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ABSTRACT 

This article discusses several aspects of uncertainty represen­
tation and management for model-based prognostics method­
ologies based on our experience with Kalman Filters when 
applied to prognostics for electronics components. In par­
ticular, it explores the implications of modeling remai ning 
useful life prediction as a stochastic process and how it re­
lates to uncertainty representation, management, and the role 
of prognostics in decision-making. A distinction between the 
interpretations of estimated remaining useful life probabili ty 
density functi on and the true remaining useful life probabil­
ity density function is explained and a cautionary argument 
is provided against mixing interpretations for the two while 
considering prognostics in making clitical decisions. 

1. INTRODUCTION 

Model-based prognosti cs methodologies in electronics prog­
nostics have been developed based on Bayesian tracking 
methods such as Kalman Filter, Extended Kalman Filter, and 
Particle Filter. The models used in these methodologies are 
mathematical abstracti ons of the ti me evolution of the degra­
dation process and the cornerstone for the estimation of re­
maining useful life. The Bayesian tracking framework allows 
for estimation of state of health parameters in prognostics 
making use of available measurements fro m the system under 
consideration . In this framework, health parameters are re­
garded as random vari ables for whi ch, in the case of Kalman 
and Extended Kalman filters, their distribution are regarded 
as Normal and the estimation process focuses on computing 
e timates of the expected value and variance as they relate to 
the mean and variance that full y paran1etri ze the Normal di s­
tribution. In addition to the health estimation process, fore-
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cas ting of the health parameters is required up to a future time 
that results in crossing of the pre-established failure condition 
threshold . This is ultimately required in order to compute re­
maining useful life. 

Previous work appli ed to electrolytic capacitor and power 
MOSFETs (Metal-Oxide Semiconductor Field-Effect Tran­
sistor) has focused on implementation of the previously 
described process and has presented remaining useful 
life results without any uncertainty measure associated to 
them (J. R. Celaya et a!. , 2011 ; J. Celaya, Saxena, Kulka­
rni , et aI. , 201 2; J. Celaya et aI. , 2011 ; J. Celaya, Kulkarni, 
et al., 2012). Other work on prognos tics based on particle fil­
tering has been presented regarding remaining useful life as 
a random vari able and presenting cOlTesponding uncertainty 
estimates (Sal1a et al ., 2009; Daigle & Goebel, 2011). This 
work focuses on reviewing uncertainty representation tech­
niques used in model-based prognostics and on providing an 
interpretation of uncertainty for the electronics prognostics 
applications previously presented, and based on Kalman fil ­
ter approaches for health state estimation. 

The Bayesian tracki ng framework allows for modeling of 
sources of uncertainty in the measurement process and also 
on the degradation evolution dynamic model as applied on 
the application under considerati on. This is done in terms 
of an additive noise in the model, which is regarded as zero 
mean and normally distri buted random vari able. This allows 
for the aggregation of different source of uncertai nty for the 
health state tracking step. Its implications on the uncertainty 
estimation for remaining useful life (RUL) including futuJe 
state forecasting are discussed in this paper. 

1.1. Model-based prognostics background 

As mentioned earlier, a model-based prognostics methodol­
ogy based on Bayesian tracking con ists of two steps, health 
state estimation and RUL prediction . The followin g is a high 
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level description of the process that will help to provide the 
appropriate context for the upcoming discussion. 

State of health estimation: To initiate the predicti on, it is 
necessary to first establish a starting point, the current state 
of health . A model-based algorithm employs dynamic mod­
els of the physical behavior of the system or component under 
consideration, along with dynamic degradation models of key 
parameters that represent the degradation over time. Bayesian 
tracking algorithms like Kalman filter, extended Kalman fil ­
ter, and particle filter are among the algorithms typically em­
ployed in a model-based progno tics methodology (Daigle & 
Goebel, 2011 ; Saha & Goebel, 2009; J. Celaya et al. , 2011 ; 
J. Celaya, Saxena, Kulkarni , et aI. , 201 2) . In such methodolo­
gies, dynamic models of the nominal system and degradation 
models are posed as a discrete state-space system in which 
the state variable x (t) consists of physical vari ables, and in 
some cases, it includes degradation model parameters to be 
estimated online. 

The models consist of a state equation representing the ti me 
evolution of the state as hown in Eq. (1a); where u(t) is 
the system input and w(t) is a zero-mean and normally dis­
tributed additive noise representi ng random model error. In 
addition , the measurement equation (Eq. ( I b)) re lates the 
state variable to measurements of the systems y(t). The teon 
v(t) is a zero-mean and normally distributed additive noise 
representing the random measurement error. The measure­
ment and model noise normali ty assumption could be relaxed 
when using computational Bayesian methods like particle fi l­
tering. 

x (t) = f (x(t), u(t)) + w(t) 
y(t) = h(x(t)), u(t)) + v(t) 

( l a) 

( Ib) 

The state of the sys tem, as it evo lves through ti me, is peri od i­
call y estimated by the filter as measurements y( t) of key vali ­
abIes become available through the life of the system. T his 
is the health state estimation tep of the model-ba ed prog­
nostics algorithm. Typicall y, in a model-based prognostics 
method, a Bayesian tracking algorith m attempt to e ti mate 
the expected value of the joint probabili ty density fu nction of 
the state x(tp ). Where tp is the time at which a remaining 
useful life prediction is computed using only system observa­
tions up to this point in time. Different assumptions about the 
probability density fun ction are used depending on the fi lter 
used. 

Remaining useful life estimation (prediction): In order to 
compute remaining useful li fe , the state-equation (Eq. ( l a)) 
of the model is used to compute the state evolution in a fore­
casting mode until an end-of-life threshold is reached at time 
denoted by tEOL. The la t state estimate at time tp in the 

health state estimati on step is typically used as initial state 
value for forecasting x(t) up to tEOL. Remaining useful li fe 
R(tp ) at time of prediction tp is defined as 

(2) 

where tp is deterministic and known, and tEOL is a random 
variable function of the failure threshold and the state esti­
mate x (tp ). This function includes the state forecasting step 
and tbe identification of when the failure threshold is crossed. 

1.2. Ideas explored in this paper 

In this paper we explore how the state vector variable should 
be interpreted during the tracking pha e and how it is related 
to the process of final RUL prediction. This probability inter­
pretation is often overlooked in the literature by interpreting 
the state vector as the hea lth indicator and a threshold is used 
on this variable in order to compute EOL (end-of-life) and 
RUL. 

Here, we discuss how the state estimation process is defin ed 
in the Bayesian framework. We will , in particul ar, focus 
on the output of the estimation process in the Kalman filter 
fra mework. Furthermore, we try to interpret the objective 
of the Kalman filter, whether to es timate x (t) as a random 
vari able or to estimate a parameter of the probability density 
functi on of x(t) - such as expected value or variance- or both . 

In addition, we will challenge how we usually think about 
RUL and how it has been interpreted using other, similar, 
methods. The main objective here is to characterize its impact 
on uncertainty representation and management. For instance, 
if RUL is considered as a random variable and we assume that 
a model-based prognostics framework based on the Kal man 
fi lter generates RUL with a particular variance, then it is in­
correct to arbitrarily expect, assume, or force the variance to 
be smal l. The variance of random variables such as RUL is 
not under our control as explained in the next section. 

These concepts are discu sed in the context of prognostics of 
electronics, particularly, the uncertai nty propagation in power 
MOSFET and capacitor prognostics applications as presented 
in J. R. Celaya et al. (2011 ); J. Celaya, Saxena, Kulkarni , et 
al. (2012) and J. Celaya et aJ. (20 11 ); J. Celaya, Kulkarni, et 
a1. (20] 2) respectively. In these applications, uncertainty has 
not been explicitly considered in the predicti on results and 
thi s paper is an effort towards augmenting the methods used 
there with an uncertainty management methodol ogy. 

1.3. Background on Uncertainty Management 

There are several different types of sources of uncertainty that 
must be accounted for in a prognostic system formulation. 
These sources may be categorized into following four cat­
egories and accordingly require separate representation and 
management methods. 

2 
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1. Aleatoric or Statistical Uncertainties: these uncertain­
ties arise from inherent variabili ty in any process and 
cannot be eliminated. They can be characterized by mul­
tiple experimental runs but cannot be reduced by im­
proved methods or measurements. Sampling fluctuati ons 
from the characterized probability density functi on of a 
source of aleatoric uncertainty can result in different pre­
dictions every time. Examples of such uncertainties in­
clude manufacturing vari ations, materi al properties, etc. 

2. Epistemic or Systematic Uncertainties: these uncer­
tainties arise due to unknown details that cannot be iden­
tilled and hence are not incorporated into a process. With 
improved methods and deeper investigations these uncer­
tai nties may be reduced but are rarely eliminated. Mod­
eling uncertainties fall under this category and include 
modeling errors due to unmodeled phenomena in both 
system model and the fault propagation model. 

3. Prejudicial Uncertainties: these uncertainties arise due 
to the way a process is set up and is expected to change 
if the process is redesigned. Conceptually these can be 
considered a type of epistemic uncertainty, except it is 
possible to control these to a better extent. Examples fo r 
these uncertainties include sensor noise, sensor coverage, 
informati on loss due to data processing, various approx­
imations and simplifica tions, numerical errors, etc. 

While it is possible to reduce some of these uncertainties, it is 
not possible or practicall y beneficial to eliminate them alto­
gether. However, representing them and accounting for them 
in prognostic outputs is extremely important. Uncertainties 
in a prognostic estimate directly affect the associated deci­
sion making process, which is typicall y expressed through the 
concept of risk due to un wanted outcomes. Several PHM ap­
proaches quantify risk based on uncertainty quantification in 
an algori thm 's output and incorporate it into a cOlTesponding 
cost-benefit equation through monetary concepts (Bedford & 
Cooke, 2001). 

1.3.1. Uncertainty management in prognostics 

In the context of prognostics and health managemen t uncer­
tainties are talked about from quantification, representation, 
and management points of view (deNeufville, R., 2004; Ha t­
ings & McManus, 2004; Ng & Abram on, 1990; Orchard et 
aI. , 2008; Tang et al ., 2009). While al l tIu·ee are different 
processes they are often conf used with each other and inter­
changeably used. 

Uncertainty quantillcation: Deals with characterizing a 
source of uncertainty so it can be incorporated into mod­
els and simulations as correctly as possible. A characteri­
zation or quantification step may involve carefull y designed 
experimenta ti on with actual systems observed in realistic and 
relevant environments. An accurate quantification of uncer­
tainties is considered very challenging as also acknowledged 

in Engel (2009). Quantifica tion of uncertainty from various 
sources in a process has been investi gated and a sensitivity 
analysis conducted to identify which input uncertainty con­
tribu tes most to the output uncertainty in prognosti cs for fa­
tigue crack damage (Sankararaman et aI. , 2011). This allows 
prioritizing and subsequently focusing on more critical uncer­
tainties instead of all. 

Uncertainty representation: Next step is the representation 
of unceltainty, which is, often times, guided by the choice 
of modeling and simulation frameworks. There are several 
methods for uncertainty representation that vary in the level 
of granularity and detail. Some common theories include 
classical set theory, probability theory, fu zzy set theory, fu zzy 
measure (plausibility and belief) theory, and rough set (up­
per and lower approximations) theory. However, in the PHM 
domain the representati on of uncertainties is dominated by 
probabilistic measures (DeCastro, 2009; Orchard et a1. , 2008 ; 
Saha et al ., 2009), which offer a mathematically rigorous 
approach but assume availability of a statistically sufficient 
database. Other approaches, such as possibility theory (Fuzzy 
logic) and Dempster-Shafer theory, can be employed when 
only scarce or incomplete data are available (Wang, 2011). 
Furthermore, the choice of type of probability density fun c­
ti on affects the quality of prognostic outputs. Several ap­
proaches in the literature resorted to assuming Normal proba­
bili ty density fun ctions, however this choice should be guided 
by the results of the uncertainty characterization and quantifi­
cation step. 

Uncertainty management: The most loosely used term in 
the PHM literature in the context of uncertainty is th at of 
uncertainty management. Uncertainty management includes 
two main functions, to incorporate all relevant andlor sig­
nifican t sources of uncertain ty in to prognostic models and 
simulations. Therefore, the problem formulation stage it­
self lays a fo undation for an effective uncertainty manage­
ment. Once all relevant sources of uncertainty are identified 
and included, the uncertainty propagation is the next com­
ponent towards effective managemen t. Various measures of 
uncertainty must be combined in an appropriate manner in 
the prognostic model as the input variability filters through a 
complex (possibly non-Linear) system model. 

If, in a perfect situation, all sources of uncertainties are iden­
tified, modeled, and managed correctly, tbe outpu t probability 
density func tion for random variables like RUL or End-of-life 
(EOL) would match the true spread and would not change 
from one experiment to another. This is, however, in practi ce 
impo sible to achieve because no model is perfect and not all 
sources of uncertainties can be characterized. Furthermore, 
an exhaustive sampli ng-based method such a a Monte Carlo 
simulati on would be computationally, prohibitively expen­
sive. This has inspired the development of i.ntelligent sam­
pling based algori thms (DeCastro, 2009; Orchard et aI. , 2008; 
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Saha et al., 2009) and mathematical transformations, such as 
Support vectors (Saha & Goebel, 2008) and Principle Com­
ponent analysis (Usynin & Hines, 2007), that result in minor 
approximations but capture most details of the true vari abili ty. 
It may not be possible to identify and accurately characteri ze 
all sources of uncertainty and hence use of a sensitivity analy­
sis is reconunended to isolate the most important factors (Gu 
et aI. , 2007 ; Sankararaman et al ., 2011 ; Tang et aI. , 2009). 
Through effective uncertainty management practices one can 
at most strive towards bringing the predicted estimate close 
to the true spread and not arbitrarily reducing the spread of 
RUL itself. What can be minimized, is the variability in the 
estimate of a given parameter of interest, not the vari abili ty in 
the parameter of interest itself. 

2. REM AINING USEFUL LIFE STO CHASTIC MODELING 

Remaining useful life in a prognostics context is defined clif­
ferently than in a reliability context. In prognostics, it is im­
plied that remaining useful life at time tp is a conditi on-ba ed 
estimation of the usage time left unti l fail ure, using measure­
ments of key variables and past usage information up to time 
tp. Thi process typically consists of forecasting the future 
state of health beyond tp and identifying when the state of 
health will cross a failure threshold representative of a func­
tional failure. In addition, RUL in prognostics considers -
implicitl y or explicitly- future usage conditions. This is not 
the case in the reliability context. Given the many sources 
of uncertainty evident from a quick assessment of all that is 
involved in computing RUL for a system, it is common to 
consider RUL as a non-deterministic quantity. Furthermore, 
RUL is also a time evolving process, meani ng that RUL at 
time tp will be different than RUL for t =1= tp. This can be 
well illus trated with the use of the alpha-lambda prognostics 
metri c (Saxena et al ., 2010) as seen in various publications on 
prognosti cs (J. R. Celaya et a!. , 2011 ; J. Celaya et al. , 20 11 ). 

2.1. Remaining useful life as a stochastic process 

A random process or stochastic process is defined as a collec­
tion of random variables. Following the definition presented 
in Gross and Harris (1998), a stochastic process is a "mathe­
mati c abstracti on of an empuical process whose development 
is governed by probabilistic laws". Furthermore, it is defined 
as a family of random variables {X(t) , t E T} where T is the 
time range and X(t) is the state of the process at ti me t. The 
time range could be discrete or conti nuous. 

A stochastic process is also used in the signal-processing 
context to represent non-deterministic (stocha tic) sig­
nals (Oppenheim & Schafer, 1989). From Kal man (1960) we 
get the following explanation as it relates to filtering: "Intu­
iti vely, a random process is simply a set of random variables 
which are indexed in such a way as to bring the notion of time 
into the picture" . 

In several applications, RUL prediction is a process in which 
periodi c computati ons of RUL are generated through the life 
of the system under considerati on. In our previous work on 
power MOSFET prognostics (1. R. Celaya et aI. , 2011 ), peri­
odic measurements (up to every minute) are avail able. RUL 
is computed periodically and can be considered as a random 
process R(t) . In contrast, in our previous work on elec t.rolytic 
capacitor prognostics (1. Celaya et aI. , 2011 ), measurements 
are not avai lable at regular time intervals. RUL computations 
are made multiple times whenever a measurement is avail­
able. In this case, R(t) can also be considered as a random 
process but the set T will contain only the times at which 
RUL was computed. 

2.2. Implications on uncertainty management 

The definition of RUL as a random variable or random pro­
cess has many implications on uncertai nty management and 
in the representati on of uncertainty in a patt icular model­
based prognostics methodology. If RUL is not modeled 
within a probability framework, like a fuzzy variable or just a 
deterministic variable, uncertai nty management activities will 
differ. To illustrate, let us consider a simple point estimate ex­
ample fro m basic mathematical statisti cs (Bain & Engelhardt, 
1992). 

A parameter estimation example: Let us assume that we 
can perform a set of run to failure experiments with high level 
of control, ensuring same usage and operating conclitions. In 
additi on, remai ning useful li fe at time tp is computed by mea­
suri ng the elapsed time from tp until failure for al l the n sam­
ples (R1 , . . . , R,.) on the set of nlI1 to failure experiments. 
Assumi ng that these random samples come fro m a probabil­
ity density function f R(r), with expected value E(R) = J.L 
and variance V ar(R ) = (J2. 

Let 81 be a parameter estimator of the mean J.L of fR, with 
expected value E(81 ) = J.LBt and variance V (81 ) = (JBt 2 

T his estimator will be a function of all the sample val ues and 
will have a probabili ty density fu nction fBt . 81 is a point esti­
mate of the random variable R such as the sample mean, the 
median or some other locati on statistic. ow, from the uncer­
tai nty management perspective in prognostics, it is necessary 
to j udge the ability of the algorithm to properly compute the 
point estimate of the process, in this case, to properly esti­
mate J.L. So it is expected that thi s estimate 81 has the least 
variability, the least variance possible, therefore maki ng 81 

less uncertain. As a result, (JBt 2 should be as small as poss i­
ble. It is, on the other hand, incorrect to expect the estimation 
proce S to reduce (J2 itself. 

This is often misinterpreted for prognostics methodologies 
base on computational statistics that do not directly foc us on 
a point estimate but on generating an approxi mation of the 
distribution of R. Since the variability can be assessed by a 
measure of spread like the sample standard deviation COITI-
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puted directly from the sample distribution of R, again, this 
variation should not be arbitrarily decreased by tuning of the 
algorithm since it is intended to represent the real statistical 
uncertainty of the process. 

The previous discussion applies to RUL predictions without 
loss of generality as long as they are modeled as random vari­
ables, which is typically the case. The concept can be further 
described considering the sample average R as the estimator 
(81 = R). From basic probability theory (Bain & Engelhardt, 
1992), one can observe that /-to, = /-t and the a lh 2 = a 2 In. 
This estimator is unbiased, and its variance ao,2 can be re­
duced by increasing sample size. But a 2 cannot be reduced 
because it is the inherent variability in the random variable R. 

2.3. Implications on how RUL is computed by statistical 
models 

Let us now consider the complete RUL computation algo­
rithm including state estimation and prediction steps, i.e., the 
prognostics algorithm is a black box estimation of RUL. This 
statistical model can have different focus in providing estima­
tions of R(t). The following situations (although not exhaus­
tive) are considered here: 

1. R(t) could be assumed to be a known random variable 
with a known probability density or mass function (para­
metric case). Therefore, the statistical model will focus 
on providing the best possible estimator of the parame­
ters or key quantities function of the random variable as 
the expected value and the variance. For instance , if R(t) 
is presumed Normal, then the statistical model will pro­
vide an estimate of the mean and the standard deviation 
since they fu ll y parametrize the olmal random variab le. 

2. A computational statistics model could be used to avoid 
making assumptions about the distribution of R(t) there­
fore focusing on computing an approximation of the 
probabili ty density/mass ·function of R(t ). This will be a 
choice for the cases in which there is no knowledge about 
the distribution or the non-parametric case is preferred. It 
will also be the case for when there is no analytica l solu­
tion tractable for the statistical model structure therefore 
the use of a computational model, based on Monte Carlo 
simulation approaches, is needed. 

The uncertainty management focus will differ under the two 
situations described above. In case one, where distribution 
parameters are estimated, the uncertainty management hould 
focus on properly estimati ng the spread parameter 8 s of R(t). 
A spread parameter Bs could be variance or some other esti­
mator focused on representing the variability of the distribu­
tion . This estimator should properly aggregate all the pre­
viously identified sources of uncertainty, like measurement, 
model , future input and environment uncertainty. From the 
uncertainty management perspective, one should not expect 
Bs to be small. Instead, one should expect it to be an accu-

rate representation of the real uncertainty in the real RUL of 
the system . A similar situation arises in the second case. In 
this case an approximation of the distribution of R(t) is com­
puted. Its shape and therefore the spread or variability repre­
sented by this approximati on, should be the real uncertainty 
of the RUL in the system and should not be made arbitrru·­
ily small either by tuning the statistical method to do so or by 
any other arbitrru·y transformation to make this approximation 
more crisp around the location parameter. 

2.4. Implications on decision-making 

Being able to capture the uncertainty correctly is of 
paramount importance in prognostics . This might not always 
be the case for other applications involving parameter estima­
tion . For instance, in a control application, the freq uency of 
the compensation loop is generally high enough to be able to 
dampen the effects of uncertainty in the parameter estimation 
process. For prognostics, this will typically not be the case. 
If the prognostics situation under consideration is used for 
contingency management, in which safety of operation is at 
stake; properly estimating the uncertainty of the true RUL is 
necessary. If the uncertainty estimation is incorrect, then this 
can lead to risky decision-making, leading to reduced safety 
and possibly increasing the change of catastrophic fai lure. A 
similar argument can be made if prognostics is used in a lo­
gistics settings such as condition-based maintenance in man­
ufac turi ng systems or in military operations. 

The previous ru·gument can also be made from the opposite 
end by considering the implications of the decision-making 
method on how RUL is computed and how unceltainty man­
agement is performed. For the last few years, research in 
prognostics and health management (PHM) has mainly fo­
cussed on the prognostics element, which deals with meth­
ods to predict RUL. There have been several methodologies 
published and many more under development for a variety 
of man-made systems. As a result of the previous effort, 
prognostics methodologies have been developed in a sort of 
unbounded or unguided way with respect to how the actual 
method is going to be used in the decision-making process. 
This meas that input from the types of decisions th at will use 
the prognostics infOlmat ion and fro m the overal l optimization 
of system performance have so far not been considered. 

The type of decision-making application may dictate the 
prognostics methodology as well as the types of estimates to 
be generated (recall cases in Section 2.2.3). Consequently, 
thi s will also have an impact on req uirements generation . 
For instance a fleet based optimization of aircraft mainte­
nance operations considers very different decisions as com­
pared to an unmanned aerial vehicle (UAY) mission reconhg­
urarion based on prognostics indication on power train fai l­
ures. Following the same argument, it is clear that different 
decision-making methodologies will have different capabili-

5 
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ties in terms of handling the prognostics information. For in­
stance, an optimization of a particular decision process might 
not be able to work with random variables, therefore a point 
estimate would be provided. This will be different if the opti­
mization itself is able to deal with RUL as a random variable, 
in this case, the computation distribution function of R(t) 
or the estimators of the parameters that fully parametrize it 
would be provided . If the decision-making process, can fur­
ther use information about how reliable the prognostics infor­
mation is, then information about a measure of quality of the 
estimators, which is different than just bias, would be pro­
vided . 

3. UNCERTAI TTY INTERPRETATION AND COMPU -

TATION IN MODEL-BASED PROGNOSTICS WITH 

KALMAN FILTER ESTIMATION 

Model-based prognostics methodologies for electronics com­
ponents like electrolytic capacitors (1. Celaya et al ., 2011 ; 
1. Celaya, Kulkarni, et al., 2012) and power MOS­
FETs (1. R. Celaya et al ., 2011; J. Celaya, Saxena, Kulkarni, 
et al ., 2012) have been previously introduced. The method­
ologies make use of empirical degradation models and a sin­
gle precllISor to fai lure parameter to compute RUL. These 
methodologies rely on accelerated aging experiments to iden­
tify degradation behavior and to create time dependent degra­
dation models. The process followed in these methodologies 
is presented in the block diagram in Figure 1. 

Dynamic 
System 

Real izalion 

v 

HealihSlale 
Estimation 

RUL 
Estimation 

Tesl 
Trajeclory 

Figure 1. Methodology for electronics component prognos­
tics development. 

Accelerated aging tests provided measurements throughout 
the aging process, including measurements at pristine con-

dition and measurements after failure condition. Empirical 
degradation models that are based on the observed degrada­
tion process during the accelerated aging tests are developed. 
The objective of the models is to generate a parametrized 
model of the time-dependent degradation process for these 
components. The time dependent degradation model is trans­
formed into a discrete-time linear dynamic system in order 
to be used in a Bayesian tracking setting. The Kalman filter 
algorithm is used to track the state of health and the degra­
dation model is used to make predictions of remaining useful 
life once no further measurements are available. 

3.1. Prognostics methodology 

The methodology consists of the three main steps described 
below and it is depicted in Figure 2. This is the explanation of 
what it is considered inside the prognostics block in Figure 1. 

This methodology follows from the general concepts of 
model-based prognostics described in Section 1.1.1. In the 
electronics component case, the system dynamics consists 
only of the degradation process dynamics since the prognos­
tics focu es at the component level only. 

I . State tracking (Kalman Filter): The state variable in the 
degradation model V is a precursor of failure parameter 
represented by Eq. (3a). When the degradation model 
uses static parameters (parameters not estimated online 
by the filter), then the state variable is a scalar quantity 
and the state evolution equation is scalar. The degrada­
tion model is expressed as a discrete time dynamic model 
in order to estimate the state as new measurements be­
come available. The simplified Kalman fi lter model set 
up is given as 

X k = A Xk - l + BUk - l + Wk - l , 

Yk=Hxk+Vk· 

(3a) 

(3b) 

The output of this step is the optimal state estimate xp. 
2. Health state forecasting: It is necessary to forecast the 

state variable once there are no more measurements 
available at the time of RUL prediction tp. This is done 
by evaluating the degradation model (Eq. (3a») through 
time using the tate estimate xp from the previous step 
as the ini tial state value for forecasting. 

3. Remaining life computation: RUL is computed as the 
time between time of prediction tp and the time at which 
the forecas ted state crosses the fai lure threshold value F. 

This process is repeated for different values of tp through the 
life of the component under consideration. 

3.2. Kalman Filter Background 

The Kalman filter framework is based on Bayesian parameter 
estimation. A Bayes estimator allows to estimate parameters 
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Figure 2. Model-based prognos tics methodology 

based on prior lmowledge about the parameter distribution. In 
the tracking problem, system measurements serve as a form 
of prior knowledge, therefore the objective is to estimate the 
state x(t) conditional to all the previous measurements of the 
system. The Bayes estimation framework is based on the con­
cepts of risk and loss functions in which the risk is defined 
as the expected loss (Balli & Engelhard t, 1992). This back­
ground information is relevant since it helps to understand the 
statistical origins of the Kalman filter framework which is the 
focal point of the discussions in this paper. Based on the sem­
inal paper for the Kalman filter (Kalman, 1960), the optimal 
state estimate is given as x*Ct) = E[x(t)ly(to ),'" ,yet)]. 
This is the solution that minimizes the risk (expected loss), 
for a loss fu nction based on the estimation error. Furthermore, 
the random process for the state and for the process noise are 
Normal. Additional detai ls on the problem formu lation and 
assumptions are presented in Kalman (1960). 

Implications on Kalman filter for prognostics: Con ider­
ing a scalar implementation of the Kalman filter over discrete­
time model as in Eqs. (3). The output of the fi lter referred 
to as the optimal state estimate xZ is basically given by the 
conditional state estimate Xk = E[Xk IYk] and the state condi­
tional probabili ty densi ty function is given by, 

(4) 

where Pk is the fi lter 's es timate of the error variance. 

The output of the filter is the estimate of the expected value 
Xk, and the estimatio n error covariance Pk . The state random 
vari able xp i normally distributed with mean Xk and variance 
Pk · 

3.3. Uncertainty propagation in prognostics 

Based on the previous discussion regarding the interpreta­
tion of the Kalman fi lter output in terms of probabilities, it 
can be observed that the health state estimation output is a 
Normal random variable with known parameters considering 
the sources of uncertainties derived from modeling error and 
measurement error. 

Uncertainty in the health state estimation step: We assume 

here a scalar case for state estimation, like in the case of the 
capacitor prognostics method where the health indicator is a 
scalar state variable (J. Celaya et aI. , 2011) . Time index p is 
defined as the time of RUL prediction tp , which is also the 
time of the last avai lable measuremen t in the state estimation 
step. The state estim ate xp is a normally distJibuted random 
variable with mean xp and variance Pk . 

(5) 

This variable includes the propagati on of measurement un­
certainty and also model en'or uncertainty as included in the 
Kalman filter implementation. 

Uncertainty in the health state forecasting step : Forecast­
ing is needed for the state vari able to be able to estimate its 
value at a futme time until it crosses a pre-established fai lure 
threshold F. The forecasting process is carried out using the 
state equation (Eq. (3a)) recursively, using the las t health state 
estimate xp as initial value. Let xp (l) be the l tlt step ahead 
forecast starting from xp' From the uncertainty propagation 
point of view and focusing on a one step ahead forecasting 
using Eq. (3a), the forecast value is given by 

(6) 

Variables xp and wp are Normal and independent with known 
mean and variance. Following fro m basic probabili ty theory, 
the forecast xp( l) is also Normal. In general , the ltlt step 
ahead forecast xp( l) will have a Normal dis tribution as well. 
It should also be noted that xp( l) is a fu nction of the las t state 
estimate (xp(l) = f Cxp) ). Considering the forecas t vaJi ables 
as random variables and given the analytical properties of the 
Normal distJ.ibution, the probability density function ix.(l) 

can be derived analytically and is given by, 

(7) 

where the mean is given by 

/ - 1 

J-tl = Alxp + BUp + L A i
, (8) 

i =O 

and the variance is given by 

1-1 

2 (2)l p """"' (A2)i 2 2 (JI = A k + L (Jw + (Jw . (9) 
i=l 

Uncertainty in RUL: Computing the uncertai nty in the RUL 
is more complica ted from an analytical poin t of view. Defin­
ing RCtp) as the remai ning useful life, 

(10) 

The time at end-of-life (tEod is a continuous variable which 
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is computed from the forecast xp(I). 

Let xp(j) be the first forecast value to cross the fai lure thresh­
old F. An interpolation between xp(j) and xp(j - 1) is used 
to compute teoL. Considering that the forecasts are fun c­
tions of xp, RUL is also a function of xp. 

(11) 

From the random variable uncertainty propagation point of 
view, R(tp ) is a function 9 of a normally distributed ran­
dom variable, therefore, it is also a random variable. It is 
nevertheless difficult to derive i ts probability density func­
tion analytically. There is also no information that suggests 
that R(t p ) will be NormaL The probability density function 
of R(tp ) can be approximated using computational stati stics 
methods. This can be done by taking N samples from xp and 
computing R(t p ) for each sample. An histogram can be built 
from the N computed R(tp ) values and a density estimation 
method could be used to generate the approximation of the 
probability density function. 

3.4. Discussion 

From the analytical results presented for the first two steps 
of the prognostics process (Section 3.3.3), it can be observed 
that the variance will be larger after the forecasting process. 
In additi on, there is no evidence to suggest that R(tp ) will 
be Normal and further investigation is needed to explore its 
dependance on the forecasting process, like number of steps 
ahead forecasts and step length. It is also clear, that simply 
defining the variance of R(tp ) as Pk or al2 is not an accurate 
representation of the uncertainty in the process. 

The model-based methodology for electronics progno tics 
based on the Kalman filter is able to capture additive degra­
dation model elTor uncertainty and add itive measurement un­
certainty. In order for the approximation of the probabi lity 
density functi on of R(tp) to be a true representation of the 
system uncertainty, the variances of the measurement noise 
and modeling noise should be properly estimated. If consid­
ered as tuning parameters , then the generated uncertainty in 
R(t p ) will not be representative of the real process. 

4. CONCLUSION 

This article presented a discussion on uncertainty represen­
tation and management for model-based prognostics method­
ologies based on the Bayes ian tracking framework and specif­
ically for a Kalman filter application to electronics compo­
nents. In particular, it explores the implication of modeling 
remaining useful life prediction as a stochastic process and 
how it relates to remaining useful life computation by statis­
tical models, to uncertainty representation and management, 
and to the role of prognostics in decision-making. A dis­
cussion on how uncertainty propagates from the health state 

estimation process through the health state forecasting pro­
cess is provided. Remaining useful li fe computation steps 
under uncertainty are presented and analytical results on un­
certainty quantification are provided under a simplified sce­
nario. A proper propagation of uncertainty through the RUL 
prediction step as well as its correct interpretation are key to 
developing decision-making methodologies that make use of 
the remaining useful life prediction estimates and their cor­
responding uncertainties in order to make actionable choices 
that will optimize reli ability, operati ons or safety in view of 
the prognostics information. 

This work was originally presented in the 2012 AIAA In­
fotech@Aerospace Conference (J Celaya, Saxena, & Goebel, 
2012). It is reproduced here with minor updates and correc­
tions based on suggestions by reviewers. 
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NOME CLATURE 

R Remaining u efullife random variable 
tp Time of remai njng usefu l life prediction 
R (tp) Remaining useful life prediction at time tp 
Xk Optimal state estimator from Kalman fi lter 
Xk (I) It h step ahead forecast from Xk 

t eoL Time at end-of-life 
x(t) Scalar continuous sta te variable for filter model 
x (t) Vector continuou state variable for fi lter model 
Xk ScaJar discrete-time state variable for filter model 
F Failure threshold 
N( /-£ , ( 2

) Normal distribution with mean /-£ and variance a 2 
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