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Abstract:  Last year, the Simulation Interoperability Standards Organization (SISO) inaugurated the now annual 

High Level Architecture (HLA) Smackdown at the Spring Simulation Interoperability Workshop (SIW).  A primary 

objective of the Smackdown event is to provide college students with hands-on experience in the High Level 

Architecture (HLA). The University of Alabama in Huntsville (UAHuntsville) fielded teams in 2011 and 2012.  Both 

the 2011 and 2012 smackdown scenarios were a lunar resupply mission.   The 2012 UAHuntsville fielded four 

federates: a communications network Federate called Lunar Communications and Navigation Satellite Service 

(LCANServ) for sending and receiving messages, a Lunar Satellite Constellation (LCANSat) to put in place radios 

needed by the communications network for Line-Of-Sight communication calculations, and 3D graphical displays of 

the orbiting satellites and a 3D visualization of the lunar surface activities. This paper concentrates on the first two 

federates by describing the functions, algorithms, the modular FOM, experiences, lessons learned and 

recommendations for future Smackdown events.  

 

1. Introduction 
 

Responding to the needs of industry and the National 

Aeronautics and Space Administration (NASA), the 

Simulation Interoperability Standards Organization 

(SISO) initiated an annual distributed simulation 

event.  The SISO Simulation Smackdown is an 

international, cooperative experience where teams of 

university students – with help from faculty advisors, 

modeling and simulation (M&S) professionals within 

industry, NASA, and other areas of government – 

build and participate in a simulated lunar resupply 

mission [1].  This event provides college students 

with hands-on experience in the development of 

distributed simulations using the High Level 

Architecture (HLA).  
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Participating universities in the 2012 Smackdown 

simulation included the University of Alabama in 

Huntsville (UAHuntsville), Massachusetts Institute of 

Technology (MIT), Penn State University, 

universities from Genoa, Pisa, and Rome, Italy, and 

Technion University in Israel.     

 

Technion contributed an Object Process Modeling 

(OPM) application [2].  Penn State developed 

simulations of a cargo landing vehicle and a cargo 

transfer rover.  The MIT team produced simulations 

of a mobile resource utilization plant and a scouting 

hopper that jumped from one place to another in 

search of minerals for the mobile resource utilization 

plant.  The three universities from Italy formed two 

teams, respectively responsible for: (1) a simulation 

of an asteroid tracking system, and (2) a simulation 

of a warehouse and inventory management system  

for lunar surface exploration system parts and 

consumables..  

 

NASA’s Johnson Space Center (JSC) contributed an 

environment simulation that provided reference 

frames of the Sun, Earth, and Moon and a one-second 

heartbeat for the distributed simulation. The orbiting 

space-craft was another federate developed by JSC. 

The Central Run-time Component (CRC) that 

managed the distributed simulation, the Virtual 

Private Network (VPN) for remote participation, and 

the local area network for integrating participating 

computers at the conference were operated by the 

JSC team. 

 

The UAHuntsville team contributed four federates: 

(1) a radio communications server, (2) a satellite 

federate with an orbital propagator and radio, (3) a 

3D graphics display of a constellation of four 

communications satellites, and (4) a 3D visualization 

of the lunar resupply mission.  This paper explains 

the design of the first two federates.  

 

The UAHuntsville team decided upon a four-satellite 

constellation with an elliptical orbit that ensured a 

significant amount of hang-time over Hadley Rille, 

but not continuous coverage so that line-of-site 

(LOS) and message relay interactions would be 

relevant. 

 

The communications model consisted of two basic 

submodels – radios and routers.  Radios simply 

received and transmitted messages, while routers had 

those capabilities plus the ability to serve as a hub 

between two communications points that do not share 

unobstructed line-of-sight.  Initially, a highly-detailed 

message format was considered in an attempt to 

closely replicate realistic message traffic between 

vehicles in a lunar resupply mission.  However, to 

support the more immediate need to serve as a proof-

of-concept, the team decided to simplify the message 

format, expecting that a simpler model would 

encourage greater use of the radio software by other 

Smackdown participants.  Thus, the message format 

consisted of basic header for routing within the HLA 

federation and a payload.  The following section 

provides a low-level description of the 

communications satellite federate. 

 

2. Communications Server Federate 

Implementation 
 

With the understanding that the SISO Smackdown 

depends on the collaboration of student teams from 

multiple universities, a primary goal of the radio 

communications system design was to minimize the 

engineering impact on other teams in an effort to 

increase the likelihood that other teams would use the 

radio communications service.  After initial 

considerations to implement radios as libraries that 

could be provided to other teams for integration – and 

realizing that this would generate the need for Java, 

C++, and MATLAB versions – the UAHuntsville 

team determined that implementing much of the radio 

system as a service would reduce the implementation 

burden on other teams.  Still, the Java source code for 

an example radio was made available to all teams. 

 

Messages in the radio system were defined as HLA 

interactions with transmit (TX) and receive (RX) 

interactions being defined separately.  A TX 

interaction would be a message from a radio to the 

communication service and an RX interaction would 

pass a message from the communication service to 

the receiving radio.  This division allows for the 

communication service to subscribe to only TX 

interactions and publish only RX interactions while 

the radios subscribe only to RX interactions and 

publish only TX interactions.  This division made the 

logic for sending and receiving messages clean, as 

there was no need to decode the interaction to 

determine direction. 

 

Storing the message destination in the HLA header 

allowed radios to optionally use HLA Data 

Distribution Management (DDM) capabilities to filter 

message traffic on the destination of an RX 

interaction so that a message recipient would only 

receive messages that were destined for it.  This 

combination of direction-oriented interactions and 

DDM meant that bandwidth use could be minimized 

for the Run-Time Infrastructures (RTIs) that 

supported DDM on the sender-side of the interaction, 



a critical consideration in any distributed simulation 

environment. In defining the radio Federation Object 

Model (FOM), it was initially intended to encode the 

position of the transmission source in the interaction. 

Paul Grogan, a student at MIT and contributor to the 

Smackdown, suggested a further improvement to 

conserve bandwidth.  As a message store/forward 

capability within the communication service was 

intended, it was determined that the communications 

service would need to know the position/location of 

entities to determine line-of-sight (LOS) –

information that was already being published.   In 

this context, LOS is considered a Boolean value 

indicating whether a straight, unobstructed line 

existed between two points in space (true) or not 

(false).  This concept is illustrated in Figure 1. Line of 

sight algorithm[3]. Figure 2 depicts the architecture of 

the communications server. 

 
Figure 1. Line of sight algorithm 

 

 
Figure 2. Simplified Class Diagram of LCANServ 

 

The position of transmission from the radio object 

attributes was omitted, and instead only an elevation 

relative to the base position of the entity owning the 

radio was included in the transmission.  This 

elevation was deemed necessary, as entities on the 

lunar surface would be operating as though the 

terrain was a flat plane; however, the communication 

service modeled the lunar body as a sphere for the 

purpose of the LOS calculations.  Typically, surface 

entities would report their position as being on the 

lunar surface or even below the mean lunar radius, 

based upon the diameter of the sphere used for LOS 

calculations, as the scenario took place at Hadley 

Rille, 1800 meters below the mean lunar radius.  

Such a position would never be considered within 

LOS to other entities since the LOS algorithm would 

consider the radio to be inside the moon, as opposed 

to somewhere on the surface.  Instead of using the 

reported position, the radios’ reported elevations 

were added to the mean lunar radius so that radios 

were correctly considered to be above the lunar 

surface. This approach allowed the radios to have 

reasonable range to the horizon for LOS. 

 



The LOS algorithm needed to have a mechanism for 

determining whether a line between the source and 

the destination radios intersected the moon’s surface. 

If a line between the two points intersected the 

spherical model of the moon, it was required to 

determine if the intersection occurred between the 

two points. Consider this surface to surface LOS 

situation illustrated in Figure 3. 

 
Figure 3. Surface to surface LOS 

 

First, the entity on the left is below the mean Lunar 

radius (blue dashed arc) so the elevation parameter 

supplied in the radio attributes is used to change its 

effective position to a value above the radius of the 

sphere.  This new effective position is represented by 

the grey box.  Next, the straight line connecting the 

entities is considered.  It does not intersect the sphere, 

therefore LOS is true.  Note though, that if the 

intersection had been between the two entities, then 

LOS would be false. This algorithm does not 

determine the actual intersection point(s). 

 

Notice in Figure 3. Surface to surface LOS, that there is a 

hill blocking LOS. This level of fidelity was not 

accounted for in LCANServ, as no terrain database 

was used for the Smackdown.  The entities operated 

as though they were on a flat plane, and LCANServ 

projected that flat plane onto a perfect sphere.  

 

The radio FOM used for the Smackdown event 

(Smack_radio FOM) defines for format for HLA 

federation messages.  Figure 4. Radio modular FOM 

depicts the modular FOM for the radio. 

 

 
Figure 4. Radio modular FOM 

 

Note that this message does not specify any protocol 

such as the Consultative Committee for Space Data 

Systems (CCSDS) or TCP/IP that would typically be 

used by a space communications network.  Instead, it 

is left to the users of the system to negotiate message 

headers, timestamps, Cyclic Redundancy Checks 

(CRCs), and the like.  

 

The communication network does support routing 

radios, which can store a received message and 

forward that message to the specified destination at a 

later time.  Messages can be marked as broadcast, 

which indicates that the message will be received 

only by radios currently in range and should not be 

stored for later forwarding.  Figure 5. Radio message  

presents the message object model template.  As 

opposed to the general implementation in the real 

world, message store/forwarding is not implemented 

by passing messages between radios.  The list of 

messages in route is stored and handled by the 

communication server.  Thus, a satellite may 

effectively be used to route a message, but the 

message is never sent to that satellite federate. This 

reduces the necessary distributed simulation 

bandwidth and allows the store/forwarding logic to 

be implemented without the prohibitive number of 

interactions and housekeeping mechanisms that 

would otherwise be required for such a system.  To 

make a determination as to whether a communication 

interaction was successful, the following information 

needed to be known: 

 Transmitter position/location 

 Transmitter power 

 Transmission frequency 

 Required receive signal strength 

 Receiver frequency 

Since atmospheric effects were unaccounted for, a 

determination of whether two radios were in range of 

one another was performed using the free space path 

loss equation [4]. 

 

A proposed enhancement of the communication 

service is to add navigation services.  Research was 

conducted regarding proposed systems for lunar 

navigation.  The concept that seemed most promising 

was a technique called liaison navigation. The 

concept is explored in a Ph.D. thesis by Keric Hill of 

the University of Colorado entitled, “Autonomous 

Navigation in Liberation Point Orbits,” published in 

2007.  A number of other published papers by the 

same author and his advisers are also available [5].  



 

 
Figure 5. Radio message object model template 

 

Liaison navigation takes advantage of the uniqueness 

of the gravitational forces exerted on a satellite in a 

halo orbit from the three-body, Earth-Moon-Satellite 

system.  The authors’ research predicts that the 

absolute position and velocity of two spacecraft can 

simultaneously be estimated autonomously with no 

Earth-based tracking using crosslink range 

measurements between the spacecraft.  In simulations 

accounting for effects of planetary ephemeris, solar 

and lunar gravity, and solar radiation pressure, the 

author indicates that, “position errors for lunar 

spacecraft were on the order of 10m RSS and about 

100m RSS for halo orbiters in various locations.” 

 

 

3. Lunar Communications Satellite 

(LCANSat) Federate Implementation 

 
The LCANSat Federate simulates a constellation of 

one or more satellites orbiting the Moon.  LCANSat 

is a Java application, developed with Java version 6 

(1.6 JRE).  The architecture is object-oriented and 

designed to organize the code into re-usable and 

easily understandable blocks. 

 

The Driver class contains the main method.  From 

the terminal, the user is able to enter the IP address of 

the Federation CRC.  The Driver object calls each 

Satellite object's orbital propagator method to update 

the position.  With each iteration, the Driver polls the 

UserIO object to determine whether the user has 

entered a dot (".") at the command line interface.  The 

main method in the Driver class orchestrates the 

following: 

 

 Accepts input from the terminal for the IP 

address of the CRC 

 Creates a federate object to persist the HLA 

federate details 

o The federate creates a Connection 

Object which persists information 

about the federation’s connection to 

the federation 

o The federate handles time advance 

grants and the HLA call backs  

 Instantiates a constellation of satellites and a 

radio for each satellite instance using 

constructors in the radio and satellite classes 

 Creates a User IO thread to display all radio 

messages and allow creation of radio 

messages from the terminal 

 Sets a Boolean for time management 

variable, isHLAContrained 

 Moves the satellites in orbit by incrementing 

the true anomaly a fixed amount each time 

step 

 

Figure 6.  The LCANSat Software Architecture.  The 

UserIO class implements an executable thread, not 

tied to simulation time.  Since radio messages are 

interactions, which are not time dependent, they can 

be sent and received at any time.  The UserIO class 

initializes the HLA attribute set for a radio message 

and sends a request to the RTIAmbassador to both 

publish and subscribe to radio messages.  Finally, the 

UserIO class contains the necessary encoders and 

decoders for sending and receiving messages. 

 

The Federation class contains a constructor to build a 

federate.  Attributes passed to the constructor include 

the RTI host IP address, simulation time interval (one 

second) and the HLA_TIME_CONSTRAINED 

Boolean. The federate creates a connection to the 

CRC as part of the constructor.   

 

In addition, the federate stores the RTI ambassador, 

encoder factory, and other HLA related objects.  The 

Federate also contains all the HLA callbacks used, 

such as RequestTimeAdvance and 

registerObjectInstance.



 
Figure 6.  The LCANSat Software Architecture 

 

 

The Connection object, instantiated by TheFederation 

object, specifies the IP address and port of the CRC 

and creates or joins the federation.  TheConnection 

also defines the FOM modules used by the Federate.  

FOMS used include: 

 

 SISO_Smackdown_1011_core.xml 

 SISO_Smackdown_1011_environ.xml 

 SISO_Smackdown_1011_entity.xml 

 Smack_radio.xml 

 

Satellites and radios were both modeled in the HLA 

FOM as a PhysicalEntity.  To reuse code, an Entity 

class was created to manage all the common 

properties and attributes of a radio and satellite. 

 

Satellite objects are instantiated by the Driver class, 

using an instance of theFederate (instantiated in the 

Driver) and a unique name.  The satellite constructor 

creates an default Orbit for each Satellite, with the 

starting angle (true anomaly) mapped from the name 

of the satellite (Satellite.getStartTheta), staggering 

the four primary satellites 90 degrees apart.     

 

The default Orbit object, which determines the path 

of the satellite, was adjusted by experimentation with 

the obit settings resulted in an elliptical orbit that 

provides a lot of hang time over Hadley Rille to 

maximize the time each satellite is in-view of the 

surface assets. The orbital propagator uses a similar 

line-of-sight algorithm as the communications server. 

When a satellite is in view, the Orbiter object reports 

the status and the satellite object adds the status to the 

attribute set for update. 

 

Figure 7 Orbital Trajectoryillustrates the orbital 

path (magenta) and a plane to define the LOS 

boundary between the lunar base (blue dot) and 

orbital path.  This is a similar approach to what is 



used in LCANServ.  The LOS boundary plane 

(yellow) is the tangential plane through which the 

lunar base location passes and whose normal is 

collinear to a line from the center of moon to the base 

(radius vector). 

 

Orbits were defined using semi-major axis, ascending 

node, argument of perigee, orbital inclination, 

eccentricity, initial time of perigee passage, and true 

anomaly.  Propagation of the orbits was done by 

incrementing the true anomaly for each orbit by a 

fixed amount each time step [6].   

 

Given the Cartesian coordinates of the lunar base are 

BASEX, BASEY, and BASEZ, and the radius of the 

moon is radiusm, the distance from the plane to an 

point on the orbital path (x,y,z) is defined as: 

 
distance = (x * BASEX + y * BASEY + z * BASEZ – radiusm

2) / radiusm 

 

 

 
Figure 7 Orbital Trajectory 

 

When distance is greater than zero, the point on the 

orbital path is in LOS of the moon base.  LCANSat 

broadcasts the LOS status via the status attribute on 

the PhysicalEntity Class.  

 

 

4. Collaborative Creation of Virtual 

Environments 

 
January 2012 saw the first offering of the 

"Collaborative Creation of Virtual Environments" 

course at UAHuntsville.  Mikel D. Petty, Ph.D., 

invited NASA personnel and RTI vendors to provide 

to the class a variety of perspectives of distributed 

simulation and the HLA standard [8].  Topics of the 

invited presentations included: 

 

 Satellite systems design 

 Orbital trajectory analysis 

 Simulation scenario development 

 A NASA application of HLA 

 Virtual Private Networks (VPN) 

 ForwardSim HLA Tool Kit 

 SISO Smackdown objectives 

 VT MAK RTI 

 Pitch RTI 

 

 

Presentations were given via WebEx and 

teleconference.  Other university teams were invited 

to participate in the discussions. The guest lectures 

provided an introduction in spacecraft system design 

and distributed simulation infrastructure. 

 

 

5. Development Process 

 
A few development decisions faced by the 

UAHuntsville team included programming language 

selection, development tool selection, RTI versions, 

and implementation of time management within the 

federates.  After reviewing the available code 

examples and team members’ experience, the team 

chose Java for developing the LCANSat and 

LCANServ federates. 

 

The EZ Button Federate, developed by Dr. Edwin 

"Zack" Crues, served as a template for the time 

management callbacks and an example for reference 

frames.  The NASA team at JSC deployed an 

Environment federate, which published positions and 

orientations of reference frames for the sun, earth, 

and moon. Additionally, the Environment federate 

published the heartbeat for the SISO Smackdown for 

coordinating the federation. 

 

The team used the Netbeans and Eclipse Integrated 

Development Environments (IDE) for code 

development and a Google Code repository for 

configuration management. A Google site was used 

to manage files and links. 

 

Both VT MÄK and Pitch offer free community 

editions of their RTIs, which enabled development of 

two federates. Due to new releases by both 

companies, the free versions were incompatible with 

the CRCs on the Smackdown simulation server. This 

incompatibility required all of the federate developers 

to obtain the licensed version of the Local RTI 

Component (LRC).  

 



 

6. Lessons Learned 
 

Perhaps, the most crucial lesson learned pertains to 

the end goal – that is, future teams should begin with 

the end in mind by planning the simulation scenario.  

The actual SISO Smackdown simulation event lasted 

for roughly ninety minutes.  During the event, an 

emcee introduced the team leaders who described the 

federates developed by their teams.  Following the 

team introductions was an explanation of the mission 

scenario.  The last part of the event was a 

presentation of awards to the teams.  Meanwhile, the 

distributed simulation federation ran on a local area 

network and a VPN.  Significant simulation events 

such as the touch down or lift-off the cargo landing 

vehicle were announced so the audience could focus 

their attention on the event.  Ultimately, each team 

ought to plan a scenario so that an important 

simulation event occurs within those ninety minutes, 

preferably staggered with other teams’ simulation 

events. 

 

An example of a significant event for the 

communications system could be the transmission of 

a message from a scouting hopper to a mobile 

resource plant.  Another example could be the 

transmission of a near-miss warning from an asteroid 

tracking system to the orbiting space-craft and cargo 

lander, which would involve federates from all of the 

SISO Smackdown simulation participants. 

 

Designing a system and learning the HLA standard 

simultaneously can be difficult, especially if team 

members are enrolled in multiple classes or have full-

time jobs.  If a SISO Smackdown Simulation team 

can work with an engineering design team it will 

allow the simulation team to focus on implementation 

of the federates.  Learning the HLA standard prior to 

the start of the calendar year may enable teams to be 

productive during the month of January.  Suggestions 

for learning the standard include stepping through 

example modular FOMs and federate code while 

reading the IEEE 1516 standard. Reading the 

standard in one window while stepping through an 

XML or source-code file in another window can help 

to illustrate the explanations in the standard. 

 

Suggestions for a development process include 

requesting RTI licenses from both vendors for every 

team member, conducting a team walk-through of 

example code, identifying a systems integrator, and 

selecting development and configuration 

management tools early.  Obtaining licenses for all 

team members will ensure consistency in computer 

configurations.  Writing detailed procedures, 

capturing screen shots for configuring files, and 

posting the documentation on a team web-site or on 

the Smackdown Wiki can also assist in 

communication.  Conducting walk-throughs of 

example code can also help participating team 

members to learn the standard together. 

 

Establishing a communications plan between team 

members early in the process can facilitate intra-team 

communication.  If team members are willing to post 

their phone numbers on an internal team website, 

building a contact list so people can communicate by 

phone can also help.  Skype is an excellent 

application for programming in pairs.  The free 

service from Skype provides screen-sharing, so one 

team member can watch while another team member 

writes code. However, it was discovered that the 

Sonic Wall Net Extender prohibits access to the rest 

of the Internet, so to test a federate using Skype, one 

of the Skype participants needs to run a CRC. 

 

Given the considerable challenges encountered 

during integration and test activities, it may be 

valuable to consider meeting two times per week 

during the integration and test phases.  Teams can be 

highly productive with two work sessions per week at 

two or three hours per session. Coordinating times for 

a large team can be difficult so consider working in 

pairs or groups of three. 

 

Development activities can be improved by 

requesting the licenses for all of the team members.  

If an LRC is used, support tools are unavailable.  A 

detail that required attention each time someone 

logged into the VPN was the assigned Internet 

Protocol (IP) address assigned by the Sonic Wall Net 

Extender.  Without the support tools, the developers 

had to identify the assigned IP address in a 

configuration file after logging into the VPN.  A 

misconfiguration of a VPN data file caused 

subsequent federates, attempting to join the 

federation, to fail. With the support tool provided 

with the licensed system, the developer can select an 

IP address from a drop-down list on a graphical user 

interface. 

 

Multiple federates can share a common code base. 

When designing multiple federates, it is sensible to 

look for common classes and manage the 

configuration of the code-base. Spending time 

upfront on a good object-oriented design can save 

development time and the effort associated with 

configuration management of multiple code-bases. 

 

 

 



7. Conclusions and Recommendations 

 
The SISO Smackdown Simulation event provides an 

opportunity to list experience in development of an 

international distributed simulation on a résumé.  The 

previous section described ways to get the most out 

of the experience.  Recommendations for potential 

products that could improve future Smackdown 

development activities include an open-source 

Environment federate, a reusable code library with 

well documented examples, a developer’s handbook, 

and a catalog of concepts. 

 

The current models that provide reference time and 

reference frame updates are implemented by JSC and 

are not currently available for public release.  This 

creates a dependency on the JSC servers and VPN to 

conduct integration testing.  The free open source 

Java Astrodynamics Toolkit could provide the source 

code for an open Environment federate [9]. An 

independent study project could produce a federate 

that generates a one hertz heart-beat and publishes 

reference frames for the sun, earth, and moon. 

Participating teams could use the open-source 

environment federate to establish their own servers 

for development and testing. 

 

A reusable code library with well-documented 

examples, especially time-constraint examples, can 

help new teams climb the learning curve quickly.  

Posting archives of Java, C++, and MATLAB 

examples on the SISO Smackdown website can be 

part of a starter kit.  Java Doc can generate web-

based documentation from specially annotated 

comments in the code. 

 

Another desirable item in a starter kit is a developer’s 

hand-book.  While the IEEE-1516 standard is useful 

as a reference after someone understands the 

standard, it is not a fast read or a novice-friendly 

document. A developer’s handbook could help 

novices by presenting flow-charts, example code, and 

detailed explanations. 

 

A catalog of concepts can help new teams get ideas 

for needed federates. Previously developed federates 

could be described in a web-based concept catalog 

with an artist’s concept image, a brief paragraph of 

the federate’s capabilities, and a link to a code 

repository. Other system concepts that have not been 

implemented could include an image, a description, 

and notional scenarios that illustrate how the federate 

could interact with other federates in the simulation. 
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