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ABSTRACT 

Prognostics deals with the prediction of the end ofli fe (EOL) 
of a system. EOL is a random variable, due to the presence of 
process noise and uncertainty in the future inputs to the sys
tem. Prognostics algorithm must account for this inherent 
uncertainty. In addition, these algorithms never know exactly 
the state of the system at the desired time of prediction, or 
the exact model describing the future evolution of the system, 
accumulating additional uncertainty into the predicted EOL. 
Prediction algorithms that do not account for these sources of 
uncertainty are misrepresenting the EOL and can lead to poor 
decisions based on their results. In this paper, we explore the 
impact of uncertainty in the prediction problem. We develop 
a general model-based prediction algorithm that incorporates 
these sources of unceltainty, and propose a novel approach 
to efficiently handle uncertain ty in the future input trajecto
ries of a system by using the unscented transfOllTI. U ing 
thi s approach, we are not only able to reduce the computa
tional load but also estimate the bounds of uncertainty in a 
deterministic manner, which can be useful to consider during 
decision-making. Using a lithium-ion battery as a case study, 
we perform several simulation-based experiments to explore 
these issues, and validate the overall approach using experi
mental data from a battery testbed. 

1. INTROD UCTION 

Prognostics deals with the pred iction of the end of life (EOL) 
and remaining useful life (RUL) of components, subsystems, 
and systems. At its core, prognostics is a prediction prob
lem. But, the future evolution of the system is a random 
process due to (i) process noise, and (it) uncertainty in the 
future inputs to the system. In practice, these two SOl)fces 
of uncertainty cannot be avoided and thus EOL and RUL 
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are random variables . The prognostics algorithm itself in
troduce additional uncertainty because, in general, (i) it does 
not know exactly the state of the system at the time of pre
diction, (ii) it does not know exactly the description of the 
process noise, (iii) it does not know exactly the description 
of the fu ture input uncertai nty, and (tv) it does not know 
exactly the model of the future system behavior. All these 
sources of uncertainty contribute to the difficulty of the prog
no tics problem (Sankararaman, Ling, Shantz, & Mahadevan, 
2011). While uncertainty cannot be eliminated from prog
nostics, an accurate assess ment can be crucial in dec ision
making. Making decisions based on uncertain information 
requires characteri zing the uncertainty itself to tune the risk 
level a needed in a particul ar application. In safety-critical 
systems it is of even bigber importance, whicb is reflected in 
the fact tbat verification, validation, and certification proto
cols in the aerospace domai n require provably determi ni stic 
and bounded systems. 

Although the presence of prediction uncertainty is clearly 
a practical issue, only a few works have explored it. 
In (Sankararaman et a!. , 2011 ), the authors examine the vari
ous sources of uncertainty in fa ti gue crack growth prognostics 
and analyze their effects in an offline setting. In dealing with 
inpu t uncertainty, future input trajectories are constructed a 
sequential blocks of constant-ampbtude loading, and uch 
trajecrorie are sampled in the predic ti on algorithm. In a 
similar approach app li ed to batteries in an unmanned aeri al 
vehicle (UAY), in (Saha et a!. , 201 2) the authors determ ine 
statistics of the battery loading for typical UAY maneuvers 
based on past flight data, and construct future input trajecto
ries as constrained sequences of flight maneuvers. In (Luo et 
aI. , 2008), constant loading is assumed for a vehicle suspen
sion system, and predictions are made for a weighted set of 
three different loading val ues. The approach of (Edwards et 
aI. , 2010) also considers constant loading, and everaluncer
tain ty measures are defin ed that are then used within a frame
work for system life extension through actions that modify 
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the system loading. 

In this paper, we develop a general framework within the 
model-based prognostics paradigm for representing arbitrar
ily complex future input trajectories, and develop a general 
sample-based algorithm for predicting EOL and RUL that ac
counts for the sources of uncertainty in the prediction process. 
In particular, we introduce the unscented transform (Julier & 
Uhlmann , 1997), which predicts the mean and covariance of 
a random variable passed through a nonlinear function, as 
a method to efficiently sample from future input trajectories 
while still maintaining the statistics of the end result. This ap
proach offers substantial computational savings as compared 
to a semi-exhaustive random sampling approach. Addition
ally, we show that since the UT allows sampling in a deter
minis tic manner, and in this particular ca e where uncertai nty 
in inputs is assumed to be uniformly distributed, we are able 
to bound the RUL predictions. Therefore, using the UT we 
realize a threefold benefi t, (i) obtai ning bounds for the predic
ti on uncertainty, (ii ) obtain ing bounds in a determinis ti c man
ner, and (iii) keeping the statistical information intact with a 
considerably reduced computational burden as compared to 
traditional sampling approaches. Using a lithium-ion battery 
as a case study, we analyze the impact of uncertai nty and var
ious performance trade-offs of the prediction algorithm under 
several cases, and demonstrate and validate the approach with 
experimental data from a battery testbed. 

The paper is organized as fo llows. Section 2 formulates the 
prognostics problem and describes the sources of uncertainty. 
Section 3 develops the general prediction algorithm and its 
different instanti ati ons. Section 4 presents the battery case 
study and provides resul ts using both experimental and simu
lated data. Section 5 concludes the paper. 

2. PRO GN OSTI CS ApPROACH 

Tbis section firs t formulates tbe prognostics problem . Il tben 
describes how uncertainty arises in prognostics, and exam
ines the implications on prognostics algorithms. Final ly, it 
provides an architecture for model-based prognostics. 

2.1. Problem Formulation 

The goal of prognostics is the prediction of the EOL and/or 
RUL of a system. We ass ume the system model may be gen
erally defined as 

x (t) = f (t , x (t) , O(t), u(t), v (t)), 

y(t) = h (t,x(t) , O(t), u (t), n (t)), 

where x(t) E IRn", is the state vector, O(t) E IRno is the 
unknown parameter vector, u (t) E IRnu is the input vector, 
v(t) E IRnv is the process noise vector, f is the state equa
tion, y(t) E IRn• is the output vector, n (t) E IRnn is the 

measurement noise vector, and h is the output equation. t 

Prognostics and health management is concerned with system 
performance that lies outside a given region of acceptable be
havior. The desired performance is expressed through a set of 
nc constraints, C EOL = {cd ~~ l ' where Ci : IRn", x IRno x 
IRnu -t $ maps a given point in the joint tate-parameter 
space given the current inputs, (x(t) , O(t) , u (t)), to the 
Boolean domain $ ~ [0, IJ, where Ci(x (t), O(t), u (t)) = 1 if 
the constraint is satisfied, and ° otherwise. 

These individual constraints may be combined into a single 
threshold f unction TEOL : IRn", x IRno x IRnu -t $ , defined 
as 

TEOdx (t), O(t), u (t)) = 

{
I , ° E {Ci(X(t) , O(t) , u(t))}7~1 
0, otherwise. 

T EO L evaluates to 1 when any of the constraints are violated. 
EOL is tben defined as the earlies t time point at which tills 
occurs: 

EOL(tp) ~ 

inf{t E IR: t 2: tp /\ TEoL(x (t) , O(t), u (t)) = I} , 

RUL is expressed using EOL as 

RUL(tp) ~ EOL(tp) - tp. 

2.2. Prediction Uncertainty 

The above definitions of EOL and RUL are for their exact 
values, i.e., the system takes so'me path out of many possible 
paths through the state space until EOL The actu al path the 
system will take cannot be known in advance because the sys
tem evolution is a random process, therefore, EOL and RUL 
at any prediction time tp < EOL, are actually random vari
ables. System evolution is random due to the process noise 
v(t) and because u (t) for t > tp is never known exactly. 
Since EOL is a functi on of (x(tp ), O(tp)) and u (t), which 
are al l random va riable, EOL (and RUL) mu t also be a ran
dom vatiable. This un certainty is inherent to the sys tem itself 
and cat1l10t be avoided. Note that as t approaches EOL, the 
vat·iability in the actual EOL will naturally reduce, simply be
cause EOL - t becomes smaller. 

The goal of a prognostics algorithm, then, is to compute the 
true distribution of the EOL and RUL. A decis ion that is made 
based on a mi srepresentation of thi s true distri bution could 
bave a significant impact, especially if the true vcuiability is 
underestimated. It is therefore critical that a prognostics al
gori thm comes as close to this true distribution as possible. 

1 Here, we use bold typeface to denote vectors, and use na 10 denote the 
length of a vector a . 
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Figure 1. Model-based prognostics architecture. 

However, additional unceltainty is also introduced by the 
prognostics algorithm itself. In order to make a prediction, 
the state of the system at the time of prediction must be 
known. At best, only a probabili ty distribution can be esti
mated since (i) the system state may not be directly measured 
and, (ii) even if it is, there is sensor noise, (iii) the initial state 
of the system is not known exactly, (iv) the system model 
is not known exactly, and (v) there is process noise. Even if 
the system state is known exactly, uncertainty is introduced in 
the prediction process since, in general, (i) the model used for 
prediction is not known exactly, (ii) the correct representation 
of process noise is nOl known exactly, and (iii) the correct rep
resentation of the space of possible future input trajectories is 
not known exactly. Due to these additional sources of uncer
tainty inherent to the prognostics algorithm, the uncertainty 
in the predicted EOURUL will nominally be larger than the 
true variability in EOURUL. 

The uncertainty inherent to the system cannot be eliminated, 
and neither can the uncertainty inherent to the algorithm. 
However, the uncertainty associated with the algorithm can 
be limited by using the best known model including the best 
known representation of the process noise, and by constrain
ing the space of possible future input trajectories as much as 
possible and representing the associated probability distribu
tio n as accurately as possible. The potential trajectories of 
u (t) for t ~ tp depend on the system being monitored and 
can, in general, take on any number of arbitrary signals. We 
denote the space of possible future input trajectories as Utp ' 
A single trajectory in the set Utp is denoted as V tp, and de
fines the values of u(t) for alJ t ~ tp. Each poss ible trajec
tory has a certa in probabili ty of occurring in the real system, 
and so this is defined by a probability distribution p(Utp ). In 
practi ce, it is entirely possible that this exact distribution is 
unknown and must be approximated. 

2.3. Prognostics Architecture 

To predict EOURUL, first an initial state to use for the pre
diction must be determined. In the model-based paradigm, 
thi s is referred to as the estimation problem, and requires de
termining a joint state-parameter estimate p(x (t ), B(t)IYo:t) 
based on the history of observations up to time t , YO:t. 
The prediction problem is to determine, using this estimate, 
EOL and RUL probability distlibutions, p(EOLtp IYo:tp) 

and p(RU Ltp IYo:tp). 

The prognostics architecture is shown in Fig. I (Daigle & 
Goebel, 2011). In discrete time k, the system is provided with 
inputs Uk and provides measured outputs Yk. The estimation 
module uses this information, along with the system model, 
to compute an estimate P(Xk' Ok IYO:k)2 The prediction mod
ule uses the joint state-parameter distribution and the system 
model , along with hypothesized future inpu ts , to compute 
EOL and RUL as probabili ty distributions p(EOLkp IYO:kp) 
and p(RU Lkp IYO:kp) at given prediction times kp . 

3. PRED I CTIO 

Prediction is initiated at a given time of prediction 
k p using the current joint state-parameter estimate, 
p(Xkp, Okp IYO:kp). Approaches to determine this estimate 
are reviewed in (Daigle et al. , 2012) and will not be de
scribed here. The goal is to compute p(EOLkpIYo:kp ) and 
p( RU Lkp IYOkp) . The representation of p(Xkp, e kp IYOkp) 
is determined by the algorithm used for the estimation step. 
In any case, here, we assume it is given as a set of weighted 
samples {(x~~, e~%p) , W~~kp }. In the case of the unscented 
Kalman fil ter (Julier & Uhlmann, 1997,2004) and the parti
cle fi lter (Arulampalam et al. , 2002), the distribution is pro
vided in this fonnat , otherwise, the provided distribution can 
be sampled. 

Here, we follow a sample-based approach (as opposed to 
analytical methods) to the prediction problem to incorpo
rate the uncertainty (Sankararaman et al. , 20 11 ), in which 
each sample is simulated to EOL. The approach is shown 
as Algorithm 1. For each of the No; samples of the state
parameter di tribution , we sample from the input distribu
tion, Ukp, Nu. future input trajectories (where a single trajec
tory V kp ~ {Ukp, Ukp+1, .. . }) with weights Wu.,kp , and for 
each of these traj ectories, simulate Nv trajectories with pro
ce s noise (lines 10-14). At the end, we obtain a weighted 
set of EOL predictions for each of these simulations, total
. N N N ' {E OL j j } Nx X Nu X Nv (li 15 lllg x x u X v , I.e., kp' w kp j= l nes 
and 16). 

In the algorithm, line 11 samples the next state from the prior 
probability distribution. Effectively, this is implemented by 

2Estimati on does not need 10 be perfonned by the prognoser if it is pro
vided by some other modu le, such as a diagnoser (Roychoudhu ry & Daigle, 
20 11 ). 
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Algorithm 1 EOL Prediction with Uncertainty 

I ts · {( ix eix ) ix } N x N N 1: npu . X kpl kp ,wx,kp ix=l' ti, 'l1 

2: Outputs: {EOLi wi }NxXNuXNv 
kpl kp 3=1 

3: {U~';" W~~kp } ~u=l '" p(Ukp ) 

4: for ix = 1 to N x do 
5: for i" = 1 to N" do 
6: for iv = 1 to Nv do 
7: j ~ (ix , i", iv) 
8: k ~ k p 

9: x i ~ x i 
k kp 

10: whjJeTEodxL eL U~"p(k)) =Odo 

II : x {+I '" p(xk+Ilx{, e{p' U {p(k)) 
12: k ~ k + 1 
13: x{ ~ X{+I 
14: end while 
15: EOL{p ~ k 
16: j i::c X i,~ IN w kp ~ wx ,kp wu,kp v 

17: end for 
18: end for 
19: end for 

sampling the process noise and executing the state equation 
with that process noise. Each of these trajectories individu
ally are set to have equal weight (l/Nv ), and a statistically 
meaningful result can only be obtained by sampling a suffi
cient number of times . The longer the time to EOL, the more 
of an effect process noise will have and the more samples 
may be necessary to accurately capture the statistics . If de
sired , process noise can be set to zero. 

Line 3 in the algorithm samples the future input trajectories. 
What this space looks like is highly dependent on the under
lying application, and how to sample this space depends on 
what the space looks like. It is up to the modeler to define this 
space and its probability distribution. There are a few simple 
approaches to take that are general ly applicable. One way to 

handle this is to define a family of paran1eterized functions 
that define u(t) for all t ::::: tp. For example, let u(t) = P, 
where P is an unknown value drawn from a known (or as
sumed) distribution. To sample an input trajectory one needs 
only to sample a value for p . Or, let u (t) = PIt + P2t2 Here, 
an input trajectory is sampled by sampling values for PI and 
P2. More complicated functions may also be defined, and as 
long as they are parameterized then it is easy to sample such 
functions . Another general approach is to define the input as 
a set of blocks where within each block the input is constant, 
such as in (Sankararaman et aI., 2011; Saha et aI. , 20] 2). One 
must then sample how long the next block will last and at 
what magnitude it will be. 

The computational complexity of the algorithm is mainly a 
function of the number of unique samples (Nx x Nu x N1J)' 
Secondary to this is how long each sample takes to simulate 
to EOL. Samples with higher rates of of damage progression 
(e.g., due to increased loading) will simulate faster than those 
with lower rates of progression. 

The general algorithm presented here can be instanti ated in 
different ways, depending on how the future input trajectories 
are sampled (line 3) . In the following subsections we describe 
different sampling methods. 

3.1. Exhaustive Sampling 

If the input trajectory space Ukp is finite , then it is possible 
to do predictions over the entire space. This is limited by 
the imposed computational requirements, because even if the 

space is finite, the number of discrete elemen ts may be too 
large. In this case the sampling would be deterministic, so 
repeated executions would always get the same results. 

3.2. Random Sampling 

If the input trajectory space is infinitely large or finite but too 

large for exhaustive sampling, then random sampling may 
be used to obtain a number of sufficient samples. Because 
the process is stochastic, the results will be nondeterministic, 
which could have a Significant impact on performance if too 
few samples are drawn. Further, repeated executions would 
obtain different results , which cou ld make validation of the 
algorithm difficult. However, it is the m os t generally applica
ble approach. 

3.3. Samp]jng with the Unscented Transform 

As an al ternative to random sampling, nonexh austive deter
ministic sampling can also be performed . One method is to 
use the unscented transform (UT). The UT takes a random 
variable x E IRnx , with mean x and covariance P xx, that is 
related to a second random variable y E IRny by some func
tion y = g (x), and computes the mean y and covariance 
P yy with high accuracy using a minimal set of deterministi
cally selected weighted samples, called sigma points (Julier & 
Uhlmann, 1997). The number of sigma points is only linear in 
the dimension of the random vari able, and so the statistics of 
the transformed random variable, i.e., mean and covariance, 
can be computed much more efficiently than by random sam
pling.3 

Here, X i deuotes the i th sigma point from x and Wi denotes 
its weight. The igma points are always chosen such that the 
mean and covariance match those of the original distribution, 
x and P xx . Each sigma point is passed through g to obtain 
new sigma points y , i.e., 

3Yersions of the unscented transform also exist that compute also higher
order moments like skew (Julier, 1998) . 
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with mean and covariance calculated as 

y = L Wi y i 

P yy = L Wi( y i _y) (y i - yf. 

In this paper, we use the symmetric unscented transform, in 
which 2nx + 1 sigma points are symmetrically selected about 
the mean according to (Julier & Uhlmann , 2004): 

{ 

r;, i = 0 
i (nx + r;,)' 

w = 1 
( ) , i = 1, . .. ,2nx 

2 nx +r;, 

X i = { :~ (J(nx+r;,) p xx ) i,::~, ... ,nx 

x- (J(nx+r;,) p xx ) i ,i = nx+1 , ... , 2nx, 

where ( J (nx + r;,) P xx ) i refers to the ith column of the ma

trix square root of (nx + r;, )P~x. Note that the required num
ber of samples is only linear in the size of the state space. 
Here, r;, is a free parameter that can be used to tune higher 
order moments of the distribution. If x is assumed Gaus
sian , then selecting r;, = 3 - nx is recommended (Julier & 
Uhlmann, 1997). Note that with the UT, weights may be neg
ative, and are not to be directl y interpreted as probabili ties. 

If we consider the random variable in this case to be a rep
resentation of our input space, then the UT can be used to 
sample the space of input trajectories. Here, the simulati on to 
EOL is th e nonlinear transformation, as in (Daigle & Goebel, 
2010). A representation of the input space for this frame
work is required. If the future input trajectories are defined 
by parameterized functions, where the function parameters 
are themselves sampled from some distribution, then the in
put space is defin ed by these parameters and the UT can be 
used to sample from this parameter space. The number of 
samples would be linear in the number of paranleters (as this 
defines the state space for the UT). By using the UT to sam
ple this para meter space, in effect we obtain representative 
samples of the input trajectory space. 

If the input space cannot be transformed to a representation 
amenable to the UT, then this approach cannot be used. Such 
cases , however, may not appear often in practice since this 
would imply that it is difficul t for the modeler to define the 
input space in the first place. That is , an easy and practical 
way to define the input trajectory space is by sampling a finite 
set of parameters that define a particular input trajectory. 

R, 

v 

Figure 2. Battery equivalent circuit. 

4. CASE STUDY 

We select a lithium-ion battery as a case study on which to 
demonstrate and validate our approach. We first present the 
battery model. We then apply the approach to experimental 
data and demonstrate the impact of prognostics uncertainty. 
We then present a number of simulation experiments to more 
ystematically explore these issues . 

4.1. Modeling 

The battery model is based on an electrical circuit equiva
lent shown in Fig. 2, similar to models presented in (Chen 
& Rincon-Mora, 2006; Barsal i & Ceraolo, 2002; Ceraolo, 
2000). The large capacitance Cb holds the charge qb of the 
battery. The R cp-Ccp pai r captures the major nonlinear 
voltage drop due to concentration polarization, Rs captures 
the so-called I-R drop, and Rp models the parasitic resistance 
that accounts for self-discharge. This simple battery model is 
enough to capture the major dynamics of the battery, but ig
nores temperature effects and other minor battery processes. 

The state-of-charge, SOC, is computed as 

SOC = 1 _ qmax - qb 
Crnax ' 

where qb i the current charge in the battery (related to Cb), 

qmax is the maximum possible charge, and Cmax is the max
imum possible battery capacity (i.e., nominall y, its rated ca
pacity). The concentrati on polarization resistance is a nonli n
ear functio n of SOC: 

Rcp = R cpo + R CPl expRcP2 (1 - SOC) , 

where R cpo , R CPl , and R CPl are empirical parameters. 
The resis tance, and , hence, the voltage drop, increases ex
ponenti al ly as SOC decreases (Saha et al., 201 2). 

Voltage drops across the individual circuit elements are given 
by 

Vb = qb/Cb 

Vcp = qCp/Ccp 

Vp = Vb - Vcp , 

where qcp is the charge associated with the capacitance 
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Parameter 
Cb 
R. 
R.p 
Cc p 
Rc po 
RC Pl 

R C P 2 

q'max 
Cm a x 

Val ue 
9844 
0.143014 
500 
70.3767 
0.019829 
3.68606 x 10-14 

31.9213 
41400 
6900 

Table] . Ba ttery M odel Parameters 

--Measured 
- - - Predicted 

2+-----~----~----~----~----~~-

o 500 1000 1500 2000 2500 
Time (s) 

Figure 3. Battery model comparison with experimental data. 

Cc P. The terminal voltage of the battery is 

where i is the battery current at the teaninals. Currents asso
ciated with the individual circuit elements are given by 

ip = Vp/R" 
ib = ip + i 

icp = ib - Vcp/Rcp · 

The charges are then governed by 

qb = - ib 

qC P = icp 

We are interes ted in predicting end-of-discharge as defi ned 
by a voltage threshold VEOD . So, CEOL consists of only one 
constraint: 

Cl : V > VEOD · 

From experimental data of battery discharges, we have iden
tified the parameters of the battery model through model fi t
ting, and their values are shown in Table 1. A comparison of 
measured and predicted behavior for known current inputs is 
shown in Fig. 3. The associated inputs are shown in Fig. 4. 
Clearly, the model is not perfect, so prognosis will have to 
account for the model uncertainty. 

4 
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Figure 4. Battery current inputs. 

4.2. Experimental Results 

To demonstrate and validate the approach, we apply our prog
nostics algorithms to the experimental data given in Fig. 3. 
For state estimation, we use the unscented Kalman filter 
(UKF) (Julier & Uhlmann , 1997 ; Daigle et aI. , 2012). Here, 
we use the UKF since the model is nonlinear and generally 
perfOims better (and is easier to apply) than the extended 
Kalman filter (J ulier & Uhlmann, 1997). The model uncer
tainty is captured through proce s noise, represented using 
norm al distributions with zero mean. Sensor noise is gener
ally very small but is also assumed to be zero-mean Gaussian. 

The battery current is viewed as an input to the model, and 
its future values must be hypothesized. First, we assume that 
the future inputs are known exactly (we use the exact load 
profile available from the experimental data shown in Fig. 4), 
and that there is no process noise. The RUL predicti ons ver
sus ti me are shown in Fig. 5 . The predictions are shown 
agai nst the true RUL (denoted as RU L*) along with an accu
racy cone defined by a = 0.15. Predictions are made every 
100 s. Here, we see that the predic ti ons are quite accurate 
and remai n within 15% of the true RUL until about 2500 s. 
The UKF can partially correct for the model uncertainty, but 
towards the end of the discharge the error cannot be fully cor
rected and the re lative accuracy is reduced, due to the high 
sensitivity to the final voltage drop. The only uncertain ty cap
tured by these predicti ons is th at in the state estimate, which 
is very small (so is not visible in the figure). Clearly, these 
predictions do not capture the true uncertainty so would be 
incorrect to use for decision-making. 

Process noise must be con ectly represented in order to yield 
usable results. Fig. 6 shows the RUL predictions versus time 
in this case, using N v = 100. ow, we see that the uncer
tainty represented in the prediction covers the decrease in ac
curacy observed towards the end of the discharge, i.e., the true 
RUL is now conta ined within the uncertainty bounds. 

If the future inputs are not known, then some assumption 

must be made about what they look like. First, we assume 
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Figure 5. Prediction perfOlmance assuming known future in
put trajectory and no process noise wi th a = 0.15. 
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Figure 6. Prediction performance assuming known future in
put trajectory and 100 process noi se samples with a = 0.15. 

just a constant current of 2.25 A, which is the average current 
drawn during the actual experiment (shown as the dashed line 
in Fig. 4). Here, we as ume there is no process noise. The re
sults are shown in Fig. 7. Clearly, ass uming the average cur
rent results in a significant performance degradation. Around 
1000 s, the average current until discharge is lower than hy
pothesized, so RUL is underestimated. Arou nd 2500 s, the 
average current until discharge is higher than hypothesized, 
so RUL is overestimated. It is apparent that the RUL predic
tion is very sensitive to the uncertainty in the future inputs. 
In th.is case, the predictions are much more sensitive to input 
uncertainty than model uncertainty, since the model itself is 
more sensitive to changes in input than to the added process 
noise. 

3500 
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2500 

2: 2000 
....l 
~ 
~ 1500 

1000 
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- - -RUU 
[(1- )RUL' ,(l+ )RUU] 

• Median RU L Prediction 

O+------r------.-----~----~------~~ 

o 500 1000 1500 2000 2500 
Time (s) 

Figure 7. Prediction perfonnance assuming average future 
input trajectory and no proce s noise with a = 0.15. 

Instead of assuming a single possible future input trajectory, 
we now consider multiple trajectories. At each prediction 
step, we assLUne the future current is drawn from a uniform 
distribution between 1 and 4 A and remains constant for the 
remainder of the discharge. Looking at Fig. 4, the current 
does not remain constant, but serves as a reasonable assump
tion for prediction purposes, i .e., rather than assuming vari
able discharge currents we assume constant discharge cur
rents within the range of possible currents, which is much 
easier to sample from and still captures the best- and worst
case inputs . Fig. 8 show the results using 10 samples and 
Fig. 9 shows the resu lts using 100 samples. The uncertainty 
in the RUL predictions now is much more accurately rep
resented. Clearly, the more samples used, the smoother the 
predictions and the better the description of the uncertainty. 
It is also clear here that the uncertainty in the future inputs 
causes about an order of magnitude more spread in the RUL 
predictions than the uncertai nty associated with the process 
noise, comparing the figures (specifically, relative median ab
solute deviation averaged 62% in Fig. 6 and 27.9% in Fig. 8). 
Therefore, it would be acceptable to drop the process noise, 
which would save also on the required amount of computa
tion. 

Further improvement in computation can be achieved by us
ing the unscented transform to select input trajectories. In this 
case, the future input trajectories are parameterized by a sin
gle number, representing the future current draw, taken from a 
unifolm distribution. Applying the UT to this case yields only 
three future input trajectories that need to be simulated. There 
is no guidance to choosing a value for K when the distribution 
i uniform, so we u e the sugge ted value of K for when the 
di tribution is Gaussian, which , for a one-dimensional input 
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Figure 8. Prediction performance with 10 future input tra
Jecton es drawn from a uniform distribution and assuming no 
process noise with a = 0.15. 
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Figure 9. Prediction performance with 100 fu ture input tra
Jectones drawn from a uniform di tribution and a suriling no 
process noise with a = 0.15 . 

space, is K, = 24 With K, = 2, the UT happens to choose the 
three points as the mean of the di tribution and its two end
points, thus naturall y capturing the input bounds. The re ults 
are shown in Fig. 10. Comparing to the ca e where 100 ran
dom input trajectories were generated, using the UT we are 
able to capture approximately the same distribution with only 
a fraction of the computational effort. The figure shows the 
results from the three sigma points directly, but the distri bu
tion can be reconstructed from this minimal set of samples. 
We will show in the following subsection that the UT is able 
to do till accurately. In this case the UT provides both the 

4 A smaller val ue of K. wi ll bring the sigma points closer together. and a larger 
va lue spreads them oul. 
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Fi~re 10. Prediction pelformance with future input trajec
tone drawn from a uni form di tJi bution u ing the unscented 
transfoml and assuming no process noise with a = 0.15. 

RUL distribution and its bounds deterministical ly. Note that 
for a bounded distribution one may al ways choose the end
point to determine the RUL bounds, however, in thi s case 
the UT does this automatically with the added benefit of be
ing able to reconstruct the RUL distribution from those two 
points and the mean. 

4.3. Simulation Results 

For a more careful analys is, we ran a set of comprehensive 
simulation experi ments. In these experiments, by using a sim
ulation model, we eliminate several source of uncertain ty: (i) 
the tate at the ti me of prediction is assumed to be known ex
actl y, (ii) the system model is known exactly, (iii) the p roce s 
noise distributi on is known exactly, and (iv) the future input 
trajectory distribution is known exactly. Thi focu e the re
sulting uncertain ty to only that associated with the process 
noise and the future input trajectories. In each experiment, 
the true inpu t trajectory is am pled from the known di tri bu
tion, while the algorithm knows only the distri bution. 

To analyze prognostics performance we use me relative ac
curacy (RA) metric to characteri ze the accuracy (Saxena, 
Celaya, Salla, Salla, & Goebel, 2010). For RA we use the me
dian as the mea ure of centra l tendency since me RUL distri
butions are skewed. For spread, we use relative median abso
lute deviation (RMAD). For each experiment we perform 100 
iterations, and average the results over these iterations. We 
compute also a computation time metric Tcpu which is com
puted as the fraction of computation time taken for a predic
tion tcpu over the true RUL, RU L' , i.e, Tcpu = tcpu/ RU L' . 

Result with process noise but without input unceltai nty are 
shown in Table 2. In this case proce s noise has little effect 
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N" RA RUL RlVlAD RUL 1 ~pu 
0 99.42 0.00 5.91 x 10 
10 99.28 1.34 6.75 x 10- 4 

50 99.15 1.47 6.97 x 10- 4 

100 99.02 1.39 7.34 x 10- 4 

Table 2. Prognostics Performance with different values of N v 
and no input uncertainty. 

on accuracy, so even when ignoring process noise (indicated 
by Nv = 0 in the table) accuracy i pretty good, although the 
RMAD is 0 so the true spread is being underrepresented by 
the RUL prediction. Even with only 10 samples the predic
tion spread is quite close to the case with 100 samples (with 
a difference of only 0.26 in RA and 0.05 in RMAD), so only 
having a about 10 samples is acceptable for till s level of pro
cess noise. As process noise increase , more samples will be 
needed to properly cover that space. 

We now focus on the effect of the uncertainty in future in
puts, so elimjnate process noise from the simulation. The 
actual input current is drawn from a uniform di stribution be
tween 0.75 and 2.00 A. If the prediction algorithm always 
elects the mean, 1.375 A, as the future input cunent, then 

the relative accuracy of the first prediction point varies from 
about 52-97%. RA is high when the actual current is close to 
the mean but low when far from the mean . Because no un
certainty is taken into account, when the actual cunent i far 
from the mean not only will the accuracy be low, but the pre
dictions will be of high precision and therefore be presented 
as predictions with high confidence, which would be incor
rect and lead to poor decision-maki ng. 

If we instead sample randomly from the input di stribution, 
the relative accuracy on average does not rea ll y change fro m 
when assuming only the mean input. This is because RA is 
computed based on the median RUL predicti on, and when 
the input distribution is sanlpled enough, then we will get the 
correct mean of that distribution, wruch, because the di tri
bution is symmetric, will correspond to the median RUL pre
diction. The key difference, however, is that now the RUL 
spread is more accurately represented by the predicted RUL 
distribution. The true RMAD is around 27%. Table 3 shows 
the prediction performance for different val ues of Nu . RA 
is about the same and the prediction spread, as computed by 
RMAD, approaches the true spread with around 25 samples 
(with about 7 times the computation as when predicting with 
only one sample). Using the UT (in which only 3 samples are 
needed), the performance is simjlar with only about 2.6 times 
as much computation needed compared to using only a single 
sample. Using Ii, = 2 for the UT, it chooses the mean and the 
endpoints of tbe assumed un iform distribution, so naturally 
provides the median and best- and worst-case RULs. Using 
the weights of the sigma points we can reconstruct the distri
bution it repre ent , which is not possible when just choosing 
the e values in an ad hoc manner. 

Nu RARUL RlVlAD RUL 1 ~l!.u 
1 62.98 0.00 6.31 x 10- 4 

10 74.57 25.96 2.36 x 10 - 3 

25 75.90 27.07 5.39 x 10- 3 

50 78.54 27.50 9.61 x 10- 3 

75 74.31 27.55 1.48 x 10 - 2 

100 76.71 27.61 2.08 x 10 - 2 

UT 76. 77 26.72 1. 61 x 10- 3 

Table 3. Prognostics Performance with different values of Nu 
and no process noise. 

5. CONCLUSIO S 

In this paper, we analyzed the sources of uncertainty in prog
nostics and developed a general model-based prediction al
gorithm that incorporates trus uncertainty to provide EOL and 
RUL results that correctly capture the true uncertainty in EOL 
and RUL. We also introduced the use of the unscented trans
form for efficiently sampling from the space of possible fu
ture input trajectories, which can achieve the same results as 
random sampling but at a fraction of the computational effort 
( ee Table 3). 

We applied the approach to both real and simulated lithium
ion battery data, where end-of-discharge was predicted . Here 
it was demon trated that it is important to realize th at for any 
source of uncertainty that is ignored in the prediction, even 
though in one particular case the result may be accurate, the 
actual uncertainty is underrepresented and so is not captur
ing the right information needed fo r decision-making. If the 
uncertainty is accounted for, on average the accuracy will be 
the same as if just average perfo rmance is assumed, but the 
spread will be correctl y repre ented and the actual system be
havior will fall within the predicted spread. Since the actual 
path the system will lake is uncerta in , it is be t practice to 
capture the uncertainty as accurately as possible. It is impor
tant al 0 not to overestimate the uncertai nty. For example, 
wben defining the space of po sible future input traj ect0l1es 
it i important to constrai n these trajectories as much as pos
sible. 

In thi s paper, we have shown that it is possible, by using the 
unscented transform, to esti mate the uncertai nty in predic
tions in a deterministic manner and with reduced computa
tional burden while still keeping the important statistical in
fO lmati on in tact. Furtllemlore, since the uncenai nty in future 
inputs happen to be unifo rml y di stributed in our example, 
the UT method also determines the bounds of the uncertai nty, 
which can be extremely valuable information in making de
cisions based on prognos tic estimate in order to contain the 
risk. Minimizing tile computational cost maintains the real
time application potential of the algorithm without compro
mising on the quali ty of predicti on. This allows us to move a 
step closer towards adapting prediction algorithms, which are 
generall y inherently stochastic, to meet the needs of current 
certification procedures and protocols tbat require determin-
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istic system outputs. This also lays the foundation to start 
investigating other methods that can be used for generalized 
situations that do not assume a specific distribution type for 
future input uncertainty. 

In the future, we will further investigate these issues on other 
systems and with additional experimental data. It is also im
pOitant to investigate more closely the applicability of the UT 
for sampling the input trajectory space in a variety of practical 
applications. 
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