
Design and Implementation of a Lunar Communications Satellite and Server

for the 2012 SISO Smackdown

Dennis Bulgatz

Analytical Mechanics Associates

1500 Perimeter Parkway

Huntsville, AL 35806

(256) 830-4811, ext. 111

bulgatz@ama-inc.com

Daniel Heater

Daniel A. O’Neil

Marshall Space Flight Center

Huntsville, AL 35811

(256) 544-1302, (256) 544-5405

daniel.heater@nasa.gov

daniel.a.oneil@nasa.gov

Bryan Norris

Science Applications International Corporation

Building 5400, Room E101

Redstone Arsenal, AL 35898

Bryan.C.Norris@saic.com

Bradley C. Schricker

Dynetics, Inc.

1002 Explorer Blvd.

Huntsville, AL 35806

(256) 964-4979

brad.schricker@dynetics.com

Abstract: Last year, the Simulation Interoperability Standards Organization (SISO) inaugurated the now annual

High Level Architecture (HLA) Smackdown at the Spring Simulation Interoperability Workshop (SIW). A primary

objective of the Smackdown event is to provide college students with hands-on experience in the High Level

Architecture (HLA). The University of Alabama in Huntsville (UAHuntsville) fielded teams in 2011 and 2012. Both

the 2011 and 2012 smackdown scenarios were a lunar resupply mission. The 2012 UAHuntsville fielded four

federates: a communications network Federate called Lunar Communications and Navigation Satellite Service

(LCANServ) for sending and receiving messages, a Lunar Satellite Constellation (LCANSat) to put in place radios

needed by the communications network for Line-Of-Sight communication calculations, and 3D graphical displays of

the orbiting satellites and a 3D visualization of the lunar surface activities. This paper concentrates on the first two

federates by describing the functions, algorithms, the modular FOM, experiences, lessons learned and

recommendations for future Smackdown events.

1. Introduction

Responding to the needs of industry and the National

Aeronautics and Space Administration (NASA), the

Simulation Interoperability Standards Organization

(SISO) initiated an annual distributed simulation

event. The SISO Simulation Smackdown is an

international, cooperative experience where teams of

university students – with help from faculty advisors,

modeling and simulation (M&S) professionals within

industry, NASA, and other areas of government –

build and participate in a simulated lunar resupply

mission [1]. This event provides college students

with hands-on experience in the development of

distributed simulations using the High Level

Architecture (HLA).

mailto:bulgatz@ama-inc.com
mailto:daniel.heater@nasa.gov
mailto:daniel.a.oneil@nasa.gov
mailto:Bryan.C.Norris@saic.com
mailto:brad.schricker@dynetics.com

Participating universities in the 2012 Smackdown

simulation included the University of Alabama in

Huntsville (UAHuntsville), Massachusetts Institute of

Technology (MIT), Penn State University,

universities from Genoa, Pisa, and Rome, Italy, and

Technion University in Israel.

Technion contributed an Object Process Modeling

(OPM) application [2]. Penn State developed

simulations of a cargo landing vehicle and a cargo

transfer rover. The MIT team produced simulations

of a mobile resource utilization plant and a scouting

hopper that jumped from one place to another in

search of minerals for the mobile resource utilization

plant. The three universities from Italy formed two

teams, respectively responsible for: (1) a simulation

of an asteroid tracking system, and (2) a simulation

of a warehouse and inventory management system

for lunar surface exploration system parts and

consumables..

NASA’s Johnson Space Center (JSC) contributed an

environment simulation that provided reference

frames of the Sun, Earth, and Moon and a one-second

heartbeat for the distributed simulation. The orbiting

space-craft was another federate developed by JSC.

The Central Run-time Component (CRC) that

managed the distributed simulation, the Virtual

Private Network (VPN) for remote participation, and

the local area network for integrating participating

computers at the conference were operated by the

JSC team.

The UAHuntsville team contributed four federates:

(1) a radio communications server, (2) a satellite

federate with an orbital propagator and radio, (3) a

3D graphics display of a constellation of four

communications satellites, and (4) a 3D visualization

of the lunar resupply mission. This paper explains

the design of the first two federates.

The UAHuntsville team decided upon a four-satellite

constellation with an elliptical orbit that ensured a

significant amount of hang-time over Hadley Rille,

but not continuous coverage so that line-of-site

(LOS) and message relay interactions would be

relevant.

The communications model consisted of two basic

submodels – radios and routers. Radios simply

received and transmitted messages, while routers had

those capabilities plus the ability to serve as a hub

between two communications points that do not share

unobstructed line-of-sight. Initially, a highly-detailed

message format was considered in an attempt to

closely replicate realistic message traffic between

vehicles in a lunar resupply mission. However, to

support the more immediate need to serve as a proof-

of-concept, the team decided to simplify the message

format, expecting that a simpler model would

encourage greater use of the radio software by other

Smackdown participants. Thus, the message format

consisted of basic header for routing within the HLA

federation and a payload. The following section

provides a low-level description of the

communications satellite federate.

2. Communications Server Federate

Implementation

With the understanding that the SISO Smackdown

depends on the collaboration of student teams from

multiple universities, a primary goal of the radio

communications system design was to minimize the

engineering impact on other teams in an effort to

increase the likelihood that other teams would use the

radio communications service. After initial

considerations to implement radios as libraries that

could be provided to other teams for integration – and

realizing that this would generate the need for Java,

C++, and MATLAB versions – the UAHuntsville

team determined that implementing much of the radio

system as a service would reduce the implementation

burden on other teams. Still, the Java source code for

an example radio was made available to all teams.

Messages in the radio system were defined as HLA

interactions with transmit (TX) and receive (RX)

interactions being defined separately. A TX

interaction would be a message from a radio to the

communication service and an RX interaction would

pass a message from the communication service to

the receiving radio. This division allows for the

communication service to subscribe to only TX

interactions and publish only RX interactions while

the radios subscribe only to RX interactions and

publish only TX interactions. This division made the

logic for sending and receiving messages clean, as

there was no need to decode the interaction to

determine direction.

Storing the message destination in the HLA header

allowed radios to optionally use HLA Data

Distribution Management (DDM) capabilities to filter

message traffic on the destination of an RX

interaction so that a message recipient would only

receive messages that were destined for it. This

combination of direction-oriented interactions and

DDM meant that bandwidth use could be minimized

for the Run-Time Infrastructures (RTIs) that

supported DDM on the sender-side of the interaction,

a critical consideration in any distributed simulation

environment. In defining the radio Federation Object

Model (FOM), it was initially intended to encode the

position of the transmission source in the interaction.

Paul Grogan, a student at MIT and contributor to the

Smackdown, suggested a further improvement to

conserve bandwidth. As a message store/forward

capability within the communication service was

intended, it was determined that the communications

service would need to know the position/location of

entities to determine line-of-sight (LOS) –

information that was already being published. In

this context, LOS is considered a Boolean value

indicating whether a straight, unobstructed line

existed between two points in space (true) or not

(false). This concept is illustrated in Figure 1. Line of

sight algorithm[3]. Figure 2 depicts the architecture of

the communications server.

Figure 1. Line of sight algorithm

Figure 2. Simplified Class Diagram of LCANServ

The position of transmission from the radio object

attributes was omitted, and instead only an elevation

relative to the base position of the entity owning the

radio was included in the transmission. This

elevation was deemed necessary, as entities on the

lunar surface would be operating as though the

terrain was a flat plane; however, the communication

service modeled the lunar body as a sphere for the

purpose of the LOS calculations. Typically, surface

entities would report their position as being on the

lunar surface or even below the mean lunar radius,

based upon the diameter of the sphere used for LOS

calculations, as the scenario took place at Hadley

Rille, 1800 meters below the mean lunar radius.

Such a position would never be considered within

LOS to other entities since the LOS algorithm would

consider the radio to be inside the moon, as opposed

to somewhere on the surface. Instead of using the

reported position, the radios’ reported elevations

were added to the mean lunar radius so that radios

were correctly considered to be above the lunar

surface. This approach allowed the radios to have

reasonable range to the horizon for LOS.

The LOS algorithm needed to have a mechanism for

determining whether a line between the source and

the destination radios intersected the moon’s surface.

If a line between the two points intersected the

spherical model of the moon, it was required to

determine if the intersection occurred between the

two points. Consider this surface to surface LOS

situation illustrated in Figure 3.

Figure 3. Surface to surface LOS

First, the entity on the left is below the mean Lunar

radius (blue dashed arc) so the elevation parameter

supplied in the radio attributes is used to change its

effective position to a value above the radius of the

sphere. This new effective position is represented by

the grey box. Next, the straight line connecting the

entities is considered. It does not intersect the sphere,

therefore LOS is true. Note though, that if the

intersection had been between the two entities, then

LOS would be false. This algorithm does not

determine the actual intersection point(s).

Notice in Figure 3. Surface to surface LOS, that there is a

hill blocking LOS. This level of fidelity was not

accounted for in LCANServ, as no terrain database

was used for the Smackdown. The entities operated

as though they were on a flat plane, and LCANServ

projected that flat plane onto a perfect sphere.

The radio FOM used for the Smackdown event

(Smack_radio FOM) defines for format for HLA

federation messages. Figure 4. Radio modular FOM

depicts the modular FOM for the radio.

Figure 4. Radio modular FOM

Note that this message does not specify any protocol

such as the Consultative Committee for Space Data

Systems (CCSDS) or TCP/IP that would typically be

used by a space communications network. Instead, it

is left to the users of the system to negotiate message

headers, timestamps, Cyclic Redundancy Checks

(CRCs), and the like.

The communication network does support routing

radios, which can store a received message and

forward that message to the specified destination at a

later time. Messages can be marked as broadcast,

which indicates that the message will be received

only by radios currently in range and should not be

stored for later forwarding. Figure 5. Radio message

presents the message object model template. As

opposed to the general implementation in the real

world, message store/forwarding is not implemented

by passing messages between radios. The list of

messages in route is stored and handled by the

communication server. Thus, a satellite may

effectively be used to route a message, but the

message is never sent to that satellite federate. This

reduces the necessary distributed simulation

bandwidth and allows the store/forwarding logic to

be implemented without the prohibitive number of

interactions and housekeeping mechanisms that

would otherwise be required for such a system. To

make a determination as to whether a communication

interaction was successful, the following information

needed to be known:

 Transmitter position/location

 Transmitter power

 Transmission frequency

 Required receive signal strength

 Receiver frequency

Since atmospheric effects were unaccounted for, a

determination of whether two radios were in range of

one another was performed using the free space path

loss equation [4].

A proposed enhancement of the communication

service is to add navigation services. Research was

conducted regarding proposed systems for lunar

navigation. The concept that seemed most promising

was a technique called liaison navigation. The

concept is explored in a Ph.D. thesis by Keric Hill of

the University of Colorado entitled, “Autonomous

Navigation in Liberation Point Orbits,” published in

2007. A number of other published papers by the

same author and his advisers are also available [5].

Figure 5. Radio message object model template

Liaison navigation takes advantage of the uniqueness

of the gravitational forces exerted on a satellite in a

halo orbit from the three-body, Earth-Moon-Satellite

system. The authors’ research predicts that the

absolute position and velocity of two spacecraft can

simultaneously be estimated autonomously with no

Earth-based tracking using crosslink range

measurements between the spacecraft. In simulations

accounting for effects of planetary ephemeris, solar

and lunar gravity, and solar radiation pressure, the

author indicates that, “position errors for lunar

spacecraft were on the order of 10m RSS and about

100m RSS for halo orbiters in various locations.”

3. Lunar Communications Satellite

(LCANSat) Federate Implementation

The LCANSat Federate simulates a constellation of

one or more satellites orbiting the Moon. LCANSat

is a Java application, developed with Java version 6

(1.6 JRE). The architecture is object-oriented and

designed to organize the code into re-usable and

easily understandable blocks.

The Driver class contains the main method. From

the terminal, the user is able to enter the IP address of

the Federation CRC. The Driver object calls each

Satellite object's orbital propagator method to update

the position. With each iteration, the Driver polls the

UserIO object to determine whether the user has

entered a dot (".") at the command line interface. The

main method in the Driver class orchestrates the

following:

 Accepts input from the terminal for the IP

address of the CRC

 Creates a federate object to persist the HLA

federate details

o The federate creates a Connection

Object which persists information

about the federation’s connection to

the federation

o The federate handles time advance

grants and the HLA call backs

 Instantiates a constellation of satellites and a

radio for each satellite instance using

constructors in the radio and satellite classes

 Creates a User IO thread to display all radio

messages and allow creation of radio

messages from the terminal

 Sets a Boolean for time management

variable, isHLAContrained

 Moves the satellites in orbit by incrementing

the true anomaly a fixed amount each time

step

Figure 6. The LCANSat Software Architecture. The

UserIO class implements an executable thread, not

tied to simulation time. Since radio messages are

interactions, which are not time dependent, they can

be sent and received at any time. The UserIO class

initializes the HLA attribute set for a radio message

and sends a request to the RTIAmbassador to both

publish and subscribe to radio messages. Finally, the

UserIO class contains the necessary encoders and

decoders for sending and receiving messages.

The Federation class contains a constructor to build a

federate. Attributes passed to the constructor include

the RTI host IP address, simulation time interval (one

second) and the HLA_TIME_CONSTRAINED

Boolean. The federate creates a connection to the

CRC as part of the constructor.

In addition, the federate stores the RTI ambassador,

encoder factory, and other HLA related objects. The

Federate also contains all the HLA callbacks used,

such as RequestTimeAdvance and

registerObjectInstance.

Figure 6. The LCANSat Software Architecture

The Connection object, instantiated by TheFederation

object, specifies the IP address and port of the CRC

and creates or joins the federation. TheConnection

also defines the FOM modules used by the Federate.

FOMS used include:

 SISO_Smackdown_1011_core.xml

 SISO_Smackdown_1011_environ.xml

 SISO_Smackdown_1011_entity.xml

 Smack_radio.xml

Satellites and radios were both modeled in the HLA

FOM as a PhysicalEntity. To reuse code, an Entity

class was created to manage all the common

properties and attributes of a radio and satellite.

Satellite objects are instantiated by the Driver class,

using an instance of theFederate (instantiated in the

Driver) and a unique name. The satellite constructor

creates an default Orbit for each Satellite, with the

starting angle (true anomaly) mapped from the name

of the satellite (Satellite.getStartTheta), staggering

the four primary satellites 90 degrees apart.

The default Orbit object, which determines the path

of the satellite, was adjusted by experimentation with

the obit settings resulted in an elliptical orbit that

provides a lot of hang time over Hadley Rille to

maximize the time each satellite is in-view of the

surface assets. The orbital propagator uses a similar

line-of-sight algorithm as the communications server.

When a satellite is in view, the Orbiter object reports

the status and the satellite object adds the status to the

attribute set for update.

Figure 7 Orbital Trajectoryillustrates the orbital

path (magenta) and a plane to define the LOS

boundary between the lunar base (blue dot) and

orbital path. This is a similar approach to what is

used in LCANServ. The LOS boundary plane

(yellow) is the tangential plane through which the

lunar base location passes and whose normal is

collinear to a line from the center of moon to the base

(radius vector).

Orbits were defined using semi-major axis, ascending

node, argument of perigee, orbital inclination,

eccentricity, initial time of perigee passage, and true

anomaly. Propagation of the orbits was done by

incrementing the true anomaly for each orbit by a

fixed amount each time step [6].

Given the Cartesian coordinates of the lunar base are

BASEX, BASEY, and BASEZ, and the radius of the

moon is radiusm, the distance from the plane to an

point on the orbital path (x,y,z) is defined as:

distance = (x * BASEX + y * BASEY + z * BASEZ – radiusm

2) / radiusm

Figure 7 Orbital Trajectory

When distance is greater than zero, the point on the

orbital path is in LOS of the moon base. LCANSat

broadcasts the LOS status via the status attribute on

the PhysicalEntity Class.

4. Collaborative Creation of Virtual

Environments

January 2012 saw the first offering of the

"Collaborative Creation of Virtual Environments"

course at UAHuntsville. Mikel D. Petty, Ph.D.,

invited NASA personnel and RTI vendors to provide

to the class a variety of perspectives of distributed

simulation and the HLA standard [8]. Topics of the

invited presentations included:

 Satellite systems design

 Orbital trajectory analysis

 Simulation scenario development

 A NASA application of HLA

 Virtual Private Networks (VPN)

 ForwardSim HLA Tool Kit

 SISO Smackdown objectives

 VT MAK RTI

 Pitch RTI

Presentations were given via WebEx and

teleconference. Other university teams were invited

to participate in the discussions. The guest lectures

provided an introduction in spacecraft system design

and distributed simulation infrastructure.

5. Development Process

A few development decisions faced by the

UAHuntsville team included programming language

selection, development tool selection, RTI versions,

and implementation of time management within the

federates. After reviewing the available code

examples and team members’ experience, the team

chose Java for developing the LCANSat and

LCANServ federates.

The EZ Button Federate, developed by Dr. Edwin

"Zack" Crues, served as a template for the time

management callbacks and an example for reference

frames. The NASA team at JSC deployed an

Environment federate, which published positions and

orientations of reference frames for the sun, earth,

and moon. Additionally, the Environment federate

published the heartbeat for the SISO Smackdown for

coordinating the federation.

The team used the Netbeans and Eclipse Integrated

Development Environments (IDE) for code

development and a Google Code repository for

configuration management. A Google site was used

to manage files and links.

Both VT MÄK and Pitch offer free community

editions of their RTIs, which enabled development of

two federates. Due to new releases by both

companies, the free versions were incompatible with

the CRCs on the Smackdown simulation server. This

incompatibility required all of the federate developers

to obtain the licensed version of the Local RTI

Component (LRC).

6. Lessons Learned

Perhaps, the most crucial lesson learned pertains to

the end goal – that is, future teams should begin with

the end in mind by planning the simulation scenario.

The actual SISO Smackdown simulation event lasted

for roughly ninety minutes. During the event, an

emcee introduced the team leaders who described the

federates developed by their teams. Following the

team introductions was an explanation of the mission

scenario. The last part of the event was a

presentation of awards to the teams. Meanwhile, the

distributed simulation federation ran on a local area

network and a VPN. Significant simulation events

such as the touch down or lift-off the cargo landing

vehicle were announced so the audience could focus

their attention on the event. Ultimately, each team

ought to plan a scenario so that an important

simulation event occurs within those ninety minutes,

preferably staggered with other teams’ simulation

events.

An example of a significant event for the

communications system could be the transmission of

a message from a scouting hopper to a mobile

resource plant. Another example could be the

transmission of a near-miss warning from an asteroid

tracking system to the orbiting space-craft and cargo

lander, which would involve federates from all of the

SISO Smackdown simulation participants.

Designing a system and learning the HLA standard

simultaneously can be difficult, especially if team

members are enrolled in multiple classes or have full-

time jobs. If a SISO Smackdown Simulation team

can work with an engineering design team it will

allow the simulation team to focus on implementation

of the federates. Learning the HLA standard prior to

the start of the calendar year may enable teams to be

productive during the month of January. Suggestions

for learning the standard include stepping through

example modular FOMs and federate code while

reading the IEEE 1516 standard. Reading the

standard in one window while stepping through an

XML or source-code file in another window can help

to illustrate the explanations in the standard.

Suggestions for a development process include

requesting RTI licenses from both vendors for every

team member, conducting a team walk-through of

example code, identifying a systems integrator, and

selecting development and configuration

management tools early. Obtaining licenses for all

team members will ensure consistency in computer

configurations. Writing detailed procedures,

capturing screen shots for configuring files, and

posting the documentation on a team web-site or on

the Smackdown Wiki can also assist in

communication. Conducting walk-throughs of

example code can also help participating team

members to learn the standard together.

Establishing a communications plan between team

members early in the process can facilitate intra-team

communication. If team members are willing to post

their phone numbers on an internal team website,

building a contact list so people can communicate by

phone can also help. Skype is an excellent

application for programming in pairs. The free

service from Skype provides screen-sharing, so one

team member can watch while another team member

writes code. However, it was discovered that the

Sonic Wall Net Extender prohibits access to the rest

of the Internet, so to test a federate using Skype, one

of the Skype participants needs to run a CRC.

Given the considerable challenges encountered

during integration and test activities, it may be

valuable to consider meeting two times per week

during the integration and test phases. Teams can be

highly productive with two work sessions per week at

two or three hours per session. Coordinating times for

a large team can be difficult so consider working in

pairs or groups of three.

Development activities can be improved by

requesting the licenses for all of the team members.

If an LRC is used, support tools are unavailable. A

detail that required attention each time someone

logged into the VPN was the assigned Internet

Protocol (IP) address assigned by the Sonic Wall Net

Extender. Without the support tools, the developers

had to identify the assigned IP address in a

configuration file after logging into the VPN. A

misconfiguration of a VPN data file caused

subsequent federates, attempting to join the

federation, to fail. With the support tool provided

with the licensed system, the developer can select an

IP address from a drop-down list on a graphical user

interface.

Multiple federates can share a common code base.

When designing multiple federates, it is sensible to

look for common classes and manage the

configuration of the code-base. Spending time

upfront on a good object-oriented design can save

development time and the effort associated with

configuration management of multiple code-bases.

7. Conclusions and Recommendations

The SISO Smackdown Simulation event provides an

opportunity to list experience in development of an

international distributed simulation on a résumé. The

previous section described ways to get the most out

of the experience. Recommendations for potential

products that could improve future Smackdown

development activities include an open-source

Environment federate, a reusable code library with

well documented examples, a developer’s handbook,

and a catalog of concepts.

The current models that provide reference time and

reference frame updates are implemented by JSC and

are not currently available for public release. This

creates a dependency on the JSC servers and VPN to

conduct integration testing. The free open source

Java Astrodynamics Toolkit could provide the source

code for an open Environment federate [9]. An

independent study project could produce a federate

that generates a one hertz heart-beat and publishes

reference frames for the sun, earth, and moon.

Participating teams could use the open-source

environment federate to establish their own servers

for development and testing.

A reusable code library with well-documented

examples, especially time-constraint examples, can

help new teams climb the learning curve quickly.

Posting archives of Java, C++, and MATLAB

examples on the SISO Smackdown website can be

part of a starter kit. Java Doc can generate web-

based documentation from specially annotated

comments in the code.

Another desirable item in a starter kit is a developer’s

hand-book. While the IEEE-1516 standard is useful

as a reference after someone understands the

standard, it is not a fast read or a novice-friendly

document. A developer’s handbook could help

novices by presenting flow-charts, example code, and

detailed explanations.

A catalog of concepts can help new teams get ideas

for needed federates. Previously developed federates

could be described in a web-based concept catalog

with an artist’s concept image, a brief paragraph of

the federate’s capabilities, and a link to a code

repository. Other system concepts that have not been

implemented could include an image, a description,

and notional scenarios that illustrate how the federate

could interact with other federates in the simulation.

References

[1] Elfrey, Priscilla, “About”, SISO Smackdown,

2011, http://sisosmackdown.com/about/, viewed

on May 5, 2012.

[2] Dori, Dov, Enterprise Systems Modeling

Laboratory, NASA Smackdown Project.

Technion U, n.d.,

 http://esml.iem.technion.ac.il/?page_id=481,

viewed on May 5, 2012.

[3] Bourke, Paul, "Intersection of a Line Anda Sphere

(or Circle)," Nov. 1992,

 http://paulbourke.net/geometry/sphereline/,

viewed on May 5, 2012.

[4] Kou, Yajun. "Derivation the dB version of the

Path Loss Equation for Free Space." Electrical &

Computer Engineering, University of Victoria,

September 19, 2000.

 http://www.ece.uvic.ca/~peterd/35001/ass1a/

node1.html, viewed on May 24, 2012.

[5] Hill, Keric, "Autonomous Navigation in Libration

Point Orbits." Diss. University of Colorado,

2007,http://ccar.colorado.edu/geryon/papers

/Misc/Hill_thesis.pdf, viewed on April 19, 2012.

[6] "Johannes Kepler: The Laws of Planetary

Motion", Astronomy 161 The Solar System,

Dept. Physics & Astronomy University of

Tennessee, August 10, 2000.

 http://csep10.phys.utk.edu/astr161/lect/history

/kepler.html, viewed on May 24, 2012.

 [7] Logsdon, Tom. Orbital Mechanics: Theory and

Applications, Wiley-Interscience, October 24,

1997.

[8] Petty, Mikel D., Collaborative Creation of Virtual

Environments, University of Alabama in

Huntsville, Spring 2012,

 http://cmsa.uah.edu/petty/mod796, viewed on

May 5, 2012.

 [9] Berthold,Tobias. "Welcome to JAT",

jat.sourceforge.net, n.d.,

 http://jat.sourceforge.net/, viewed on May 5,

2012.

http://sisosmackdown.com/about/
http://esml.iem.technion.ac.il/?page_id=481
http://paulbourke.net/geometry/sphereline/
http://ccar.colorado.edu/geryon/papers/Misc/Hill_thesis.pdf
http://ccar.colorado.edu/geryon/papers/Misc/Hill_thesis.pdf
http://cmsa.uah.edu/petty/mod796

Author Biographies

DENNIS BULGATZ is a Software Architect and IT

Manager at Analytical Mechanics Associates. Since

2002, Mr. Bulgatz has been supported various NASA

IT projects, including collaborative environments,

web-based applications and data integration at across

the NASA enterprise. Prior to 2002, Mr. Bulgatz

worked for Automotive and Industrial Automation

firms doing design and analysis of electromagnetic

variable valve timing systems, loud speakers, voice

coil motors, solenoids, fuel injectors, and extendable

conveyors. Mr. Bulgatz holds a BSME from UC

Berkeley (1988) and an MBA from William and

Mary (2000), and is currently taking classes for fun at

University of Alabama in Huntsville.

DANIEL L. HEATER is a software engineer

developing simulations and flight software for NASA

Marshall Space Flight Center. Mr. Heater received a

Bachelor of Science Degree from Athens State

University in 1998 and is currently pursuing a

Masters degree in Modeling and Simulation at the

University of Alabama in Huntsville.

BRYAN NORRIS is a Simulation Software

Engineer with SAIC, currently technical lead for

virtual avionics and Crew Station Working Group

support for the Cargo Helicopters Project Office of

the United States Army. He has eight years of

experience in Software Engineering and Simulation,

focusing on visual prototyping, presentation, and

simulation. Mr. Norris received his Bachelor of

Science degree in Computer Science from the

University of Alabama in Huntsville in August of

2003. Mr. Norris received a Master of Science in

Software Engineering and a Post-bachelor Certificate

in Modeling and Simulation from the University of

Alabama in Huntsville in May of 2009. He is

currently pursuing a Ph.D. in Modeling and

Simulation at the University of Alabama in

Huntsville.

DANIEL O'NEIL is a Technical Manager working

in the Center Strategic Development and Integration

office within the Office of Strategic Analysis and

Communication at NASA Marshall Space Flight

Center. Mr. O'Neil has over 25 years of Modeling

and Simulation experience, supporting Military and

Space programs; his contributions include: a real-

time vertical situation display simulation for a flight

trainer, technical direction for development of a

robotic assembly team demonstration, integration of

an advanced technology lifecycle and analysis

system. Mr. O'Neil received a Bachelor of Science

degree in Electrical and Computer Engineering from

the University of Alabama in Huntsville (UAH) in

1985 and a Master’s of Science degree in

Engineering Management from UAH in 1998.

Currently, he is pursuing a Ph.D. in Modeling and

Simulation at the University of Alabama in

Huntsville.

BRADLEY SCHRICKER is a Senior Engineer with

Dynetics, Inc., currently serving as Project Manager

and Technical Lead on multiple Unmanned Aircraft

System (UAS) simulation projects in support of the

United States Army Aviation and Missile Research,

Development and Engineering Center (AMRDEC).

He has fourteen years of experience in Modeling and

Simulation, focusing his efforts in the areas of

distributed simulation, discrete event simulation,

virtual environments, and behavior representation.

Mr. Schricker received his Bachelor of Science

degree in Computer Science with a minor in

Mathematics from Florida State University in 1998.

Mr. Schricker earned a Master of Science degree in

Modeling and Simulation from the University of

Central Florida in May of 2007. He is currently

working on a Ph.D., in Modeling and Simulation at

the University of Alabama in Huntsville and expects

to graduate in 2013.

