

Deterministic Design Optimization of Structures in OpenMDAO Framework

Rula M. Coroneos and Shantaram S. Pai NASA Glenn Research Center Cleveland, Ohio

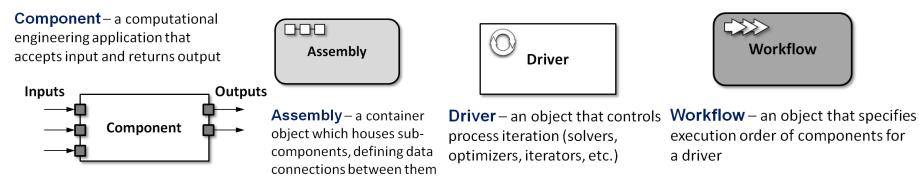
14th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference Indianapolis, Indiana

17-19 September 2012

NASA

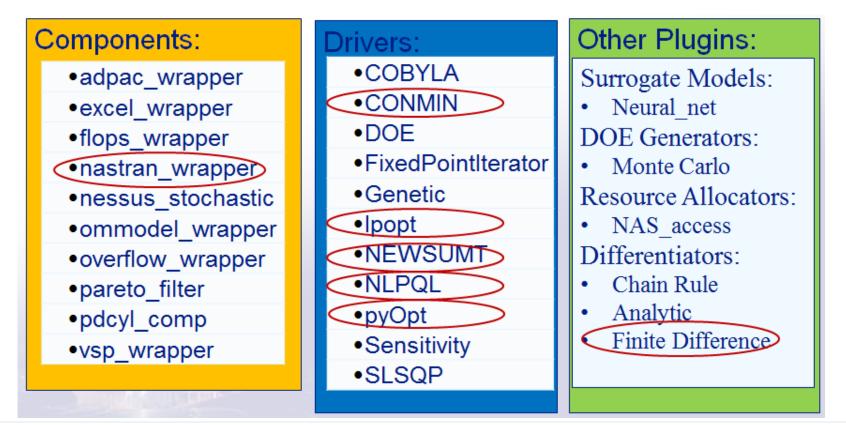
Acknowledgement

• Funded by the Fixed Wing Project under the NASA Fundamental Aeronautics Program


Overview

- Development of OpenMDAO Framework led out of NASA Glenn Research Center with support from NASA Langley Research Center
 - Can be used to develop an integrated analysis, optimization and design environment for engineering challenges. Hosting site: http://openmdao.org
- Demonstrate and verify OpenMDAO implementation by analyzing a set of widely used benchmark structural design problems and realistic cases
- Nonlinear Optimization Programing Techniques
 - NEWSUMT
 - CONMIN
 - NLPQL OpenMDAO
 - Ipopt
 - NSGA-II
- Compare results of OpenMDAO with CometBoards (Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures)
- Summary and Future Plans

- OpenMDAO is an open source framework, easily available on http://openmdao.org
- Based on Python programming language; high level, interpreted language •
- Provides a common platform to develop, test, and apply state-of-the-art optimization • techniques for analyzing/optimizing MDAO problems
- Users can solve complex problems by linking together analysis and optimization codes • from multiple disciplines & multiple architectures
- Structural Analysis Discipline: MSC/NASTRAN & closed form analysis •
- Optimization Capabilities: Single-objective, Multi-Objective Techniques & Cascade Strategy •
- Stochastic Optimization Capability: NESSUS/FPI Initial version •
- OpenMDAO is flexible and robust because it separates the flow of information (dataflow) • from the process in which analyses are executed (workflow)



Ref. Kenneth T. Moore, "OpenMDAO Development and Usage", July 2012

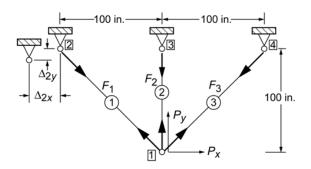
National Aeronautics and Space Administration

OpenMDAO: Components (Solvers) Drivers (Optimizers) and Plugin Library

- Users Guide and Developers Guide Documentation; Forum; Screencasts; Cookbook; Publications
- Plugin Installation Tool
- All of the official plugins can be found at: <u>https://github.com/OpenMDAO-Plugins</u>
- Users are encouraged to contribute their own plugins as well

Deterministic Design Optimization

- Casted as a nonlinear mathematical programming problem: Find x that minimizes W(x) subject to $g(x) \le 0$, h(x) = 0 and $x_{lb} \le x \le x_{ub}$ where W is an objective, x is a vector of design variables, g is a vector of inequality constraints, **h** is a vector of equality constraints, and x_{lb} and x_{ub} are vectors of lower and upper bounds on the design variables.
- Applications of nonlinear programming include: aerospace engineering, aircraft and spacecraft design, automobile design, naval architecture, electronics, computers, etc.
- Component used in OpenMDAO Framework:
 - MSC/NASTRAN is the analyzer
- Optimizers used in OpenMDAO Framework:
 - 1) NEWSUMT Sequence of Unconstrained Minimizations Technique Miura, H. and Schmit, L. A. Jr.
 - 2) CONMIN CONstraint function MINimization Vanderplaats, G.N.
 - 3) NLPQL Non-Linear Programming by Quadratic Lagrangian Schittkowski, K.
 - 4) Ipopt Interior Point OPTimizer <u>https://projects.coin-or.org/Ipopt</u>
 - 5) NSGA-II Nondominated Sorting Genetic Algorithm *Deb K*.
- CometBoards (NEWSUMT)


Description and Results of Demonstration Cases

Case 1: Optimization of a Three-Bar Truss

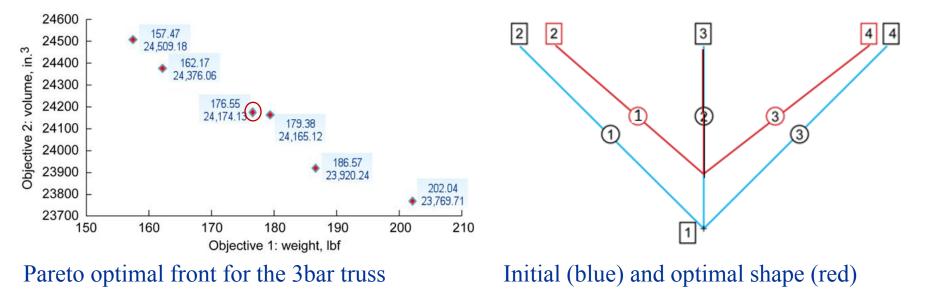
- Design Variables:
 - Areas of the three rod elements
- Objective:
 - Minimize the weight of the truss
- Constraints: $|\sigma_i| \le \sigma_{allow}$ i = 1, 2, 3

$$\delta_i \leq \delta_{\max}$$
 $i = 1, 2$

OpenMDAO Model Variables Specification								
Variable Name	Data type	Default Value, I/O type	Description, Units					
bar1_area	Float	0.0, input	cross-sectional area for bar1, inch*inch					
bar2_area	Float	0.0, input	cross-sectional area for bar2, inch*inch					
bar3_area	Float	0.0, input	cross-sectional area for bar3, inch*inch					
bar1_stress	Float	0.0, output	stress in bar1, lb/(inch*inch)					
bar2_stress	Float	0.0, output	stress in bar2, lb/(inch*inch)					
bar3_stress	Float	0.0, output	stress in bar3, lb/(inch*inch)					
displacement_x_dir	Float	0.0, output	displacement in x_direction, inch					
displacement_y_dir	Float	0.0, output	displacement in y_direction, inch					
weight	Float	0.0, output	weight of the structure, lbs					

8

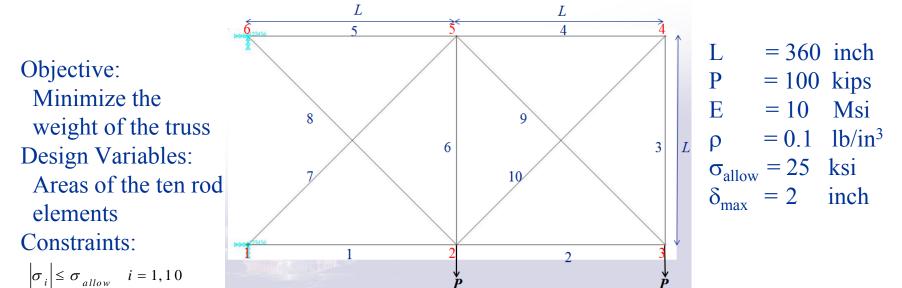
Three-Bar Truss Results


Problem	OpenMD A				
3-bar truss					CometBoards
Design	NEWSUMT	CONMIN	NLPQL	lpopt	(NEWSUMT)
variables:3					
Constraints: 3S, 2D					
Optimal Weight, Ib	237.115	237.151	237.101	237.357	237.194
Optimal Design(in²):	3.5356	3.5343	3.5330	3.5346	3.5334
	3.3382	3.3380	3.3380	3.3425	3.3394
	0.0101	0.01	0.0100	0.0116	0.0105
Active Constraints	1S, 1D	1S, 1D	1S, 1D	1S,1D	1S,1D
S: Stress; D: Displacement					
Number of Iterations	33	17	9	101	31
CPU time (mins)	33.191	6.183	4.231	93.320	180.0

• Variation in solutions: Weight: 0.03% (NLPQL) to 0.07% (Ipopt)

- CPU time: NLPQL 42 times faster than CometBoards with fewer iterations
- OpenMDAO NEWSUMT reduced solution time by a factor of 5.4
- Performance: Acceptable by all methods

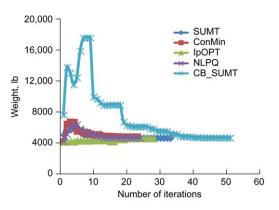
Multi-Objective Shape Optimization of the Static 3-Bar Truss


- Objective 1: Minimize the weight
- Objective 2: Minimize the enclosed volume
- Design Variables: cross-sectional areas of the bars, position of node 1(ydir), position of nodes 2 and 4 (x-direction)
- Behavior constraints: stress and displacements
- NSGA-II Algorithm: population size = 80; generations = 50; crossover probability = 1.0; mutation probability = 0.5; distribution index = 20 and 50

 $\delta_i \leq \delta_{\max}$ i = 1, 2

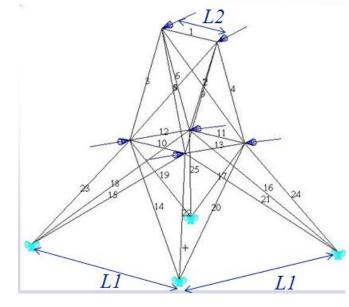
•

Case 2: Design of a Ten-Bar Truss



OpenMDAO Model Variables Specification							
Variable Name	I/O Type	Data type; Description	Units	MDAO Type			
bar_i_area, i = 1 to 10	input	Float; Cross-sectional	inch ²	Design			
		area for bar_i		variable			
bar_i_stress, i = 1 to 10	output	Float; stress in bar_i	psi	Constraint			
displacement1_y_dir	output	Float; displacement in	inch	Constraint			
		y_direction, POINT ID:3					
displacement2_y_dir	output	Float; displacement in	inch	Constraint			
		y_direction, POINT ID:4					
weight	output	Float; Weight of the	lbs	Objective			
		structure; float					

Ten-Bar Truss Results



Optimizers	Weight, Ib	Design variables, sq. in.			Active constra	CPU, min.	
		Mean	n Variation		Stress	Disp.	
		value	Min. Max.				
NEWSUMT	4677.48	11.15	0.10	25.22	2	1	92.36
CONMIN	4806.92	11.48	0.10	27.99	1	1	19.05
NLPQL	4673.89	11.13	0.10	26.06	2	1	27.0
lpopt	4620.88	11.06	9.94	13.48	Infeasible		67.44
CometBoards (NEWSUMT)	4678.36	11.10	0.10	25.28	2	1	600.0

- Variation in solutions : Weight: -0.09% (NLPQL) to 2.7% (CONMIN)
- Design: Infeasible for Ipopt
- CPU time: CONMIN 32 times faster than CometBoards but heavier
- OpenMDAO NEWSUMT reduced solution time by a factor of 6.5
- Performance: Acceptable by 3 methods (NEWSUMT, CONMIN, NLPQL)

Case 3: Design of a 25-Bar Antenna Tower Trus

$$L1 = 200 \text{ inch}$$

$$L2 = 75 \text{ inch}$$

$$E = 10 \text{ Msi}$$

$$\rho = 0.1 \text{ lb/in}^3$$

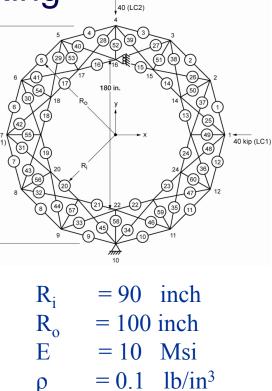
$$\sigma_{\text{allow}} = 40 \text{ ksi}$$

$$\delta_{\text{max}} = \pm 0.35 \text{ inch}$$

Linking of the design variables						
Problem	Design	Members				
	variable	grouped				
25-bar	1	1				
antenna	2	2,3,4,5				
tower	3	6,7,8,9				
(8LDV)	4	10,11				
	5	12,13				
	6	14,15,16,17				
	7	18,19,20,21				
	8	22,23,24,25				

- Objective: Minimize the weight of the truss
- Linked Design Variables: Areas of the 8 rod elements
- Constraints:
 8 stress and 2 nodal displacement constraints on element 1

Results of a 25-Bar Antenna Tower Truss


Problem	OpenMI	DAO Optimi	zation Me	ethods			
25-bar antenna tower					CometBoards		
Design variables: 8 LDV	NEWSUMT	CONMIN	NLPQL	lpopt	(NEWSUMT)	200	00 ¬ SUMT
Constraints: 8S, 2D						300	ConMin
Optimal Weight, lb	998.194	1011.804	998.084	1301.144	998.482	250	
						200	CB SUMT
Optimal Design (in²):	0.3015	0.6688	0.3070	1.3877	0.2992		
	2.8265	3.2492	2.8287	6.4425	2.8280	Veight, Ib	
	5.4753	5.2978	5.4726	4.9730	5.4766	≥ 100	00 -
	1.8049	1.9988	1.8091	5.2028	1.8136	50	00 -
	0.1119	0.7026	0.1199	1.5624	0.1175	50	
	2.9120	2.8756	2.9104	3.3168	2.9109		0 10 20 30 40 50 60
	2.9482	2.7997	2.9450	3.2615	2.9477		Number of iterations
	3.0179	2.9805	3.0182	3.0693	3.0194		
Active Constraints	55	5S	5S	Infeasible	6S		
S:Stress; D:Displacement							
Number of Iterations	32	17	13	58	37		
CPU time (mins)	62.718	12.337	26.9	133.731	397.0]	

- Variation in solutions : Weight: -0.04% (NLPQL) to 1.33% (CONMIN)
- Design: Infeasible for Ipopt
- CPU time: CONMIN was 32 times faster than CometBoards but heavier
- OpenMDAO NEWSUMT reduced solution time by a factor of 6
- Performance: Acceptable by 3 methods (NEWSUMT, CONMIN, NLPQL)

Case 4: Sixty-Bar Trussed Ring

- Objective: Minimize the weight of the truss
- The 60 areas were linked into 25 variables
- 25 stress and 24 displacement constraints

Optimizers	Weight, Ibs	Design variables, sq. in.			Active constraints		CPU, ^{200 in.}	0 (LC1) (7)
		Mean	Var	iation	Stress	Disp.		8
		value Min. Max	Max.	Max.				
NEWSUMT	308.62	1.24	0.5	2.03	12	1	123.28	
CONMIN	312.75	1.21	0.5	2.02	1	1	43.93	
NLPQL	308.55	1.24	0.5	2.03	12	1	59.0	
lpopt	340.02	1.36	0.55	2.23	1	1	764.67	
CometBoards (NEWSUMT)	308.67	1.24	0.5	2.03	12	1	810.0	

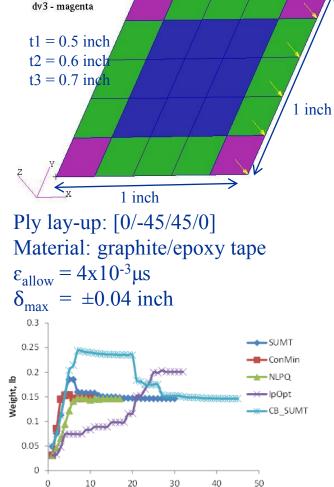
- Variation in weight about 10% (Ipopt)
- CONMIN least CPU but heavier and fewer number of active constraints
- OpenMDAO NEWSUMT reduced solution time by a factor of 6.5
- Performance: Acceptable by all methods

Case 5: Optimization of a Membrane Structure (Geodesic D

Problem	OpenMI	DAO Optimi	ization Met	hods		
Geodesic dome					CometBoards	
Design variables:	NEWSUMT	CONMIN	NLPQL	lpopt	(NEWSUMT)	
12LDV						
Constraints: 252S, 1D						
Optimal	1539.597	1929.653	1539.517	2229.409	1540.02	
Weight, Ib						
Optimal	0.3015	0.6688	0.3070	1.3877	0.2992	x v
Design (in²):	2.8265	3.2492	2.8287	6.4425	2.8280	D = 240 inch; $H = 30$ inch; $P = 925$ kip
	5.4753	5.2978	5.4726	4.9730	5.4766	Bars = 156; Triangular = 96
	1.8049	1.9988	1.8091	5.2028	1.8136	50,000 -
	0.1119	0.7026	0.1199	1.5624	0.1175	45,000 - 1 SUMT
	2.9120	2.8756	2.9104	3.3168	2.9109	40,000 – ConMin
	2.9482	2.7997	2.9450	3.2615	2.9477	IpOPT
	3.0179	2.9805	3.0182	3.0693	3.0194	의 30,000 - T - CB_SUMT CB_SUMT CB_SUMT CB_SUMT CB_SUMT CB_SUMT CB_SUMT
Active	120 S	Infeasible	119 S	Infeasible	120 S	
Constraints						15,000 -
Iterations	33	38	17	111	48	5000
CPU time (mins)	79.753	39.315	26.0	390.488	643.0	0 20 40 60 80 100 120
	-					Number of iterations

• Variation in solutions : Weight: -0.02% (NLPQL)

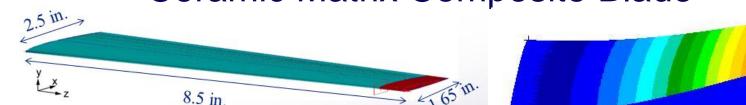
- Design: Infeasible for CONMIN & Ipopt
- CPU time: NLPQL 26 times faster than CometBoards and lighter design
- OpenMDAO NEWSUMT reduced solution time by a factor of 8


National Aeronautics and Space Administration

Case 6: Optimization of a Composite Plate with Strain and

Displacement Constraints

Problem	OpenMI	ethods			
Composite plate					CometBoards
Design variables:	NEWSUMT	CONMIN	NLPQL	lpopt	(NEWSUMT)
3LDV					
Constraints:					
3Strain, 1D					
Optimal Weight,	0.146	0.146	0.146	0.201	0.146
lb					
Optimal Design,	2.6829	2.7137	2.6782	4.6486	2.6819
(in³):	2.4288	2.4066	2.4332	3.1416	2.4308
	3.0934	3.0920	3.0921	1.7898	3.0935
Active	3Strain,	3Strain,	3Strain,	Infeasible	3Strain,
Constraints	1D	1D	1D		1D
Iterations	30	8	16	36	45
CPU time (mins)	51.49	2.74	15.0	35.72	193.0


Number of iterations

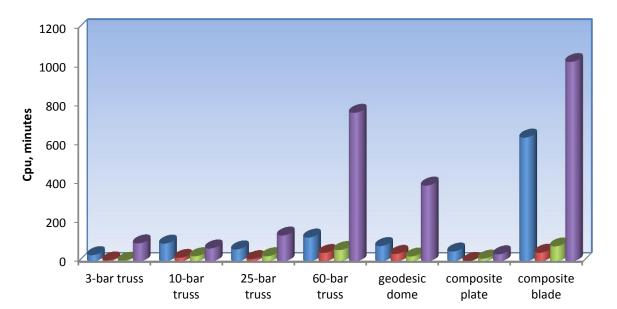
dv1 - green dv2 - blue

- Variation in solutions
 - Weight: no variation
 - Design: Infeasible for Ipopt
- CONMIN faster convergence by 98%
- Performance acceptable by 3 methods

Case 7: Minimize the Weight of a Ceramic Matrix Composite Blade

CQUD4= 25,945; Nodes = 26,026; DOF = 129,330; RPM = 8490

Fundamental mode shape on the deformed mesh


Design	Weight (lbs.)	Fund. Freq. (Hz)	dv1(in ³ .) cap	dv2 (in ³ .) wall	lter	CPU (min)
Initial	0.123	13.48	0.5	0.03		
NEWSUMT	0.037	15.98	0.01	0.01	36	637.2
CONMIN	0.037	15.98	0.01	0.01	5	45.26
NLPQL	0.037	15.97	0.01	0.01	4	78.02
lpopt	0.037	15.98	0.01	0.01	30	1026.26

• Increase of 18.5 % in the fundamental frequency is achieved while the weight is minimized by 70%

CPU Comparison for the Seven Cases

■ NEWSUMT ■ ConMin ■ NLPQ ■ IpOpt

	NEWSUMT	CONMIN	NLPQL	lpopt	CometBoards
Average					
(minutes/iteration)	4.5	2.0	4.1	7.4	11.2
Minimum	1.0	0.3	0.5	0.9	4.3
Maximum	17.7	9.1	19.5	34.2	21.3
Improvement					
factor	8.1	70.5	42.5	8.9	1.0

• Average solution time is in favor of CONMIN followed by NLPQL

Summary & Future Plans

- All four optimizations methods in OpenMDAO Framework produced acceptable solutions with some variation which may be due to the setting of the parameters and control options of the optimizers
- Overall, variation of weight was modest for all methods. Number of Active constraints was almost identical for NEWSUMT and NLPQL, but Ipopt produced infeasible designs for 4 problems
- Computing time of OpenMDAO optimizers was improved drastically by up to 87% difference in CPU time for NEWSUMT for the geodesic dome and 96% for NLPQL. Overall, OpenMDAO NEWSUMT reduced solution time by a factor of 8
- Future plans: Use OpenMDAO Framework for Stochastic Analysis of the MMSEV (Multi Mission Space Exploration Vehicle)

