
Three Dimensional Computer Graphics Federates

for the 2012 Smackdown Simulation

 Crystal Fordyce

(843) 513-8980

crystal@gemofcrystal.com

Swetha Govindaiah

(256) 714-3018

Swethagovindh@gmail.com

Sean Muratet

(256) 417-8237

smuratet@gmail.com

Daniel A. O’Neil

Marshall Space Flight Center

Huntsville, AL 35811

(256) 544-5405

daniel.a.oneil@nasa.gov

Bradley C. Schricker

Dynetics, Inc.

1002 Explorer Blvd.

Huntsville, AL 35806

(256) 964-4979

brad.schricker@dynetics.com

Abstract: The Simulation Interoperability Standards Organization (SISO) Smackdown is a two-year old annual

event held at the 2012 Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown

event is to provide college students with hands-on experience in developing distributed simulations using High Level

Architecture (HLA). Participating for the second time, the University of Alabama in Huntsville (UAHuntsville)

deployed four federates, two federates simulated a communications server and a lunar communications satellite

with a radio. The other two federates generated 3D computer graphics displays for the communication satellite

constellation and for the surface based lunar resupply mission. Using the Light-Weight Java Graphics Library, the

satellite display federate presented a lunar-texture mapped sphere of the moon and four Telemetry Data Relay

Satellites (TDRS), which received object attributes from the lunar communications satellite federate to drive their

motion. The surface mission display federate was an enhanced version of the federate developed by ForwardSim,

Inc. for the 2011 Smackdown simulation. Enhancements included a dead-reckoning algorithm and a visual

indication of which communication satellite was in line of sight of Hadley Rille. This paper concentrates on these

two federates by describing the functions, algorithms, HLA object attributes received from other federates,

development experiences and recommendations for future, participating Smackdown teams.

1. Introduction

Responding to the needs of Industry and the National

Aeronautics and Space Administration (NASA), the

Simulation Interoperability Standards Organization

initiated the annual Smackdown Simulation event.

Primarily, this event provides college students with

hands-on experience in the development of

distributed simulations using the High Level

Architecture (HLA) standard. To provide context for

the simulation, NASA identified a lunar resupply

mission where a cargo lander transfers supplies from

an orbiting space-craft to the surface. Participating

universities provided additional mission scenario

details and developed the federates that simulate the

lunar resupply and exploration assets.

mailto:crystal@gemofcrystal.com
mailto:Swethagovindh@gmail.com
mailto:smuratet@gmail.com
mailto:daniel.a.oneil@nasa.gov
mailto:brad.schricker@dynetics.com

Participating universities in the 2012 Smackdown

simulation included the University of Alabama in

Huntsville (UAHuntsville), Massachusetts Institute of

Technology (MIT), Penn State University,

universities from Genoa, Pisa, and Rome, Italy, and

Technion University in Israel.

Technion contributed a mission scenario

diagramming application while Penn State

developed simulations of a cargo landing vehicle and

a cargo transfer rover. These federates are identified

in Figure_1 as the Lunar Shuttle and the Lunar

Rover. The MIT team produced simulations of a

mobile resource utilization plant and a scouting

hopper that jumped from one place to another in

search of minerals for the mobile resource utilization

plant. These federates are specified in Figure 1 as

the MIT Hopper and MIT Resource Plant. The three

universities from Italy formed two teams. One team

developed a simulation of an asteroid tracking and

planetary defense system while the other team

developed a simulation of a supply depot. Figure 1

depicts Genoa's Supply Depot federate.

Johnson Space Center (JSC) contributed an

environment simulation that provided reference

frames of the sun, earth, and moon and a one-second

heartbeat for the distributed simulation. The orbiting

spacecraft was also developed by JSC. Both

federates are respectively depicted in Figure 1 as the

NASA environment and NASA vehicle federate.

The Central Run-time Component (CRC) that

managed the distributed simulation, the Virtual

Private Network (VPN) for remote participation, and

the local area network for integrating participating

computers at the conference were operated by the

JSC team.

The UAHuntsville team contributed four federates:

(1) a radio communications server, (2) a satellite

federate with an orbital propagator and radio, (3) a

3D graphics display of a constellation of four

communications satellites, and (4) a 3D visualization

of the lunar resupply mission. Figure 1 identifies

these federates, respectively: Communications

Server, LCANSat, Satellite Constellation Display,

and fsi3DViewer UAH. Another paper describes the

first two federates. This paper describes the 3D

graphics federates. The Pitch Recorder appears as a

federate in Figure 1 because the UAHuntsville team

recorded data, which was used in the SISO

Smackdown simulation play back in Second Life

described later in this paper.

Figure 1. Lolly-Pop Diagram of the 2012 SISO Smackdown Federation

2. Satellite Constellation Analysis

The UAHunstville team's first participation in the

2011 SISO Smackdown consisted of an HLA

federate simulating a singular lunar communication

satellite following Keplerian orbital motion without

perturbations. For their second participation effort in

the 2012 Smackdown event, a constellation of lunar

communication satellites were simulated using the

same orbital trajectories but with added restrictions to

aid in visualization. One such restriction was to limit

the satellite’s altitude to somewhat realistic measures

for the purpose of visualizing scale. Secondly, the

number of satellites had to be small to keep frame

rate high and network traffic to a minimum, yet

optimized for line of sight with the lunar base.

The lowest altitude and the highest altitude was

ascertained by asking the following questions:

 What is the lowest possible altitude the

communication satellites can orbit the moon

without the threat of disintegration or

crashing into the surface?

 What is the highest altitude circular orbiting

satellites can obtain and yet remain stable?

To answer the first question, past NASA experience

gives some insight in how low a satellite can orbit the

moon. On Apollo 16 in April 24, 1972 a small

satellite orbiting the moon at 89 to 122 km above the

lunar surface suddenly crashed after only a few days

orbiting. The problem was determined to be due to

lunar mascons, gravitational irregularities due to

heavier concentrations of mass on the lunar surface,

unrelated to mountains or other topography, but

instead related to dense lava material concentrated at

certain locations [1]. In short, the lowest altitude was

restricted to 100 km.

Constellations, or groups of satellites, typically

require dozens of satellites to ensure continuous

global coverage because ground-tracks of low

orbiting satellites are small. In addition, low orbit

satellites present more challenges for line of sight

with ground-based entities in that the satellites travel

at high speeds and are only visible between 25 and 45

minutes depending on the satellite altitude and the

position of the ground entity, requiring fast switching

from one satellite to another. To avoid these

difficulties, satellite constellations consisting of three

and four satellites were examined for which satellite

altitudes achieve optimal line of sight but yet fall

within the restricted limits.

The highest altitude limit was determined by figuring

out the altitude at which the earth’s gravity will affect

the circular orbit such that it will be flung away from

the Moon in a hyperbolic orbit. “High-altitude

circular orbits around the Moon are unstable,” says

Todd A. Ely, senior engineer for guidance,

navigation, and control at NASA's Jet Propulsion

Laboratory. “Put a satellite into a circular lunar orbit

above an altitude of about 750 miles (1200 km) and

it'll either crash into the lunar surface or it'll be flung

away from the Moon altogether [2].” With that in

mind, the highest altitude was restricted to 1200 km.

Simplifying the Moon's shape to a sphere and

applying a circular orbit enabled geometric

determination of the limiting altitude where the line

of sight between the three and the four satellite

configurations just glances the surface of the moon.

The minimum altitude where the satellite’s line of

sight grazes off the moon’s surface is depicted in

Figure 2. Three system minimum altitude for line of sight

among satellites for the three satellite case. The

following formula gives this minimum altitude (hs):

smoon

moon

hr

r
)sin(

1
)sin(

1
moons rh

Separating the three communications satellites by

120 degrees, equals 30 degrees (see Figure 2 for

reference) and with the radius of the moon taken as

rmoon = 1737.10 km, the minimum altitude is thus

1,737.10 km.

Figure 2. Three system minimum altitude for line of sight among

satellites

For a four satellite configuration, the minimum

altitude where the satellite’s line of sight grazes off

the moon’s surface is depicted in Figure 3. The

following derivation gives this minimum altitude (hs):

222 2 mmm rrrz

ms rhz

)414.0(

)1414.1(

)12(

22 2

m

m

m

mmmms

r

r

r

rrrrh

Plugging in the radius of the moon, the satellite

constellation of four satellites must have altitudes

above 719 km. A four constellation satellite,

constrained in a circular orbit between 719 and 1200

km driven by Keplerian motion became the basis for

UAHuntsville’s second participatory effort in the

2012 SISO Smackdown event. Optimization of the

altitude involves mission objectives such as amount

of ground coverage desired, communication delays

and orbit periods.

Figure 3. Four system minimum altitude for line of sight among

satellites

3. Line of Sight Algorithm Analysis

Three line of sight (LOS) algorithms were analyzed

by the UAHuntsville team. One algorithm

mathematically defined a rectangular view frustum

with one end on the lunar surface located at Hadley

Rille and the other end extended into space past the

orbiting satellites. The algorithm compared the

positions of the satellites to the boundaries of the

view frustum to determine whether a satellite was in

view of the lunar surface assets at Hadley Rille. This

algorithm required a comparison of a satellite

position point against four corners of the frustum.

A second algorithm combined ray-tracing and point

clipping algorithms [3][4][5]. This algorithm

translated the satellite positions into screen

coordinates and compared the positions to an 80x80

patch located at Hadley Rille. For each pixel in the

canvas, the algorithm calculates the direction vector

between satellite position and the pixel location.

Using that direction vector and sphere equation, the

algorithm determines whether the direction vector is

touching the sphere. If that’s true then it will

determine the point of intersection of the direction

vector on the sphere. Using the point, defined by the

intersection of the vector with the sphere, a clipping

algorithm determines whether it lies within the patch.

Ray tracing is computationally intensive, so this

algorithm would have required pre-calculated points,

which would hinder the ability to change orbits

during the simulation.

The selected algorithm also used a ray and sphere

intersection technique. This algorithm was used in

the communications server federate and the orbital

propagator code for the communications satellite

federate. The LOS algorithm needed to have a

mechanism for determining whether, if the line

between two points – one in lunar orbit, the other on

the lunar surface – did intersect the moon’s surface,

the intersection occurred between the two points. As

such, the algorithm performs a calculation comparing

the distances between:

(1) Communications satellite and the simulated

entity located on the lunar surface

(2) Communications satellite and the lunar

surface, itself

If (1) is greater than (2), then LOS would be set to

false, as it would indicate that the lunar surface is

between the two points. However, if (2) is greater

than (1), LOS would be set to true. This line of sight

algorithm is illustrated in Figure 4. Line Of Sight

Algorithm

Figure 4. Line Of Sight Algorithm

The UAHuntsville satellite federate, identified as

LCANSat in Figure 1, generated a line-of-sight

status within an orbital propagator object. This status

was updated and each second and the Satellite

Constellation Display federate reflected this attribute

and presented the status on the display.

4. Satellite Constellation Display

Federate

A 3D graphics federate displayed a constellation of

four communications satellites orbiting the Moon.

Each satellite has a color: red, green, blue, and

yellow. A small green glowing sphere identifies the

location of Hadley Rille. Lines of text below the

moon presented the current location of each satellite

and whether a satellite is within view of Hadley Rille.

Figure 5. Satellite Display Federate Architecture.

Figure 5. Satellite Display Federate Architecture

The Java RTI library provides the Null Federate

Ambassador class. SatelliteDisplay extends the

NullFederateAmbassador and instantiates the

GraphicsDisplay object, which extends the

SimpleApplications class, which is provided by the

Java Monkey Engine (JME) code library. Satellite

Display methods inherited from the Null Federate

Ambassador include object discovery, attribute

reflection, and joining the federation. Reflected

attributes included the satellite positions and line of

sight status. The GraphicsDisplay class instantiated

the 3D models of the satellites with the

MakeSatellites method.

Developed with the Light-Weight Java Graphics

Library (LWJGL) and JME Integrated Development

Environment (IDE), the Satellite Constellation

Graphics Display federate presented a lunar texture

mapped sphere with four orbiting Telemetry Data

Relay Satellites (TDRS). The TDRS 3D mesh

models were originally created by NASA in the FBX

format. The models were converted to the

WaveFront Obj format and imported into the JME

IDE where it was converted into a binary file format.

The JME IDE is built upon the NetBeans IDE so it is

a familiar environment for Java developers. The

Simple Applications class is a member of the JME

code library; this class provides the functions for a

game window and user interface controls. The

GraphicDisplay class derived from the Simple

Applications class so it generated the window and

graphics objects in the display.

5. Surface Mission Visualization

Federate

The Virtual Reality Modeling Language (VRML)

based surface mission visualization federate

visualizer allows an audience to clearly view the

lunar mission. Originally developed by Daniel

Verret at ForwardSim, the VRML federate went

through an upgrade, performed by the UAHuntsville

team, to enhance the visualization capabilities.

The most significant improvements pertained to the

dead-reckoning algorithm implemented within

VRML. In the simulation world, dead-reckoning is

typically employed to minimize data traffic across the

network. In this case, dead-reckoning was used to

smooth the animation, making it both more

pleasurable for an audience to view and easier to

interpret the animation. Figure 6. Surface Mission

Visualization Federatedepicts the software architecture of

the Surface Mission visualization federate.

For VRML, the dead-reckoning algorithm takes

reflected values of position, velocity, and

acceleration and uses a blended interpolation to

produce smooth animations while reflecting ground

truth accurately. If values for velocity and

acceleration are not reflected by an entity, dead

reckoning calculations are not made and only the

position will be reflected when available. In the

context of VRML, this means that the position will

be updated on the screen only when the data is made

available by the owning federate. As is typical of

dead-reckoning algorithms, minimum position

changes with respect to the scale of the animation are

required to redraw the animation. This methodology

saves processing time and does not change the end

result, in terms of the accuracy of the entities’

movements. The entities will continue to be dead-

reckoned even though they are not redrawn. This

implementation requires a continuous loop to

produce smooth animation with a consistent refresh

rate. Due to the single-thread nature of MATLAB –

the development environment of choice – dead-

reckoning was implemented within the main federate

execution loop with method calls for each object to

redraw the animation.

Once the dead-reckoning portion completes, multiple

callbacks are evoked to check to see if updated true

values for position have been published by the

federates responsible for the various entities being

drawn.

More specifically to the Smackdown event, the four

satellites provide intermittent coverage of the Hadley

Rille site. The VRML model reflects this coverage

by changing light color intensity and node textures to

give a visual cue as to when a satellite is within

visual range of the surface.

Figure 6. Surface Mission Visualization Federate

The UAHuntsville viewer incorporated new entity

models in an effort to better represent the individual

entities. As of the Smackdown event in March 2012,

ground-clamping and collision detection were not

implemented. These are features that could be

implemented by a future UAHuntsville Smackdown

team.

6. Virtual Reprise in Second Life

During the 2012 SISO Smackdown simulation, the

UAHuntsville team used the Pitch Data Recorder to

capture position attributes of the MIT Scouting

Hopper and Mobile Resource Utilization Plant, and

the Penn State Cargo Lander and Cargo Transfer

Rover. Recorded data was processed with Excel to

switch from a Y up axis to a Z up axis and the

numbers were scaled down to fit within a property in

Second Life. Team members used Google Sketchup

to create 3D mesh models of the surface lunar

resupply mission assets and export Collada files.

These Collada files were uploaded into Second Life

and Linden Scripting Language (LSL) programs read

the scaled-down data to animate the models within

Second Life.

The UAHuntsville team rented a 4,096 square meter

sea-side parcel of land. The scene in Figure 7

includes models, created by the UAHuntsville team,

to represent (1) Penn State Cargo Transfer Vehicle,

(2) MIT Mobile Resource Utilization Plant, (3) MIT

Scouting Hopper, (4) Penn State Cargo Transfer

vehicle, (5) Genoa Warehouse, and (6) UAHuntsville

Communication Satellite.

The first AlaSim International conference occurred in

the first week of May at the Von Braun Center in

Huntsville Alabama. In one of the workshops, the

UAHuntsville team demonstrated the virtual reprise

of the 2012 SISO Smackdown simulation. Benefits

of a recorded playback in a virtual online world

include ad-hoc demonstrations to recruit more

university teams for the SISO Smackdown and public

outreach to teachers and students. Also, the virtual

environment serves as an archive, so each SISO

Smackdown simulation can be saved and people can

see the evolution of the simulation each year.

Figure 7. Virtual Play-Back of the SISO Smackdown Simulation in Second Life (1) Cargo Transfer Rover, (2) Mobile Resource Utilization

Plant, (3) Scouting Hopper, (4) Cargo Lander, (5) Warehouse, (6) Communication satellite in view of Hadley Rille

While the team did not experience any difficulties

technically, they did experience social problems in

Second Life, particularly Griefers. A Griefer is

someone who hassles other denizens of a virtual

world for the fun of it [7]. One of the UAHuntsville

team members was attacked by colored cubes that

cussed at her. Another team member was attacked by

Griefers who changed the physical appearance of her

avatar. Renting private property for the virtual

reprise fixed the problems associated with public

sand-boxes. Owners and renters can control access to

private parcels.

Second Life supports e-mail, chat, and XML Remote

Procedure Calls (XMLRPC), which enables

communication among objects within Second Life

and with external programs [6]. The UAHuntsville

team experimented with XMLRPC to drive the

movement of an object within Second Life from an

external Java program. Second Life or another

virtual world could serve as a common 3D

visualization system for distributed simulations.

Benefits of a common virtual world for a distributed

simulation include:

 a standardized approach to presenting

system behaviors

 opportunities for remote participants to view

the computer graphics

 a capability to archive the 3D models and

system behaviors

The intent of the SISO Smackdown simulation is to

give college teams experience with the HLA

standard. The time and effort associated with

creating computer graphics displays can detract from

developing and integrating the simulation. A

reusable code library for creating federates that

interact with models in a virtual world allow all the

SISO Smackdown teams to drive models in a

common environment. Also, the separation of the 3D

model building from the computer graphics display

programming would enable non-programmers to

participate in the development of the simulation.

Mechanical engineers, architecture students, and

artists could support the SISO Smackdown teams by

creating the 3D models in the virtual world.

7. Potential Future Plans

Based on the positive experiences with the external

communication technology and the negative social

experiences in Second Life, a few members of the

team concluded that a public virtual world may not

be the best venue for a 3D graphics visualization

system. There are a few open-source online virtual

worlds available. Open Simulator uses the same

communications protocols as Second Life [8]. Open

Wonderland was originally developed by Sun and

became open source when Oracle bought Sun [9].

Open Cobalt is another virtual world, which received

development funds from the National Science

Foundation (NSF) and has a scripting language based

on Small Talk [10]. Open Cobalt is a virtual world

browser based on a peer-to-peer communication

protocol. A team could develop a federate to reflect

object attributes and issue commands to virtual world

objects via the browser code.

A modular FOM could define object attributes that

translate into commands for object settings in the

virtual environment. Such a capability would enable

participating SISO Smackdown teams to drive virtual

models from their federates. A university could host

the central database of the virtual world and control

access to participants and interested stakeholders. A

free open source Massive Multiplayer Online Game

(MMOG) development environment, named

Multiverse, is available from MIT. Multiverse

supports the Python and Java programming

languages [11].

8. Conclusions and Recommendations

The 2012 SISO Smackdown Simulation provided a

great opportunity for the UAHuntsville team to learn

about 3D computer programming with the LWJGL,

MatLab Simulink with VRML, and LSL in Second

Life. Skills gained during the process included

converting among a variety of file formats using the

Adobe FBX converter, Blender, MeshLab, and

Google Sketchup, uploading models into Second

Life, scaling data and collaboratively building a

virtual environment. Experiments conducted with

XMLRPC indicate that an online virtual world could

be used as a 3D visualization system for an HLA

based distributed simulation. A recommendation is

that a university team or individual research the

leading open-source virtual world code-bases and

develop a modular FOM and federate for driving

models with reflected object attributes. Another

recommendation is for SISO Smackdown

participating teams to use the virtual world as a

collaboration tool in the development of scenarios

and sharing 3D models and scripts.

References

[1] Bell, Trudy, “Bizaare Lunar Orbits,” NASA

Science News, 6 November 2006,

http://science.nasa.gov/science-news/science-at-

nasa/2006/06nov_loworbit/, viewed on May 7,

2012.

[2] Bell, Trudy, “A New Paradigm for Lunar

Orbits,” NASA Science News, November 30,

2006, http://science.nasa.gov/science-

news/science-at-nasa/2006/30nov_highorbit/,

viewed on May 7, 2012.

[3] Codermind Team, "A raytracer in C++ -

Introduction - What is ray tracing?," Codermind

In a coder's mind,

 http://www.codermind.com/articles/Raytracer-

in-C++-Introduction-What-is-ray-tracing.html,

viewed on May 7, 2012.

[4] Eberly, David. 3D game engine design: a

practical approach to real-time computer

graphics, 2nd edition, Morgan Kaufmann, 2006.

ISBN 0-12-229063-1.

[5] Computer Graphics Lab, CS488/688:

Introduction to Interactive Computer Graphics,

“Point and Line Clipping,” University of

Waterloo,

http://medialab.di.unipi.it/web/IUM/Waterloo/no

de27.html, viewed on May 7, 2012.

[6] Second Life Wiki, “Category:LSL XML-RPC,”

Linden Research, Inc., June 9, 2011,

http://wiki.secondlife.com/wiki/Category:LSL_X

ML-RPC, viewed on May 7, 2012.

[7] Second Life Wiki, “Griefer,” Linden Research,

Inc., August 17, 2009,

http://wiki.secondlife.com/wiki/Griefer, viewed

on May 7, 2012.

[8] Open Simulator, “What is Open Simulator,”

Overte Foundation, March 26, 2012,

http://opensimulator.org/wiki/Main_Page,

viewed on May 7, 2012.

[9] Open Wonderland, Open Wonderland

Foundation, n.d., http://openwonderland.org,

viewed on May 7, 2012.

[10] Open Cobalt, “Open Cobalt Virtual Workspace,”

Duke University, n.d.,

http://www.opencobalt.org, viewed on May 7,

2012.

[11] Multiverse, “Multiverse: The Open Source

MMO Development Platform,” Massechuesettes

Institute of Technology.n.d.,

http://www.multiverse.com/, viewed on May 7,

2012.

Author Biographies

CRYSTAL FORDYCE is a Programmer Analyst at

Teledyne Brown Engineering, Inc., having recently

graduated with a Masters of Computer Science at the

University of Alabama Huntsville. Formally, Ms.

Fordyce was a Teacher’s Assistant in the Computer

Science Department at the University of Alabama

Huntsville, has graduated from Clemson University

with a Bachelor of Science degree in Physics and was

involved in several research projects studying

magnetic reconnection in solar flares at Montana

State University.

SWETHA GOVINDAIAH is a Computer Science

graduate from University of Alabama in Huntsville

graduated in May 2012. During her master’s

program Ms. Govindaiah researched routing

algorithms for wireless sensor network using graph

theory concepts. She worked for more than eighteen

months as a graduate research assistant for ESI

Group, a leading supplier and pioneer of digital

simulation software for prototyping and

manufacturing processes. Ms. Govindaiah received

Bachelor of Engineering degree from Visvesvaraya

Technological University, (Bangalore, India) in 2009.

SEAN MURATET graduated from the University of

Alabama in Huntsville with a BSE in Chemical

Engineering in 2011. As a Graduate Research

Assistant at the Center for Modeling, Simulation, and

Analysis at the University of Alabama in Huntsville,

Mr. Muratet, participated in the development of

constructive simulations of landmark global conflicts.

Awarded a Google Summer of Code 2012 project,

Mr. Muratet developed software for the Ascend

Modeling Environment. Presently, Mr. Muratet is

pursuing a Master of Science degree in Modeling and

Simulation at UAHuntsville.

DANIEL O'NEIL is a Technical Manager in the

Office of Strategic Analysis and Communication at

NASA Marshall Space Flight Center. Mr. O'Neil has

over 25 years of Modeling and Simulation

experience, supporting Military and Space programs;

his contributions include: a real-time vertical

situation display simulation for a flight trainer,

technical direction for development of a robotic

assembly team demonstration, integration of an

advanced technology lifecycle and analysis system.

Mr. O'Neil received a Master’s of Science degree in

Engineering Management from the University of

Alabama in Huntsville in 1998. Currently, he is

pursuing a Ph.D., in Modeling and Simulation at

University of Alabama in Huntsville.

http://science.nasa.gov/science-news/science-at-nasa/2006/06nov_loworbit/
http://science.nasa.gov/science-news/science-at-nasa/2006/06nov_loworbit/
http://science.nasa.gov/science-news/science-at-nasa/2006/30nov_highorbit/
http://science.nasa.gov/science-news/science-at-nasa/2006/30nov_highorbit/
http://medialab.di.unipi.it/web/IUM/Waterloo/node27.html
http://medialab.di.unipi.it/web/IUM/Waterloo/node27.html
http://wiki.secondlife.com/wiki/Category:LSL_XML-RPC
http://wiki.secondlife.com/wiki/Category:LSL_XML-RPC
http://wiki.secondlife.com/wiki/Griefer
http://opensimulator.org/wiki/Main_Page
http://openwonderland.org/
http://www.opencobalt.org/
http://www.multiverse.com/

BRADLEY SCHRICKER is a Senior Engineer with

Dynetics, Inc., currently serving as Project Manager

and Technical Lead on multiple Unmanned Aircraft

System (UAS) simulation projects in support of the

United States Army Aviation and Missile Research,

Development and Engineering Center (AMRDEC).

He has fourteen years of experience in Modeling and

Simulation, focusing his efforts in the areas of

distributed simulation, discrete event simulation,

virtual environments, and behavior representation.

Mr. Schricker received his Bachelor of Science

degree in Computer Science with a minor in

Mathematics from Florida State University in 1998.

Mr. Schricker earned a Master of Science degree in

Modeling and Simulation from the University of

Central Florida in May of 2007. He is currently

working on a Ph.D., in Modeling and Simulation at

the University of Alabama in Huntsville and expects

to graduate in 2013.

