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Chapter 9 

Safety and IVHM 

Kai Goebel, NASA Ames Research Center 

 

Salus populi suprema lex esto...—Cicero 

9.1  Introduction 

When we address safety in a book on the business case for IVHM, the question arises whether 

safety isn’t inherently in conflict with the need of operators to run their systems as efficiently 

(and as cost effectively) as possible. The answer may be that the system needs to be just as safe as 

needed, but not significantly more. That begs the next question: How safe is safe enough? Several 

regulatory bodies provide guidelines for operational safety, but irrespective of that, operators do 

not want their systems to be known as lacking safety. We illuminate the role of safety within the 

context of IVHM. 

 

9.2  Does Safety Matter? 

Two of the core elements in IVHM are providing a state assessment of the system and supporting 

the resiliency of systems. Abnormal states not only are an inconvenience, but also they can 

impact safety and lead to loss of equipment, personal injury, and loss of life. Of course, not all 

events that lead to degraded safety can be prevented by IVHM. However, there is a significant 

proportion of cases where IVHM can play an important role in informing about, preventing, or 

mitigating unsafe conditions. The following sections provide a brief summary of accident 

statistics and incidents in commercial aviation and terrestrial transportation that were caused by—
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or attributed to—equipment malfunction (and therefore are a candidate for IVHM systems). By 

way of example, this section will mainly focus on statistics gathered in the USA. The findings are 

thought to be applicable to other regions of the world as well. 

 

9.2.1  Accidents Due to Equipment Malfunction in Aeronautics 

Accidents in aeronautical applications get a lot of attention because they tend to be dramatic, and 

often a large number of civilians perish (they also tend to be relatively uncommon). The National 

Transportation Safety Board (NTSB) is an independent federal agency that investigates, among 

others, civil aviation accidents in the United States, conducts special investigations and safety 

studies, and issues safety recommendations to prevent future accidents. The information the 

NTSB investigators collect during their investigations of these aviation events resides in the 

NTSB Aviation Accident and Incident Data System [Aviation 2011]. Between 1989 and 2008 

there were 2151 fatalities in 600 accidents. Of those, 109 accidents (777 fatalities) were due to 

equipment malfunction. This amounts to 18% of all accidents and 36% of all fatalities. 

 

The Aviation Safety Reporting System (ASRS) is a joint NASA/FAA database of aviation 

incident reports submitted on a voluntary basis by pilots, air traffic controllers, ground personnel, 

and others involved in aviation operations. Because the incidents are reported voluntarily, they 

are subject to self-reporting biases, and are not corroborated by the Federal Aviation 

Administration (FAA) or the National Transportation Safety Board (NTSB) and cannot be 

considered a representative sample of the underlying population of events they describe [ASRS 

2001]. However, because it relies on additional information sources, it is a more inclusive 

repository than the incidents reported to the NTSB. An analysis of 38,894 component failure 

incidents from January 1993 to April 2011 found that 25,049 of the incidents listed aircraft 
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equipment as the primary problem and 29,253 listed it as a contributing factor. Table 9.1 lists the 

numbers by affected component for NTSB-reported accidents and incidents reported in the ASRS 

database. 

 

Table 9.1  Accidents and Incidents Due to Equipment Malfunction and/or Failure 

  NTSB 

Accidents 

NTSB 

Accidents 

(%) 

ASRS 

Incidents 

ASRS 

Incidents 

(%) 

Engine 40 32% 2036 14% 

Landing Gear 29 23% 1200 8% 

Fuel 2 2% 456 3% 

Structure 8 6% 634 4% 

Electrical 10 8% 1230 8% 

Flight Control 9 7% 2269 15% 

Hydraulic 11 9% 1199 8% 

Other 13 10% 2677 18% 

Instrumentation/ 

Communication/ 

Navigation 

5 4% 3309 22% 

Total 127   15010   
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9.2.2  Future Safety Risk Analysis 

Reveley et al. [2010] performed a survey to identify future aviation safety risks. They include, 

among others, in-flight loss of control. Loss of control during flight may occur as a result of a 

stall, an icing-related event, a severe atmospheric turbulence or wake vortex encounter, or a 

malfunction or failure of a flight-critical system or equipment. As outlined earlier, analysis of 

NTSB accident data and FAA incident data has established that system/equipment failures and 

malfunctions are significant contributing factors to aviation safety risk. In addition, the National 

Aeronautics Research and Development Plan [National 2010] cited several fundamental safety 

challenges that are relevant to preventing loss of aircraft control accidents caused by system or 

subsystem malfunctions or failures. Among these are: 

 

• Predicting, monitoring, and assessing the health of aircraft, at the material, subsystem, 

and component level, more efficiently and effectively. 

• Rapidly but safely incorporating technological advances in avionics, software, auto-

mation, and aircraft and airspace concepts of operation and operating procedures, by assuring 

their safety through a rigorous verification and validation process in a cost- and time-effective 

manner. 

• Developing aircraft-level health management systems that can identify problems before 

accidents occur. Research in health management requires not only monitoring and detecting, but 

also confident prognostics of latent potential failures before they occur. 

 

9.2.3  Accidents Due to Equipment Malfunction in Terrestrial Transportation  

The National Highway Traffic Safety Administration (NHTSA) reports that there were more than 

5.5 million police-reported motor vehicle crashes in the United States in 2009. A total of 1.52 
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million of those crashes resulted in an injury, and 30,797 resulted in a death. Equipment 

malfunction accounts for somewhat less than 5% of all motor vehicle accidents. The NHTSA 

report “National Motor Vehicle Crash Causation Survey” [National 2008] lists 6.8% of all cases 

as equipment malfunction being a contributing factor. The most cited types of equipment failure 

are loss of brakes, tire blowouts or tread separation, and steering/suspension failure [National 

2008]. 

 

9.2.4  Safety Does Matter 

The previously cited statistics illustrate that safety (or the lack thereof) affects us constantly. The 

statistics focused on the cases where equipment malfunction or failure was the direct cause and 

therefore where IVHM methods could help to detect or predict failure, and thus improve safety. 

While not all accidents due to equipment malfunction are preventable, many are. For example, 

the UK CAA estimates that around 80% of aircraft mechanical defects (on helicopters) are 

detectable, so an assumed accident and death/injury prevention rate could be derived using 

advanced IVHM principles. It has to be recognized that the implementation of IVHM for safety 

improvement comes at a cost. A system has to have a certain payoff to justify the investment, 

irrespective of the safety gains. Even regulatory authorities will not mandate safety at infinite 

cost. Outside that region, the system would not be built. Figure 9.1 illustrates the conceptual 

connection between safety and cost for both unmanned and manned systems, where the hashed 

area indicates the infeasible area.  
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Figure 9.1 Cost-safety balance for IVHM systems. 

 

9.3  Safety as a Driver for Operations in Space and Aeronautics 

The following sections illuminate the experience and efforts for IVHM in space and aeronautics 

that have been at the forefront of health management development. 

Space Flight 

Fundamentally, the objective of safety in space flight is similar to other domains, namely to 

protect personnel and equipment from damage or loss. But in space operations, the risk to 

personnel from equipment failure and the financial implications for equipment loss are usually 

significantly higher than in terrestrial applications. This, in turn, motivates the use of health 

management technology. The strategy followed is to employ several layers of protection that start 

with a fault avoidance strategy. The latter seeks to prevent faults from happening in the first place 

through conservative design practices (e.g., reducing moving parts) and performance margins. 

The next layer seeks to make the system fault tolerant through the appropriate level of 
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redundancy, fault containment, or design for graceful degradation. These measures are 

categorized as fault masking where the occurrence of a fault is compensated through hardware 

measures. The last layer of fault management is active fault detection, identification, and 

recovery. These are the functions that are typically also found in IVHM approaches and include 

the same range of technology solutions. Figure 9.2 illustrates this taxonomy. 

 

Figure 9.2 Taxonomy for fault protection in unmanned space applications (adapted from [Day 

and Ingham 2011]). 

 

Space operations can point to a series of successful fault protection events in manned and 

unmanned space flight. The range of successfully resolved faults include despun power bus reset 

caused by debris shorts (Galileo); a software flaw that caused heartbeat termination (Magellan); 

attitude estimator transient during backup star tracker checkout (Cassini); cosmic ray upset of 

attitude control electronics (Dawn); overvoltage due to unexpected power interaction at launch 
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(Kepler) [Day and Ingham 2011]; and various non-catastrophic glitches during the space shuttle 

missions.  

 

It should be noted here that unmanned space flight is encumbered with additional constraints such 

as operation with only limited ground contact. In particular, there may be extended periods with 

no planned contact that range from 1 to 4 weeks; the planned contact periods may be short (1 to 2 

hours); ground contact may not be established even for planned contacts (5% to 10%); and large 

one-way transmission times in the range of minutes to hours as well as very low downlink data 

rates, possibly only 10 to 40 bps, may be experienced. In addition, a system must possibly survive 

without maintenance for primary missions lasting a decade or longer and survive in harsh 

radiation and thermal environments.  

 

Manned space flight has its own constraints. For example, astronauts on the International Space 

Station (ISS) spend roughly 10% of their time with scientific work; 67% of the time is consumed 

with life-sustaining activities (sleep, meals, exercise). The rest is spent on maintenance, routine 

operations, inventory, public affairs events, and others [Falls 2012]. Most of the monitoring is 

augmented through the ground station, where data are analyzed by specialists around the clock. 

Some automated health management tools have found their way into operations, such as the 

Inductive Monitoring System (IMS) Tool, an abnormal condition detection tool based on 

clustering technology that is employed at NASA Johnson Space Center to monitor various 

subsystems. 

Aeronautics 

Because military aircraft operate under different usage scenarios than commercial aircraft and are 

subject to a strict internal safety review (but not FAA certification), the military can look back at 

a long history of integrating IVHM principles. Starting with a simple time-temperature recorder 
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for the engine hot-section on the F-8 (during deployment in Vietnam), and later the A-7 aircraft 

engine health monitoring program of the early 80s, IVHM principles found their way in various 

degrees onto numerous platforms, as shown here (roughly in order of time of implementation): F-

8, A-7E, TA-7, AV-8B, F/A-18 A/B, T-45A, F-14 D, E-2C, SH-60, and H-53, as well as some 

versions and models of the AH-1 and UH-1, V-22, F/A-18 C/D, and the JSF [Engel et al. 2000;  

Hess 2012].  

Commercial airlines have also adopted IVHM principles where they help to reduce cost and at the 

same time assist in maintaining safety of operations. To that end, engine manufacturers, for 

example, offer service contracts that provide round-the-clock monitoring of the engines. Reports 

are generated where off-nominal engine conditions (before they reach safety-critical levels) are 

detected and forwarded to airline operators [O’Flarity 2009; Calhoun 2009]Error! Reference source 

not found.. The economic benefits of these systems are that faults can be dealt with before they 

result in a delay or cancellation or that the remote monitoring system can prevent secondary 

damage. The safety benefit is that degradations can be detected and dealt with before they 

become equipment failures. Similar to engine service providers, aircraft frame manufacturers are 

providing service offerings [Maggiore and Kinney 2009] that inform on the health of a variety of 

aircraft subsystems and help in an operational setting in a similar fashion.  

In addition to these fielded examples, NASA has been spearheading research in IVHM for 

aeronautics. The premise is that public benefits resulting from continued growth in the air 

transport of passengers and cargo are dependent on the improvement of the inherent safety 

attributes of current and future aircraft that will operate in the Next Generation Air Transportation 

System (NextGen).  

One of NASA’s programs within the Aeronautics Mission Directorate is the Aviation Safety 

Program (AvSafe). Its research mission is motivated in large part by the challenges that arise 

from NextGen, which strives to make travel through increasingly crowded skies more efficient 
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and speedy while maintaining or increasing safety [NASA 2012]. AvSafe lists as some of the top 

technical challenges vehicle health assurance, prognostic algorithm design, assurance of flight 

critical systems, and loss of control prevention, mitigation, and recovery. All these have an IVHM 

flavor. Indeed, AvSafe continues to sponsor IVHM-related programs. 

These programs seek to provide increasing capabilities to predict and prevent safety issues, to 

monitor for safety issues in-flight and lessen their impact should they occur, to analyze and 

design safety issues out of complex system behaviors, and to constantly analyze designs and 

operational data for potential hazards. These technologies, many of which are at a lower 

technology readiness level (TRL), can be leveraged to support safety in other complex systems 

such as NASA long-duration missions in space science and exploration. IVHM research 

technologies were found to map to the Joint Planning and Development Office's (JPDO) National 

Research and Development (R&D) Plan as well as the Safety Working Group's National Aviation 

Safety Strategic Plan (NASSP) [Reveley et al. 2010].  

 

9.4  Safety as a Mandate 

It is often voiced that safety is upheld by commercial operators to the degree required by 

regulatory bodies. That has implications for how commercial operators respond to safety. In 

particular, they will meet those requirements but not voluntarily exceed them, unless there is a 

perceived commercial value. This, in turn, has implications for the role of IVHM as an enabling 

technology for safety in aviation in that it is seen primarily from a cost reduction perspective. At 

NASA or within DoD, there tends to be a different balance between safety and cost, where safety 

of human-rated systems trumps other considerations due to the unique situation of the mission. 

And, as Cicero pointed out a few thousand years ago: “Salus populi suprema lex esto—Let the 

good of the people be the supreme law.” 
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9.4.1  Regulatory Requirements 

The task to regulate the safety for different application domains lies with various government 

entities. The following sections give a brief overview over a few selected regulatory bodies. 

 

Federal Aviation Administration (FAA) 

The FAA has a prominent role in enforcing safety of operations in aviation. Traditionally, it has 

focused on a risk and hazard analysis approach as the main element in ensuring safe operations. 

This includes time-based inspection of components. While it acknowledges in its System Safety 

Handbook [FAA 2012] that “warning devices”  (i.e., pieces of equipment that issue an alert when 

an off-nominal condition is encountered) can be a part of a safety strategy, the use of condition-

based health assessment to ensure safe operations is coming only slowly into practice. The goal of 

operators to use IVHM principles to reduce cost of ownership by performing as-needed 

maintenance finds itself in conflict with regulatory concerns about airworthiness [Sigma-Technik 

2012]. In principle, there is an acknowledgement that condition-based principles can result in 

“maintenance credits” toward ensuring safe operations, which allow condition monitoring to 

reduce or replace time-based inspection. FAA Advisory Circular (AC) AC 29-2C, Section MG-15 

provides guidance for transport category rotorcraft to attain airworthiness approval for 

installation, and credits validation of health and usage applications. The primary concern is to 

ensure that the probability of failure is as low as reasonably practicable, and is compliant with the 

quantitative regulatory requirements. 

The FAA does require the use of engine condition monitoring (ECM) and oil consumption 

monitoring to issue extended operations (ETOPS) certification for certain classes of aircraft. 
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ETOPS certification is meant to ensure that a multi-engine aircraft can reach an airport even 

when a subset of its engines is no longer operational. Specifically, the ECM should provide a 

system for data collection and timely analysis to detect engine deterioration and preclude failure 

[FAA 2011]. The goal of this monitoring program is to detect deterioration at an early stage, and 

to allow for corrective action before safe operation is affected. The UK CAA has a similar 

requirement [CAA 2002]. ETOPS maintenance requirements are also meant to reduce diversions 

through engine condition and oil level/consumption monitoring. Some commercial providers cite 

that this practice has resulted in maintenance interval increases over OEM recommended practice 

[Eaton 2006]. In addition, the CAA has issued a requirement to install health and usage 

monitoring systems (HUMS) on helicopters to address failure rates of operation in the North Sea 

[CAA 2006]. The benefits that have been demonstrated after its implementation are part of the 

reason why most of the world's offshore drilling helicopter fleets now have HUMS.  

 

Nuclear Regulatory Commission (NRC) 

NRC defines a so-called "Maintenance Rule" in 10 CFR 50.65 which states that “each holder of 

an operating license for a nuclear power plant under this part and each holder of a combined 

license under part 52 of this chapter after the Commission makes the finding under § 52.103(g) of 

this chapter, shall monitor the performance or condition of structures, systems, or components, 

against licensee-established goals, in a manner sufficient to provide reasonable assurance that 

these structures, systems, and components, as defined in paragraph (b) of this section, are capable 

of fulfilling their intended functions” [§ 50.65 Requirements 2012]. It further states that 

“performance and condition monitoring activities and associated goals and preventive 

maintenance activities shall be evaluated at least every refueling cycle provided the interval 

between evaluations does not exceed 24 months.” The regulatory objective of the Maintenance 
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Rule is to require licensee monitoring of the overall continuing effectiveness of their maintenance 

programs to ensure that:  

• Safety-related structures, systems, and components (SSCs) and certain SSCs that are not 

safety related are capable of performing their intended functions.  

• For equipment that is not safety related, failures will not occur that prevent the fulfillment 

of safety-related functions.  

• Failures resulting in scrams (emergency shutdowns) and unnecessary actuations of 

safety-related systems are minimized. 

As part of these regulatory requirements, nuclear power plant operators have been exploring for 

several decades how best to implement health management principles to assess the state of health 

of their equipment. Early solutions included expert systems [Ancelin et al. 1991] and other 

artificial intelligence approaches [Uhrig, Hines, and Nelson 1998]. The connection to operational 

safety is made [Attieh et al. May 2000; Nov. 2000]. It should be noted, however, that the Nuclear 

Regulatory Commission requests the Utilities to meet the requirements without specifically 

telling the Utilities what to do. The Utilities merely need to file documents that state how they 

will meet the requirements, and the NRC determines if the proposed activities will meet the 

requirements.  

 

National Highway Traffic Safety Administration (NHTSA) 

The NHTSA has a legislative mandate under Title 49 of the United States Code, Chapter 301, 

Motor Vehicle Safety, to issue Federal Motor Vehicle Safety Standards (FMVSS) (CMVSS in 

Canada) and Regulations to which manufacturers of motor vehicle and equipment items must 

conform and certify compliance.  
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Recent advances include the monitoring of tire pressure, which has been articulated in FMVSS 

standard No. 138 (49 CFR Parts 571 and 585). It requires installation of a tire pressure monitoring 

system (TPMS) capable of detecting when one or more of a vehicle’s tires is significantly under-

inflated. This rule requires installation in all new light vehicles of a TPMS capable of detecting 

when one or more of the vehicle’s tires, up to all four tires, is 25% or more below the 

manufacturer’s recommended inflation pressure or a minimum activation pressure specified in the 

standard, whichever is higher [49 CFR 2012]. NHTSA has further regulations and is discussing 

the monitoring of other safety-related equipment such as brakes, air bags, electronic stability 

control and—beyond that—has also begun to investigate safety-related systems that are not 

strictly part of IVHM such as frontal collision warning systems and lane departure warning 

systems [Commission 2008].  

 

Other advances that are being pursued outside NHTSA include onboard monitoring systems for 

commercial motor vehicles, a project sponsored by PATH, the Partners for Advanced 

Transportation TecHnology, a multi-disciplinary program with researchers from universities 

statewide, and cooperative projects with private industry, state and local agencies, and nonprofit 

institutions. Research is under way for semi-autonomous proximity warning devices and driver 

fatigue warning devices [Misener et al. 2006].  

 

California Air Resources Board (CARB) and Environmental Protection Agency (EPA) 

The California Air Resources Board (CARB) required that all new vehicles sold in California 

starting in 1991 have some basic on-board diagnosis (OBD) capability. The purpose was not 

strictly to enhance the safety of operations. Instead, this regulation was motivated by a desire to 

reduce the exhaust emissions and to institute a state-wide tailpipe emissions testing program. The 



  

15 

 

specifications were refined in the so-called “OBD-II” with mandated adoption for all cars sold in 

California starting in model year 1996 [CARB 2006] and allowed OBD to perform on-board 

monitoring of a wide range of emissions controls. The Environmental Protection Agency (EPA) 

followed suit and made OBD-II mandatory for all cars sold in the United States [EPA 2005]. In 

2001, the European Union adopted a similar directive [EU 1998] for vehicles with gasoline 

engines and in 2004 for vehicles with diesel vehicles sold in the European Union. SAE and ISO 

both defined OBD-II standards as summarized in Table 9.2. 

 

Table 9.2  OBD Standards 

Organization Standard  Scope 

SAE J1962  Physical connector used for the OBDII interface 

SAE J1850  Serial data protocol 

SAE J1978  Operating standards for OBDII scan tools 

SAE J1979  Diagnostic test modes 

SAE J2012  Trouble codes and definitions 

ISO 9141 Diagnostic systems 

ISO 14230 Diagnostic systems—Keyword Protocol 

ISO 15031 Communication between vehicle and external 

equipment for emissions-related diagnostics 

 

9.4.2  Certification Bodies 

Minimized life-cycle cost at a high safety level is arguably the primary business case for IVHM . 

The fundamental idea is that the application of IVHM algorithms and methodologies will be able 
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to detect incipient mechanical faults and allow preventive maintenance intervention. If these 

principles are followed, the operator would be issued “maintenance credits,” which would relieve 

them from performing maintenance at fixed intervals. The result would be that the operation of 

the vehicle is as safe (or safer) as with fixed maintenance intervals while the cost of maintenance 

would be reduced because it would be performed based on an as-needed basis, as opposed to 

somewhat blindly at fixed intervals. The interval of the latter is always chosen to be conservative, 

usually based on statistical analysis of component life, with a safety margin built in. That is, the 

interval will be based on an expected average mean time to failure from which some number of 

standard deviations will be subtracted, with a further reduction for safety (often of 50%). The 

result is that most components are inspected or serviced significantly sooner than they need to be. 

 

The condition-based maintenance concept with associated maintenance credits was adopted by 

the U.S. DoD and has been put into practice for the AH-64 Apache fleet. Obtaining maintenance 

credits for civil operators has been more difficult, as the accreditation process is still a work in 

progress.  

In the absence of maintenance credits, the business case for IVHM is more complicated because 

one ends up detecting either additional failures (which, if one catches them early, may save 

money, but one ends up performing additional maintenance and has to bear the cost of the IVHM 

system implementation). Alternatively, one would catch the onset of faults and failures that 

impact other business metrics such as delays and cancellations which are legitimate and have led 

most major jet engine OEMs to adopt an engine monitoring program. However, they are not 

primarily geared toward improving safety. 
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FAA 

The regulatory agencies have not developed much guidance for implementation of IVHM on 

transport category aircraft. In part, this has to do with the fact that industry needs typically lead 

the guidance that regulatory agencies disseminate. Compounding this issue is the fact that the 

industry need for IVHM is driven by economic benefits, not safety. In general, the more the 

system to be certified impacts the potential safety of the system, the more stringent the 

certification steps are. Safety may be potentially impacted where systems provide information to 

the flight crew that can influence in-flight decisions; where traditional inspection intervals are 

extended; and where traditional inspections are replaced with automated monitoring. It is thought 

that an easier route is, therefore, an IVHM system that provides post-flight information to 

maintenance personnel, thus avoiding the safety implications for the flight crew (one would still 

have to address the condition-based maintenance aspect). It should be noted that software per se 

does not get certified. IVHM functions may be certified with another system, such as an engine 

FADEC system or aircraft display and monitoring system [Rajamani et al. 2010]. 

Certification involves development and execution of a certification plan that lists test and analysis 

steps with pass/fail criteria and outlines a system safety assessment (SSA) that includes ample 

documentation to address all elements of airworthiness as outlined in FAR 14 CFR Part 21 [FAA 

2012]. The SSA is hierarchical in nature, from the subsystem level through the aircraft platform 

level (i.e., the system itself needs to be safe, and needs to be safe as part of the installation). In 

addition, product support documents have to be furnished that include maintenance and operating 

manuals.  

DO-178C “Software Considerations in Airborne Systems and Equipment Certification” is the 

primary document by which the FAA (and its European counterpart EASA) will approve all 
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commercial software-based aerospace systems, and in particular, safety-critical software [SAE 

2012]. DO-178C builds on the work of DO-178B, which was released 20 years earlier. FAA 

Advisory Circular AC 20-115B established DO-178B as the accepted means of certifying all new 

aviation software. Adhering to DO-178B and DO-178C in itself does not guarantee the safety of 

software, and it is not intended as a software development standard. Instead, it is meant as a 

software assurance plan that uses a set of steps to meet certain levels of rigor (“Design Assurance 

Levels”). Companion document DO-278A deals with software assurance of non-airborne systems 

[SAE 2002]. 

At this point, it should also be noted that Verification and Validation (V&V) can be a bottleneck 

in certification of IVHM solutions, depending on the type of credit sought. If no maintenance 

credits are sought (i.e., all standard maintenance is conducted regardless), and if the IVHM 

solution does not adversely affect the safety of operations, V&V is not more burdensome than for 

other health management solutions. However, if a move to CBM is sought, the burden may 

substantially increase. The current approach to performing V&V for health management 

algorithms is to carry out massive amounts of simulation and testing. Unfortunately, this 

approach increases the cost of safety assurance prohibitively. Furthermore, advanced IVHM 

algorithms may incorporate nonlinear, nondeterministic methods to improve the accuracy of 

predictions under uncertainty. V&V methods for nondeterministic mission-critical systems are 

still in their infancy.  

 

FAA Advisory Circular AC 29-2C, Section MG-15 

As mentioned earlier, FAA Advisory Circular AC 29-2C, Section MG-15 provides guidance for 

transport category rotorcraft to attain airworthiness approval for installation, and it credits 

validation of health and usage applications. Using the certification of HUMS on a helicopter as an 

example, the recommended steps for certification are [Michael et al. 2004]: 
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• Establish a certification project with the responsible aviation authority 

• Develop an end-to-end system design concept by: 

◦  Defining the desired maintenance credit(s) 

◦  Determining the functional partitioning between airborne and ground 

◦  Establishing the functional partitioning between HUMS and the maintenance 

system 

◦  Selecting COTS software and hardware with an established service history, 

◦  Clearly identifying the end of the credit function (algorithm) 

◦  Defining a user interface that will meet desired objectives 

• Prepare and submit hazard assessments for: 

◦  Airborne installation 

◦  Maintenance credits expected or desired 

• Perform system development to: 

◦  Obtain hardware to meet the system qualification requirements 

◦  Establish application software to the required DO-178B levels 

• Test the application in the COTS environment 

• Validate the COTS using an independent means of verification 

• Develop a user operating manual for the system defining credit requirements 

• Modify maintenance and/or flight manuals for the proposed credits 

• Certify the airborne installation 

• Conduct a controlled service introduction for credit validation 

• Helicopter operator to obtain credit approval for his aircraft 

 

While there is interest of the FAA and industry to show how this process can be used with 

success on an example, there have not yet been any approvals of substance. At the root of this is 

that the software certification applies the airborne software certification paradigm of DO-178B/C. 
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A usage credit for fatigue limited parts requires level B software certification in the airborne 

system and an equivalent level for any ground processing according to DO-178B/C [Michael et 

al. 2004]. This has rendered all attempts too difficult or expensive.  

 

Underwriters Laboratories 

Underwriters Laboratories (UL) is a company addressing “safety science” that focuses, among 

others, on product safety, environment, life and health, and verification services. UL has 

distinguished itself by issuing trusted certification marks that assure a certain standard of safe 

operation. To that end, UL employs principles from health management, including failure modes 

and effects analysis (FMEA). Beyond that, UL has also certified monitoring equipment in certain 

fields, including the medical field. Indeed, UL certification is the U.S. national standard for safety 

testing of electrical medical devices. Most hospitals will not allow installation of medical 

monitoring devices in their facilities without proof of the equipment meeting the IEC 

(International Electrotechnical Commission) 60601-1 regulation. IEC 60601-1 is the harmonized 

standard for medical electrical equipment that covers requirements for functional safety, software, 

and EMC, among others. For more generic safety-related control systems in machine 

applications, UL follows standard IEC 62061, which defines safety integrity in terms of safety 

integrated levels (SIL). This includes also the degree of diagnostic capabilities. The range of UL 

listed monitoring equipment includes monitoring for server rooms, cold storage, and industrial 

processes, and others. 
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9.4.3  Standards 

While fielded IVHM tools are not yet common practice, a fair number of standards exist that aid 

in their implementation. The following sections discuss several of the standards that have been 

developed with IVHM in mind. 

 

SAE International 

E-32 Aerospace Propulsion Systems Health Management has issued Aerospace Recommended 

Practice (ARP) 1839 (Recommended Practices for Aircraft Turbine Engine Vibration Monitoring 

Systems) [SAE 2008]. This Aerospace Recommended Practice gives general guidance for typical 

turbine engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft 

applications, with an emphasis on system design considerations. 

ARP 6461 (Guidance on Structural Health Monitoring for Aerospace Applications) [ARP 6461 

2011] is applicable to civil and military aerospace airframe applications in which stakeholders are 

seeking guidance on the development and certification of Structural Health Monitoring (SHM) 

technologies for SHM applications. It is also recognized that many stakeholders (such as 

regulatory agencies, airlines, OEMs, academia, and equipment suppliers) are interested in the 

process of certifying SHM solutions. To that end, a common language, framework, and 

recommended practices are needed to promote fruitful and efficient technology development. 

 

Additionally, SAE has published ARP 5987 “Guidelines for Engine Health Management System 

Software Assurance Levels.” ARP 5987 is intended to provide guidance for IVHM systems with 

a propulsion-centric focus with a process to determine the assurance levels and appropriate 
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airborne electronic hardware elements. The document addresses the various stages and functions 

of the IVHM system (i.e., on-engine, on-aircraft, communications, and ground-based elements). 

In addition to the assurance levels, the document addresses mitigation techniques and system 

architectures necessary to support the certification of the IVHM systems and functions [ARP 

5987 2008]. 

 

ISO 

As another standardization body, ISO has long worked on harmonizing condition monitoring 

practices. These are encapsulated in a host of standards, some of which are summarized in Table 

9.3. Technical committee 108, in particular, has focused on condition monitoring and diagnostics 

of machines.  

 

Table 9.3  Selected ISO Standards Related to IVHM 

ISO standard Title 

 Condition monitoring and diagnostics of machines 

13372 Vocabulary 

13373-1 Vibration condition monitoring—Part 1-2 

13374-1 Data processing, communication and presentation—Part 1-7 

13379 General guidelines on data interpretation and diagnostics techniques 

13381-1 Prognostics—Part 1 

17359 General guidelines 

18434-1 Thermography—Part 1: General procedures 

18436-X Requirements for training and certification of personnel—Part 1-7  
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22096 Acoustic emission 

29821-1 Ultrasound—Part 1: General guidelines 

 Road vehicles 

16844-6 Tachograph systems—Part 6: Diagnostics 

 Industrial automation systems and integration 

18435-1 Diagnostics, capability assessment and maintenance applications 

integration—Part 1: Overview and general requirements 

2041 Mechanical vibration, shock and condition monitoring—Vocabulary 

16587 Mechanical vibration and shock—Performance parameters for condition 

monitoring of structures 

14963 Mechanical vibration and shock—Guidelines for dynamic tests and 

investigations on bridges and viaducts 

 Freight thermal containers 

10368 Remote condition monitoring 

 Cranes 

12482-1 Condition monitoring—Part 1: General 

 Transport Information and Control Systems (TICS) 

17687 General fleet management and commercial freight operations—Data 

dictionary and message sets for electronic identification and monitoring 

of hazardous materials/dangerous goods transportation 
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9.4.4  Discussion 

This section discussed how IVHM addresses safety in several application domains and thereby 

implicitly answers the question whether safety matters as far as IVHM is concerned. Various 

regulatory bodies have implemented processes for certification, but considerable differences are 

noted. It can be speculated that the difference is explained in part in how many systems have to 

be considered by the regulatory bodies. When there are few systems (as in nuclear power plants) 

it may be feasible to deal with each of them on an individual basis. When there are many (e.g., 

airplanes), it may be more logical to go with a process-based approach. Besides the mandate from 

regulatory bodies, there are also business justifications to implement IVHM. The latter are subject 

to cost-benefit calculations that should be flexible enough to incorporate safety metrics. In 

addition, various standards exist that aid in the development of systems for IVHM. 

  

9.5  Closing Thoughts 

Safety concerns drive the use of IVHM in a number of different application areas, particularly 

where human safety is affected. Regulatory bodies are establishing rules in commercial settings to 

guarantee a minimum degree of safety and—in some cases—require the use of IVHM methods. 

Voluntary additional safety improvements need to justify the investment of resources into 

development of IVHM technologies or, alternatively, need to help reduce lifetime cost or reduce 

maintenance costs. Some examples exist where the application of IVHM helped to improve safety 

and cost, such as the case in which a HUMS system was credited with preventing several 

accidents with an associated savings of $49M on three AH-64 [avionicstoday.com 2012], but, 

generally, good cost-benefit models are lacking that would promote the penetration of IVHM 

technology. While IVHM can undoubtedly contribute to safety improvements, its acceptance will 
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hinge to a large degree on the cooperation of regulatory authorities and—beyond that—on the 

ability to calculate a positive cost-benefit. 

 

A reasonable body of standards exists, and additional standards are actively being developed to 

assist in the development and implementation of IVHM with a safety perspective.  

 

It should be expected that more emphasis will be placed on quantifying the impact of safety 

improvements on systems operations in the future. In addition, as IVHM systems mature, the 

benefit of IVHM will not only be in providing safety-relevant information. but will also be in 

taking action that will improve the state of safety of a system through autonomous action 

(although the certification of such systems will pose a considerable hurdle). Lastly, due to 

increasing software complexity, the topic of software health will become more prevalent 

[Leveson 2005] as we see more safety-related incidents. While software assurance is expected to 

make strides, it should be contemplated how IVHM principles can be adopted to aid in dealing 

with these issues.   

In the past, IVHM has often been treated as an afterthought, when it became apparent that 

systems’ safety was not up to par (e.g., HUMS on helicopters). It would be advantageous (and 

presumably cheaper) to consider IVHM during the design process to optimally divide the 

authority of safety-enhancing IVHM methods (and of means to reduce life-cycle cost) and safety-

enhancing design modifications at the conceptual design stage. While some manufacturers are 

starting to embrace this philosophy, an industry-wide adoption is still in its infancy. 

 

IVHM undoubtedly and demonstrably has the capability to improve safety. The challenge is to be 

able to calculate the economic benefits and to overcome regulatory constraints so that both the 

economic needs of commercial operators are satisfied so that Cicero’s vision can be realized. 
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