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Abstract—Failure of electronic devices is a concern for future

electric aircrafts that will see an increase of electronics to drive

and control safety-critical equipment throughout the aircraft. As

a result, investigation of precursors to failure in electronics and

prediction of remaining life of electronic components is of key im-

portance. DC-DC power converters are power electronics systems

employed typically as sourcing elements for avionics equipment.

Current research efforts in prognostics for these power systems

focuses on the identification of failure mechanisms and the

development of accelerated aging methodologies and systems to

accelerate the aging process of test devices, while continuously

measuring key electrical and thermal parameters. Preliminary

model-based prognostics algorithms have been developed mak-

ing use of empirical degradation models and physics-inspired

degradation model with focus on key components like electrolytic

capacitors and power MOSFETs (metal-oxide-semiconductor-

field-effect-transistor). This paper presents current results on the

development of validation methods for prognostics algorithms

of power electrolytic capacitors. Particularly, in the use of

accelerated aging systems for algorithm validation. Validation

of prognostics algorithms present difficulties in practice due to

the lack of run-to-failure experiments in deployed systems. By

using accelerated experiments, we circumvent this problem in

order to define initial validation activities.

I. INTRODUCTION

This paper presents current results in prognostics of elec-
trolytic capacitors and a discussion of validation approaches
for the prognostics methods. This research is geared towards
the system-level development of model-based approaches to
study the degradation effects of power supply converters on
avionics systems. Most devices and systems today contain
embedded electronic modules for monitoring, control and
enhanced functionality. In spite of the electronic modules
being used to enhance system performance and capabilities,
these modules are often the first elements in the system to
fail [1]. These failures can be attributed to adverse operating
conditions, such as high temperatures, voltage surges and
current spikes.

Avionics systems combine physical processes, computa-
tional hardware, and software systems, and present unique
challenges to performing root cause analysis when faults
occur, and also for establishing the effects of faults on overall

system behavior and performance. However, systematic analy-
sis of these conditions is very important for analysis of safety
and also to avoid catastrophic failures in navigation systems.
This drives the need for integrated prognostics and health
management (PHM) technologies for flight-critical avionics.
Flight and ground crews require accurate health state estimates
of these critical avionics components, including accurate de-
tection of faults and prediction of time to the functional failure
of the avionics system. An understanding of how components
degrade is needed as well as the capability to anticipate
failures and predict the remaining useful life of electronic
components [2], [3]. Studying and analyzing the degradation
of these systems (i.e.,degradation in performance) to improve
aircraft reliability, assure in-flight performance, and reduce
maintenance costs, [2], [3] therefore it is absolutely necessary
to provide system health awareness for electronics systems.
In addition to this, an understanding of the behavior of
deteriorated components is needed as well as the capability to
anticipate failures and predict the remaining life of electronics
systems.

PHM methodologies have emerged as one of the key
enablers for achieving efficient system level maintenance and
lowering life cycle costs in military systems [2], [4]. Prog-
nostics and health management for electronic systems aims
to detect, isolate, and predict the onset and source of system
degradation as well as the time to system failure. The goal is
to make intelligent decisions about the system health and to
arrive at strategic and business based decisions. As electronics
become increasingly complex, performing PHM efficiently and
cost-effectively is becoming highly demanding [4].

Some of earlier efforts in diagnostic health monitoring of
electronic systems and subsystems involved the use of a built-
in test (BIT), defined as an on-board hardware-software diag-
nostic tests to identify and locate faults. Studies conducted by
[4] on the use of BITs for fault identification and diagnostics
showed that they can be prone to false alarms and may result
in unnecessary costly replacement, re-qualification, delayed
shipping, and loss of system availability. The persistence of
such issues over the years is perhaps because the use of BIT
has been restricted to low-volume systems. In general, BITs



generally have not been designed to provide prognostics or re-
maining useful life due to accumulated damage or progression
of faults. Rather, it has served primarily as a diagnostic tool.

The problem addressed in this research applies effective
PHM methodologies to electronic systems and components.
The research work focuses on developing and implementing
effective diagnostic and prognostic methodologies, including
the ability to detect degradation in electrical and electronic
components through failure precursors in the system. A major
task requires developing the physics-based failure models for
electronic components and further studying their effect on the
overall system performance. Our research goal is to develop
physics-based failure models, derived from first principle of
operation, for electronic components in a general framework,
which can be then be applied to studying performance param-
eters related to degradation, aging of components and their
cascading effects on systems and subsystems. Early detection
and analysis may lead to better prediction and end of life
estimates by tracking and modeling the degradation process.
One of our goals is to use these estimates to make accurate
and precise prediction of the time to failure of components
and the overall subsystem. This is achieved through a physics
based modeling approach to predict the dynamic behavior of
the system under nominal and degraded conditions.

In this work we study the degradation effects of electrolytic
capacitors on the DC-DC converter systems. In our earlier
work [5], [6], we developed models for prognostics studies
at the component level, while in [7] a model based DC-DC
converter system was studied and fault diagnosis was done by
introducing faults in the MOSFETs and Capacitors.

A. Backgrough on DC-DC converter health management

In this section we discuss the DC-DC converter model
derived based on the bond graph methodology as discussed
in section earlier. A circuit diagram of a buck-boost converter
used for this study is shown in Fig.1. In this work we study
the degradation effects of electrolytic capacitors on the DC-DC
converter systems. In our earlier work [5], [6], we developed
models for prognostics studies at the component level, while
in [7] a model based DC-DC converter system was studied
and fault diagnosis was done by introducing faults in the
MOSFETs and Capacitors. A circuit diagram of a buck-boost
converter used for this study is shown in Fig. 1. In the circuit
diagram it can be seen that, the electrolytic capacitor at the
output is composed of a series combination of Capacitor (C)
and equivalent series resistance (ESR).

II. MODEL-BASED PROGNOSTICS FOR ELECTRONICS

A model-based prognostics methodology for electrolytic
capacitors is presented in this section. This methodology relies
on accelerated aging experiments to identify degradation be-
havior and to create time dependent degradation models. The
process followed in the proposed methodology is presented
in the block diagram in Fig. 2 and further described in the
upcoming paragraphs.
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Fig. 1. Buck boost converter circuit.
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Fig. 2. Methodology for development of model-based prognostics algorithms
for electronics.

Accelerated Aging: The methodology is based on results
from an accelerated life test on real electrolytic capacitors.
This test applied electrical overstress to commercial, off the
shelf capacitors, in order to observe and record the degra-
dation process and identify performance conditions in the
neighborhood of the failure criteria in a considerably reduced
time frame. Several measurements are made through the
aging time, including measurements at pristine condition and
measurements after failure condition.

System Identification: A lumped-parameter model of the
non-ideal capacitor impedance was assumed. This impedance
model included a capacitance element and an equivalent series
resistance parasitic element. The Electrochemical Impedance
Spectroscopy (EIS) measurements along with the impedance
model structure are used in a systems identification setting to
estimate the model parameters available throughout the aging



test (see section II-A).
Degradation Modeling: The objective of the model is to

generate a parametrized model of the time-dependent capac-
itance degradation as generated by the system identification
step. This model was based on a single precursor to failure
feature representing capacitor functional performance.

Parameter Estimation: The parameters of the degradation
model are typically estimated using nonlinear least-squares re-
gression for models with static parameters of with a Bayesian
tracking framework in cases where parameters need to be
estimated online.

Prognostics: A Bayesian framework is employed to estimate
(track) the state of health of the capacitor based on measure-
ment updates of key capacitor parameters. The filter algorithm
is used to track the state of health and the degradation model
is used to make predictions of remaining useful life once no
further measurements are available. The methodology consists
of the following three main steps and it is depicted in Fig. 3.

1) State tracking: The capacitance loss or the capacitance
are defined as the state variable to be estimated and
the degradation model is expressed as a discrete time
dynamic model in order to estimate capacitance loss as
new measurements become available. Direct measure-
ments of the capacitance are assumed for the filter.

2) Health state forecasting: It is necessary to forecast the
state variable once there are no more measurements
available at time or RUL prediction tp. This is done
by evaluating the degradation model through time using
the state estimate at time tp as initial value.

3) Remaining life computation: RUL is computed as the
time between time of prediction tp and the time at which
the forecasted state crosses the failure threshold value.

This process is repeated for different values of tp through
the life of the component under consideration.
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Fig. 3. Model-based prognostics methodology.

A. Prognostics based on Electrical Overstress Experiments

Electrical overstress accelerated aging experiments were
conducted in order to understand the failure mechanisms re-
lated to electrical operation and to understand the degradation
process’ time evolution. The electrical overstress consists on
continuously charging and discharging the capacitors under
test using a square waveform at 12V for capacitors rated at

10V. The waveform frequency was 20mHz and a set of 6
capacitors were aged for 200+ hours. Details of the experiment
are presented in detail in [8].

Periodic characterization of ESR and capacitance were
conducted. The ESR value is the real impedance measured
through the terminal software of the instrument. Similarly, the
capacitance value is computed from the imaginary impedance
using EIS. Characterization of all the capacitors was done for
measuring the impedance values using an SP-150 Biologic
impedance measurement instrument [9]. Fig. 4 presents results
of the time evolution of the percentage capacitance loss for the
6 capacitors under test. Failure threshold is consider as 20%
loss in capacitance.
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Fig. 4. Degradation of capacitor performance, percentage capacitance loss
as a function of aging time.

1) Empirical degradation model for capacitance loss: The
percentage loss in capacitance is used as a precursor of failure
variable and it is used to build a model of the degradation
process. This model relates aging time to the percentage loss
in capacitance. Let Cl be the percentage loss of capacitance
due to degradation as shown by Fig. 4. The following equation
is a degradation model D1 of the capacitance parameter in the
non-ideal capacitor.

D1 : Cl(t) = eαt + β, (1)

where α and β are degradation model parameters that will
be estimated from the experimental data of accelerated aging
experiments. The experimental results presented in Fig. 4 show
that the degradation process is very similar among all the
capacitors under test. As a result, the parameters of the model
were estimated off-line using all the test data and the nonlinear
least-squares regression. This parameters remain static through
the RUL estimation process. Further details are available in
[10].

The estimated degradation model is used as part of a
Bayesian tracking framework to be implemented using the
Kalman filter technique. This method requires a state-space
dynamic model relating the degradation level at time tk to the
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Fig. 5. RUL prediction process results

degradation level at time tk−1. The procedure to obtain a state-
space model for D1 is as follows. The non-linear exponential
behavior described in the model is represented as a first order
differential equation which can represent the time evolution of
Cl(t). Then, the model is discretized in time in order to obtain
a discrete-time state-space model D2.

D2 : Cl(tk) = (1 + α∆k)Cl(tk−1)− αβ∆k. (2)

This model is used in a Bayesian tracking framework
in order to continuously estimate the value of the loss in
capacitance through time as measurement become available.

2) Prediction of Remaining Useful Life Results: Fig. 5
presents results from the remaining useful life prediction
algorithm at different aging times tp = 116, 139, 149 and
161 (hrs), at which the capacitors are characterized and their
capacitance (C) value is available. The failure threshold is
considered to be 20% decrease in capacitance value. End of
life (EOL) is defined as the time at which the forecasted ca-
pacitance value trajectory crosses the failure threshold. Fig. 6
presentes the RUL prediction results for capacitor #6 using the
α-λ metric. Additional details and results for all capacitors are
presented in [10].

B. Prognostics based on Thermal Overstress Experiments
In this setup we emulated conditions similar to high tem-

perature storage conditions [5], [11], where capacitors were
placed in a controlled chamber and the temperature raised to
105◦C while the capacitor is rated for 85◦C. ESR and capacitor
parameters are available through periodic EIS characterization.

Under thermal overstress conditions, since the device was
subjected to only high temperature with no charge applied, we
observe degradation only due to electrolyte evaporation. The
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Fig. 6. Performance based on α-λ performance metric.

models are derived based on this observations and measure-
ments see during from the experimental data. For deriving the
physics based models it is also necessary to know about the
structural details of the component under study since health
estimations are done based on the type of electrolyte, volume
of electrolyte, oxide layer thickness etc. The models defined
use this information for making effective degradation/failure
predictions. A detail structural study of the electrolytic capac-
itor is available in [12].

1) Capacitance Degradation Model: Exposure of the ca-
pacitors to high temperatures, Tapplied > Trated results in
accelerated aging of the devices [6], [13]. Higher ambient stor-
age temperature accelerates the rate of electrolyte evaporation
leading to degradation of the capacitance [5], [14].

Details of for the derived capacitance degradation model
are in [12]. The complete discrete time dynamic model for
capacitance degradation is given by

D3 : Ck+1 = Ck − (2�R�0weAsjeo)

dc ∗ ds
∆t, (3)

where:
�R = relative dielectric constant
�o = permitivity of free space
jeo = evaporation rate (mg min−1 area−1)
we = volume of ethyl glycol molecule
As = oxide surface area
dc = thickness of cathode strip
ds = thickness of spacer paper. t = time in hours.

The model D3, in Eq. (3) is implemented in a Bayesian
tracking framework (unscented Kalman filter (UKF)) since the
degradation in capacitance (state) due to decrease in electrolyte
volume, (V ) is considered to be a dynamic linear model and
the evaporation rate, (jeo) parameter, assumed to be varying.
The parameter jeo is estimated online since it depends on the
amount of electrolyte present in the capacitor, as the volume
changes with time jeo changes and is estimated accordingly.
Details on the methodology are presented in [15], [16].
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2) Prediction of Remaining Useful Life Results: Fig. 7
presents results from the remaining useful life prediction
algorithm at different aging times tp = 87, 607, 1495,
2131, 2800 (hrs), at which the capacitors are characterized and
their capacitance (C) value is calculated. The failure threshold
is considered to be 10% decrease in capacitance value, which
in this case is at 3200 hours of aging time. End of life is
defined as the time at which the forecasted capacitance value
trajectory crosses the EOL threshold. Therefore, RUL is EOL
minus aging times tp = 87.5, 607, 1495, 2131, 2800 (hrs).

An α-λ prognostics performance metric [17], [18] is pre-
sented in Fig. 8 for test case of Cap #5. Performance metric
identifies whether the algorithm performs within desired error
margins (specified by the parameter α) of the actual RUL at
any given time instant (specified by the parameter λ) [17] and
is based on relative accuracy (RA) metric in equation (4).

RA = 100

�
1− RUL∗ −RUL

�

RUL∗

�
(4)

III. VALIDATION APPROACHES

A. Prognostics validation for electrical overstress mechanisms
Validation expeirments for electrical overstress consists of

6 samples and have previously presented [6], [12] as a leave
one out validation test. In this algorithm, parameters are static
and the validity of the model and its corresponding static
parameters are assessed by the leave one out validation test.
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Details can be found on [6], [12]. In addition for results
described in this work, several capacitors at different stress
levels are being tested. This will help to identify the validity of
the model with respect to different usage condition and guide
the enhancement of degration models to include loading.

B. Prognostics validation for thermal overstress mechanism

Validation experiments for thermal overstress data consists
of several samples at same temperature level, results are
presented on the form of RA metric as summarized in table
I, where RAa is the mean relative accuracy of each capacitor
at all prediciton times.

Capacitors RAa

C1 87.13
C2 90.78
C3 87.99
C4 96.60
C5 99.39
C6 89.29
C7 94.45
C8 85.73
C9 92.14

C10 92.50
C11 90.32
C12 87.15
C13 95.49
C14 94.97
C15 92.38

TABLE I
SUMMARY OF RUL FORECASTING RESULTS.

From table I it is observed that the prediction with physics-
based degradation model for all the 15 capacitors under test is
within acceptable limits. But the mean accuracy of capacitor
over aging time dropped due to the non-linearity observed in
the data at the end of the aging time and the limitation of the
model due to not including the oxide layer breakdown.

Experiments conducted at different temperatures and differ-
ent capacitors at same temperatures are currently underway



0 500 1000 1500 2000 2500 3000 3500
1850

1900

1950

2000

2050

2100

2150

2200

Aging Time (Hours)

C
ap

ac
ita

nc
e(

uF
)

 

 
Cap#1
Cap#2
Cap#3

Fig. 9. Capacitance degradation under nominal usage in DC-DC converter.

and will be used for validation. This should help identify
the validity of the model for cases with different loading
(different aging temperature) and for capacitors of different
manufacturing batch or different manufacturing process.

C. Prognostics validation based on nominal usage experi-
ments

A small set of capacitors is available representing nominal
usage on a DC-DC converter. These capacitors are of the
same type as considered for thermal and electrical overstress
cases in previous section. They have been in operation during
2+ years. They are periodically characterized in terms of C
and ESR and this data is currently being target for validation
of the previously presented empirical degration model for
electrical overstress and for physics-based degradation models
for thermal overstress and electrical overstress (not discussed
in this paper). Figure 9 presents results from capacitance
performance degradation under nominal usage on the DC-
DC converter. The main challenge on this work is to map
the models currently developed on an accelerated lifetime
time frame, to the time frame of real usage condition. The
nominal degradation experiments will aid in the validation
process and on guiding enhancements to such models. A set
of 20 additional nominal degradation tests are currently being
implemented.

IV. CONCLUSION

An overview of the current results of prognostics for DC-
DC power converters is presented, focusing on the output filter
capacitor component. The electrolytic capacitor used typically
as fileter capacitor is one of the components of the power
supply with higher failure rate, hence the effort in devel-
oping component level prognostics methods for capacitors.
An overview of prognostics algorithms based on electrical
overstress and thermal overstress accelerated aging data is
presented and a discussion on the current efforts in terms of
validation of the algorithms is included. The focus of current

and future work is to develop a methodology that allows for
algoritm development using accelerated aging data and then
transform that to a valid algorithm on the real usage time scale.
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