results. The
estimate and 95% confidence interval is presented for param-
eters α and β. In addition, the error variance is included as a
way to assess the quality of the fit.

Figure 9 shows the estimation results for test case T6. The ex-
perimental data are presented together with results from the
exponential fit function. It can be observed from the residuals
that the estimation error increases with time. This is to be ex-
pected since the last data point measured for all the capacitors
fall slightly off the concave exponential model.
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Figure 9. Estimation results for the empirical degradation
model.

It should be noted that this degradation model with static pa-
rameters will be used in a Bayesian tracking framework. This
will help to overcome the degradation model limitation to rep-
resent the behavior close to the failure threshold given the
tracking framework ability to compensate the estimation as
measurements become available.
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Validation Test Training α β
σ2
vtest capacitor capacitor (95% CI) (95% CI)

T2 #2 #1, #3–#6 0.0162 -0.8398 1.8778(0.0160, 0.0164) (-1.1373, -0.5423)

T3 #3 #1, #2, #4–#6 0.0162 -0.8287 1.9654(0.0160, 0.0164) (-1.1211, -0.5363)

T4 #4 #1–#3, #5, #6 0.0161 -0.8217 1.8860(0.0159, 0.0162) (-1.1125, -0.5308)

T5 #5 #1–#4, #6 0.0162 -0.7847 2.1041(0.0161, 0.0164) (-1.1134, -0.4560)

T6 #6 #1–#5 0.0169 -1.0049 2.9812(0.0167, 0.0170) (-1.2646, -0.7453)

Table 1. Degradation model parameter estimation results.

4.3. State-space realization for tracking

The estimated degradation model is used as part of a Bayesian
tracking framework to be implemented using the Kalman fil-
ter technique. This method requires a state-space dynamic
model relating the degradation level at time tk to the degrada-
tion level at time tk−1. The procedure to obtain a state-space
model for D1 is as follows. The non-linear exponential be-
havior described in the model is represented as a first order
differential equation which can represent the time evolution
of Cl(t). Then, the model is discretized in time in order to
obtain a discrete-time state-space model D2.

From equation (3) we have that Cl(t) = eαt + β, taking the
first derivative with respect to time and substituting eαt =
Cl(t)− β from eq. (3) we have

Ċl =
dCl(t)

dt
= αCl(t)− αβ. (4)

Taking the finite difference approximation for Ċl with time
interval ∆t we have

Cl(t)− Cl(t−∆t)

∆t
= αCl(t−∆t)− αβ, and

Cl(t) = (1 + α∆t)Cl(t−∆t)− αβ∆t.

Letting tk = t and tk−1 = t − ∆t we get the state-space
model

Cl(tk) = (1 + α∆k)Cl(tk−1)− αβ∆k. (5)

This model can be used in a Bayesian tracking framework in
order to continuously estimate the value of the loss in capac-
itance through time as measurement become available.

5. MODEL-BASED PROGNOSTICS FRAMEWORK

A model-based prognostics algorithm based on Kalman filter
and a physics inspired empirical degradation model is pre-
sented. This algorithm is able to predict remaining useful

life of the capacitor based on the accelerated degradation data
from the experiments described in previous sections.

The methodology consists of the following three main steps
and it is depicted in fig. 10.

1. State tracking (Kalman Filter): The capacitance loss Cl
is defined as the state variable to be estimated and the
degradation model is expressed as a discrete time dy-
namic model in order to estimate capacitance loss as new
measurements become available. Direct measurements
of the capacitance are assumed for the filter.

2. Health state forecasting: It is necessary to forecast the
state variable once there are no more measurements
available at time or RUL prediction tp. This is done by
evaluating the degradation model through time using the
state estimate at time tp as initial value.

3. Remaining life computation: RUL is computed as the
time between time of prediction tp and the time at which
the forecasted state crosses the failure threshold value.

This process is repeated for different values of tp through the
life of the component under consideration.

Kalman
Filter

Health State 
Forecasting

RUL
Computation

RUL(tp)

{α̃, β̃}D2

x̂(tp)

{y(t0), . . . , y(tp)}

{x̂(tp+1), . . . , x̂(tp+N )}

Failure
Threshold

Figure 10. Model-based prognostics methodology

7



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

5.1. Kalman filter for state estimation

A state-space dynamic model is needed for the filtering. The
state variable xk at time tk is defined as the percentage ca-
pacitance loss Cl(k). Since the system measurements are
percentage loss in capacitance as well, the output equation
is given by yk = hxk, where the value of h is equal to one.
The following system structure is used in the implementation
of the filtering and the prediction using the Kalman filter.

xk = Akxk−1 +Bku+ v,
yk = hxk + w,

(6)

where,

Ak = (1 + ∆k),
Bk = −αβ∆k,
h = 1,
u = 1.

(7)

The time increment between measurements ∆k is not con-
stant since measurements were taken at non-uniform sam-
pling rate. This implies that some of the parameters of the
model in equation (6) will change through time. Furthermore,
v and w are normal random variables with zero mean and Q
and R variance respectively. The description of the Kalman
filtering algorithm is omitted from this article. A thorough
description of the algorithm can be found in Stengel (1994),
a description of how the algorithm is used for forecasting can
be found in Chatfield (2003) and an example of its usage for
prognostics can be found in (Saha et al., 2009).

5.2. Future state forecasting

The use of the Kalman filter as a RUL forecasting algorithm
requires the evolution of the state without updating the error
covariance matrix and the posterior of the state vector. The n
step ahead forecasting equation for the Kalman filter is given
below. The last update is done at the time of the last measure-
ment tl.

x̂l+n = Anxl +

n−1∑
i=0

AiB (8)

The subscripts from parameters A and B are omitted since a
constant ∆t is used in the forecasting mode (one prediction
every hour).

5.3. Noise models

The model noise variance Q was estimated from the model
regression residuals for each test case as presented in table 1.
This variance was used for the model noise in the Kalman
filter implementation. The measurement noise variance R is
also required in the filter implementation. This variance was
computed from the direct measurements of the capacitance
with the EIS equipment, the observed variance is 4.99×10−7.

6. PREDICTION OF REMAINING USEFUL LIFE RESULTS

Estate estimation and RUL prediction results are discussed
for test case T6. Figure 11 shows the result of the filter track-
ing the complete degradation signal. The residuals show an
increased error with aging time. This is to be expected given
the results observed from the model estimation process.
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Figure 11. Tracking results for the Kalman filter implemen-
tation applied to test capacitor (capacitor #6).

Figure 12 presents results from the remaining useful life pre-
diction algorithm at time tp = 161 (hr), which is the time
at which ESR and C measurements are taken. The failure
threshold is considered to be a crisp value of 20% decrease in
capacitance. End of life (EOL) is defined as the time at which
the forecasted percentage capacity loss trajectory crosses the
EOL threshold. Therefore, RUL is EOL minus 161 hours.
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Figure 12. Remaining useful life prediction at time 149 (hr).

Figure 13 presents the capacitance loss estimation and EOL
prediction at different points during the aging time. Predic-
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tions are made after each point in which measurements are
available. It can be observed that the predictions become bet-
ter as the prediction is made closer to the actual EOL. This is
possible because the estimation process has more information
to update the estimates as it nears EOL. Figure 14 presents a
zoomed-in version of figure 13 focusing in the area close to
the failure threshold.
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Figure 13. T6: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 14. T6: Detail of the health state estimation and fore-
casting of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].

An α-λ prognostics performance metric is presented in Fig-
ure 15 for validation test T6. The blue line represents ground
truth and the shaded region is corresponding to a 30% (α =
0.3) error bound in the RUL prediction. This metric specifies
that the prediction is within the error bound halfway between
first prediction and EOL (λ = 0.5). In addition, this metric
allows us to visualize how the RUL prediction performance
changes as data closer to EOL becomes available. Appendix
B presents the α-λ metric plots for the remaining validation
cases.
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Figure 15. Performance based on α-λ performance metric.

6.1. Validation tests

Table 2 summarizes results for the remaining life prediction
at all points in time where measurements are available. The
last column indicates the RUL prediction error. The magni-
tude of the error decreases as the prediction time gets closer
to EOL. The decrease is not monotonic which is to be ex-
pected when using a tracking framework to estimate health
state because the last point of estimation is used to start the
forecasting process.

Table 3 shows performance based on the relative accuracy
(RA) metric in equation (9). These metrics allows for an as-
sessment of the percentage accuracy relative to the ground-
truth value. RA values of 100 represent perfect accuracy. The
RA is presented for all the test cases for different prediction
times. The last column of the Table 3 represents the me-
dian RA of all the test cases for a particular prediction time.
It is observed that the RA values decrease considerably for
tp = 171. This is consistent with previous observations indi-
cating that the algorithm with a fixed-parameter model is not
able to cope with the sudden jump in exponential behavior
present around the 171 hour. This is a limitation that could
be overcome by either an enhanced degradation model or a
an online estimation of degradation model parameters using
a more sophisticated Bayesian tracking method like extended
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tp RUL∗ RUL
′

T2 RUL
′

T3 RUL
′

T4 RUL
′

T5 RUL
′

T6

24 151.04 158.84 164.88 158.76 167.76 159.89
47 128.04 131.32 134.08 128.35 135.32 125.91
71 104.04 117.01 119.88 115.37 122.63 116.41
94 81.04 92.69 96.64 93.09 97.6 95.42

116 59.04 67.28 65.39 67.77 69.5 65.71
139 36.04 44.01 44.72 46.88 49.4 53.75
149 26.04 30.67 32.41 33.55 35.92 39.95
161 14.04 17.23 18.28 18.2 22.64 25.6
171 4.04 1.07 2.89 N/A 5.52 8.45

Table 2. Summary of RUL forecasting results.

Kalman filter or particle filter.

RA = 100

(
1− RUL∗ −RUL′

RUL∗

)
(9)

tp RAT2 RAT3 RAT4 RAT5 RAT6 R̃A

24 94.8 95.5 91.9 96.9 99.7 95.5
47 97.4 99.3 96.4 96.7 91.7 96.7
71 87.5 91.9 84.5 94.1 97.1 91.9
94 85.6 90 78.9 94.8 94.2 90

116 86 99.1 76.5 98 96.2 96.2
139 77.8 95.8 53.1 96.7 81.1 81.1
149 82.1 98.4 46.9 94.8 86.6 86.6
161 77.2 87.3 16.6 87.5 89.8 87.3
171 26.6 26.4 N/A 34.8 63.7 30.7

Table 3. Validation based on relative accuracy metric.

7. CONCLUSION

This paper presents a RUL prediction algorithm based on ac-
celerated life test data and an empirical degradation model.
The main contributions of this work are: a) the identification
of the lumped-parameter model (Figure 4) for a real capaci-
tor as a viable reduced-order model for prognostics-algorithm
development; b) the identification of the ESR and C model
parameters as precursor of failure features; c) the develop-
ment of an empirical degradation model based on accelerated
life test data which accounts for shifts in capacitance as a
function of time; d) the implementation of a Bayesian based
health state tracking and remaining useful life prediction al-
gorithm based on the Kalman filtering framework. One major
contribution of this work is the prediction of remaining useful
life for capacitors as new measurements become available.

This capability increases the technology readiness level of
prognostics applied to electrolytic capacitors. The results pre-
sented here are based on accelerated life test data and on the
accelerated life timescale. Further research will focus on de-

velopment of functional mappings that will translate the ac-
celerated life timescale into real usage conditions time-scale,
where the degradation process dynamics will be slower, and
subject to several types of stresses. The performance of the
proposed exponential-based degradation model is satisfactory
for this study based on the quality of the model fit to the ex-
perimental data and the RUL prediction performance as com-
pared to ground truth. As part of future work we will also
focus on the exploration of additional models based on the
physics of the degradation process and larger sample size for
aged devices. Additional experiments are currently underway
to increase the number of test samples. This will greatly en-
hance the quality of the model, and guide the exploration of
additional degradation-models, where the loading conditions
and the environmental conditions are also accounted for to-
wards degradation dynamics.
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NOMENCLATURE

CI Ideal capacitance value for an ideal capacitor
CR Real capacitor value for a non-ideal capacitor

model
RE Equivalent series resistance of the capacitor
Cl(k) Capacitance percentage loss at time tk
Ti Validation test on capacitor i
Mi Nominal model for a component or system
Di Degradation model for a capacitor
RL Load resistance on electrical overstress system
VL Load voltage on electrical overstress system
Vo Electrical overstress voltage in aging system
ZI Ideal capacitor impedance
Z Capacitor impedance for non-ideal capacitor

modelM1
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A PROGNOSTICS VALIDATION RESULTS
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Figure 16. T2: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 17. T2: Detail of the health state estimation and fore-
casting of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 18. T3: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 19. T3: Detail of the health state estimation and fore-
casting of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 20. T4: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 21. T4: Detail of the health state estimation and fore-
casting of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 22. T5: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 23. T5: Detail of the health state estimation and fore-
casting of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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A PROGNOSTICS ALPHA-LAMBDA PERFORMANCE
METRIC
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Figure 24. T2: Alpha-Lambda Prognostics Metric (λ = 0.5
and α = 0.3).
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Figure 25. T3: Alpha-Lambda Prognostics Metric (λ = 0.5
and α = 0.3).
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Figure 26. T5: Alpha-Lambda Prognostics Metric (λ = 0.5
and α = 0.3).

0 50 100 150 200
0

50

100

150

200

250

Time

R
U

L

 

 

RU L∗(1 ± α)
RU L∗
T5

Figure 27. T5: Alpha-Lambda Prognostics Metric (λ = 0.5
and α = 0.3).
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•  Electronic components have increasingly critical role in 
on-board, autonomous functions for  
–  Vehicle controls, communications, navigation, radar systems  

•  Future aircraft systems will rely more on electronic 
components 

•  Assumption of new functionality increases number of 
electronics faults with perhaps unanticipated fault modes 
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•  We need understanding of 
behavior of deteriorated 
components to develop 
capability to anticipate 
failures/predict remaining RUL 



2012 EPHM 

Prognostics Research Approach 
for Electronics 

4 



2012 EPHM 

Model-based prognostics (1/3) 

Kalman
Filter

Health State 
Forecasting

RUL
Computation

RUL(tp)

{α̃, β̃}D2

x̂(tp)

{y(t0), . . . , y(tp)}

{x̂(tp+1), . . . , x̂(tp+N )}

Failure
Threshold

•  State vector includes 
dynamics of the 
degradation process 

•  It might include nominal 
operation dynamics 

•  EOL defined at time in 
which performance 
variable cross failure 
threshold 

•  Failure threshold could 
be crisp or also a 
random variable 
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ẋ(t) = f(x(t), u(t)) + w(t)

y(t) = h(x(t)), u(t)) + v(k)

R(tp) = tEOL − tp
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Model-based prognostics (2/3) 
•  Tracking of health 

state based on 
measurements 

•  Forecasting of 
health state until 
failure threshold is 
crossed 

•  Compute RUL as 
function of EOL 
defined at time 
failure threshold is 
crossed 
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Model-based prognostics (3/3) 
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Accelerated Aging Systems for 
Prognostics 
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Dynamic modeling of the 
degradation process 
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•  Based on observed degradation from 
capacitance parameter 

•  Using training capacitor data to estimate 
degradation model parameters 

•  Assumed exponential model based on 
capacitance loss 

•  Parameter estimation with least-squared 
regression 
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Degradation model results 
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•  The optimal parameter presented along the 95% confidence interval. 	

•  The residuals are modeled as a normally distributed random variable with zero 

mean and variance 	
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Validation Test Training α β
σ2
vtest capacitor capacitor (95% CI) (95% CI)

T2 #2 #1, #3–#6 0.0162 -0.8398 1.8778(0.0160, 0.0164) (-1.1373, -0.5423)

T3 #3 #1, #2, #4–#6 0.0162 -0.8287 1.9654(0.0160, 0.0164) (-1.1211, -0.5363)

T4 #4 #1–#3, #5, #6 0.0161 -0.8217 1.8860(0.0159, 0.0162) (-1.1125, -0.5308)

T5 #5 #1–#4, #6 0.0162 -0.7847 2.1041(0.0161, 0.0164) (-1.1134, -0.4560)

T6 #6 #1–#5 0.0169 -1.0049 2.9812(0.0167, 0.0170) (-1.2646, -0.7453)

Table 1. Degradation model parameter estimation results.

Figure 9 shows the estimation results for test case T6. The ex-
perimental data are presented together with results from the
exponential fit function. It can be observed from the residuals
that the estimation error increases with time. This is to be ex-
pected since the last data point measured for all the capacitors
fall slightly off the concave exponential model.
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Figure 9. Estimation results for the empirical degradation
model.

It should be noted that this degradation model with static pa-
rameters will be used in a Bayesian tracking framework. This
will help to overcome the degradation model limitation to rep-
resent the behavior close to the failure threshold given the
tracking framework ability to compensate the estimation as
measurements become available.

4.3. State-space realization for tracking

The estimated degradation model is used as part of a Bayesian
tracking framework to be implemented using the Kalman fil-
ter technique. This method requires a state-space dynamic
model relating the degradation level at time tk to the degrada-

tion level at time tk−1. The procedure to obtain a state-space
model for D1 is as follows. The non-linear exponential be-
havior described in the model is represented as a first order
differential equation which can represent the time evolution
of Cl(t). Then, the model is discretized in time in order to
obtain a discrete-time state-space model D2.

From equation (3) we have that Cl(t) = eαt + β, taking the
first derivative with respect to time and substituting eαt =
Cl(t)− β from eq. (3) we have

Ċl =
dCl(t)

dt
= αCl(t)− αβ. (4)

Taking the finite difference approximation for Ċl with time
interval ∆t we have

Cl(t)− Cl(t−∆t)

∆t
= αCl(t−∆t)− αβ, and

Cl(t) = (1 + α∆t)Cl(t−∆t)− αβ∆t.

Letting tk = t and tk−1 = t − ∆t we get the state-space
model

Cl(tk) = (1 + α∆k)Cl(tk−1)− αβ∆k. (5)

This model can be used in a Bayesian tracking framework in
order to continuously estimate the value of the loss in capac-
itance through time as measurement become available.

5. MODEL-BASED PROGNOSTICS FRAMEWORK

A model-based prognostics algorithm based on Kalman filter
and a physics inspired empirical degradation model is pre-
sented. The methodology consists of the following three main
steps and it is depicted in fig. 10.

1. State tracking (Kalman Filter): The capacitance loss Cl

is defined as the state variable to be estimated and the
degradation model is expressed as a discrete time dy-
namic model in order to estimate capacitance loss as new
measurements become available. Direct measurements
of the capacitance are assumed for the filter.

7
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•  Implementation of prognostics algorithm with 
Kalman filter 

•  Capacitance loss considered as state variable 
•  EIS measurements and lumped parameter 

model used to obtained measured capacitance 
loss values 

•  Empirical degradation model used to generate 
the state transition equation 

•  Use one Capacitor for testing and the rest for 
model parameter estimation (leave on out test) 

•  Failure threshold of 20% drop on capacitance 
based on MIL-C-62F 
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Kalman filter implementation 
•  State transition 

equation derived from 
degradation model 

•  State-space model for 
filter implementation 
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•  Assumed measurements are not available at 
some point in time 

•  Filter used in forecasting mode to predict 
future states 

•  Predictions done at 1 hr. intervals 
•  State transition equation used to propagate 

state (n: number of prediction steps, l: last 
measurement at tl) 
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Ĉl+n = A
nCl + AiB

i=0

n!1

"



2012 EPHM 

Tracking and forecasting (Cap. #6) 
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tp RUL∗ RUL
�

T2 RUL
�

T3 RUL
�

T4 RUL
�

T5 RUL
�

T6

24 151.04 158.84 164.88 158.76 167.76 159.89
47 128.04 131.32 134.08 128.35 135.32 125.91
71 104.04 117.01 119.88 115.37 122.63 116.41
94 81.04 92.69 96.64 93.09 97.6 95.42

116 59.04 67.28 65.39 67.77 69.5 65.71
139 36.04 44.01 44.72 46.88 49.4 53.75
149 26.04 30.67 32.41 33.55 35.92 39.95
161 14.04 17.23 18.28 18.2 22.64 25.6
171 4.04 1.07 2.89 N/A 5.52 8.45

Table 2. Summary of RUL forecasting results.

Kalman filter or particle filter.

RA = 100

�
1− RUL∗ −RUL

�

RUL∗

�
(9)

tp RAT2 RAT3 RAT4 RAT5 RAT6
�RA

24 94.8 95.5 91.9 96.9 99.7 95.5

47 97.4 99.3 96.4 96.7 91.7 96.7

71 87.5 91.9 84.5 94.1 97.1 91.9

94 85.6 90 78.9 94.8 94.2 90

116 86 99.1 76.5 98 96.2 96.2

139 77.8 95.8 53.1 96.7 81.1 81.1

149 82.1 98.4 46.9 94.8 86.6 86.6

161 77.2 87.3 16.6 87.5 89.8 87.3

171 26.6 26.4 N/A 34.8 63.7 30.7

Table 3. Validation based on relative accuracy metric.

7. CONCLUSION

This paper presents a RUL prediction algorithm based on ac-
celerated life test data and an empirical degradation model.
The main contributions of this work are: a) the identification
of the lumped-parameter model (Figure 4) for a real capaci-
tor as a viable reduced-order model for prognostics-algorithm
development; b) the identification of the ESR and C model
parameters as precursor of failure features; c) the develop-
ment of an empirical degradation model based on accelerated
life test data which accounts for shifts in capacitance as a
function of time; d) the implementation of a Bayesian based
health state tracking and remaining useful life prediction al-
gorithm based on the Kalman filtering framework. One major
contribution of this work is the prediction of remaining useful
life for capacitors as new measurements become available.

This capability increases the technology readiness level of
prognostics applied to electrolytic capacitors. The results pre-
sented here are based on accelerated life test data and on the
accelerated life timescale. Further research will focus on de-

velopment of functional mappings that will translate the ac-
celerated life timescale into real usage conditions time-scale,
where the degradation process dynamics will be slower, and
subject to several types of stresses. The performance of the
proposed exponential-based degradation model is satisfactory
for this study based on the quality of the model fit to the ex-
perimental data and the RUL prediction performance as com-
pared to ground truth. As part of future work we will also
focus on the exploration of additional models based on the
physics of the degradation process and larger sample size for
aged devices. Additional experiments are currently underway
to increase the number of test samples. This will greatly en-
hance the quality of the model, and guide the exploration of
additional degradation-models, where the loading conditions
and the environmental conditions are also accounted for to-
wards degradation dynamics.
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NOMENCLATURE

CI Ideal capacitance value for an ideal capacitor
CR Real capacitor value for a non-ideal capacitor

model
RE Equivalent series resistance of the capacitor
Cl(k) Capacitance percentage loss at time tk
Ti Validation test on capacitor i
Mi Nominal model for a component or system
Di Degradation model for a capacitor
RL Load resistance on electrical overstress system
VL Load voltage on electrical overstress system
Vo Electrical overstress voltage in aging system
ZI Ideal capacitor impedance
Z Capacitor impedance for non-ideal capacitor

model M1
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ment of an empirical degradation model based on accelerated
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gorithm based on the Kalman filtering framework. One major
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•  RUL prediction algorithm based on accelerated 
life test data and an empirical degradation 
model 
–  Identification of the lumped-parameter model for a 

real capacitor as a viable reduced-order model for 
prognostics-algorithm development 

–  Identification of ESR and C as precursor of failure 
feature parameters 

– Development of an empirical degradation model 
based on accelerated life test data which accounts 
for shifts in capacitance as a function of time 

–  Implementation of a Bayesian based health state 
tracking and RUL prediction algorithm based on the 
Kalman filtering framework  
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•  Proposed approach requires further 
development 
– Results presented over accelerated aging test time 

scale 
– The empirical degradation model can be improved.  
– Degradation model and prediction algorithm assume 

constant loading and environmental conditions 
– Explore more sophisticated Bayesian tracking 

algorithms if required to handle variable loading and 
operational conditions as well as degradation models 
with time varying parameters 

– Uncertainty representation in the forecasting section 
and model uncertainty assessment under the 
Bayesian tracking framework 
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Degradation on lumped parameter 
model 
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C and ESR are estimated from 
EIS measurements 
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