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Risk of Kidney Stones in Space

e The risk of astronauts developing kidney stones has become
a serious issue.

e Arecent survey of renal stone formation in US astronauts
has revealed a total of 14 episodes (Pietrrzyk et al, 2007).

e Some of these episodes occurred in the preflight period
(n=5) while others (n=9) were in the post flight phase.

e Multiple stone events also reported among the Soviet
cosmonauts with one reported episode of in-flight renal

stone occurrence that nearly resulted in mission abortion
(Sibonga et al, 2008).



Renal Biochemistry Alteration in Microgravity
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e The physiological, environmental and dietary conditions of space
travel increase the risk for development of renal stones.

e Bone atrophy =2 increased concentration of calcium

e Dehydration & the lower urine output =» reduced urine
volumes

 high sodium and animal protein diet = increased salt - low pH

 low urinary citrate and magnesium = lack of sufficient stone-
forming inhibitors

e These factors all provide favorable conditions for promoting
increased crystallization and agglomeration ( Whitson, 2010).



Renal Stone Growth Model
Kassemi et al (JCG, 2011)
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« Balance between transport and surface reaction determines
concentration of Ca and Ox at the surface of stone

» Surface concentrations determine the growth rate



Combined Reaction-Transport Model
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for Renal Stone Growth
2nd Order Surface Reaction: Damkohler Number
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Impact of Microgravity On Renal Biochemistry
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Effect of Solution Supersaturation on CaOx
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Microgravity Parametric Shift
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Case Studies: Renal Stone Growth on
Earth & in Space

Microgravity 1s marked by increased Ca concentration, lower inhibitor
concentration and unaltered urine flow rate.

Case Condition

* Low super-saturation

Earth - Normal 75% reduction of reaction constant by inhibition

High super-saturation

Earth - Stone Former No reduction of reaction constant by inhibition

Moderately high super-saturation

Microgravity - Normal 50% reduction of reaction constant by inhibition

Very high super-saturation

Microgravity - Stone Former No reduction of reaction constant by inhibition

 Uninhibited reaction constant from Meyer Smith (1975): Kr =22 (cmAsec )(liter{mole )
*Coou/ Copox = 10



1G Comparison: Normal versus Stone-Former
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Microgravity Versus 1G Comparisons for Normal
and Stone-Former
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Effect of Citrate on Growth Rate for Stone Former
in Microgravity
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Agglomeration and Breakage

e The previous prediction were based on growth as the only
mechanism for increasing the stone size.

e The renal calculi problem is not a single stone event but a
multiple stone phenomena.

e Stones can also change size by agglomeration and breakage

* A new mathematical framework is needed for enhancing the
model to include the effects of calculi interaction



Future Directions: , Agglomeration,
Breakage

Kavanagh (2004): Kidney is not a beaker but a Continuous Crystallizing
Chemical Reactor

Nephron: Anatomy and Physiology

Renal physiology & diuretics
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Future Directions: Population Balance Framework
(Randolph & Larson 1988)
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Microgravity Versus 1G Comparisons
Stone Size Distribution for Normal Subject
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Conclusions

-

@ A combined kinetics-transport model for growth of renal calculi was developed
and validated against published data.

@ Our numerical results point to three interesting and important trends:
» Adverse effect of microgravity seems to be relatively greater for a non
stone-former than for a stone-former — This may prove important to
astronaut screening protocols.
» Administration of inorganic inhibitors such as citrates may provide an
effective countermeasure for reducing the risk of renal stone development
in space - even for inherent stone-formers.
» Growth rates in microgravity will most likely be transport-limited and
not determined by the surface reaction rate - as assumed a priori in most

other predictive models.

@ The Growth model was cast into a PBE framework :
» Account for the important effects of agglomeration and breakage.
» Predict evolution in renal calculi size distributions (CSD)
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= Preliminary Validation of the Renal PBE
NCSER (Finlayson, 1972

Finlayson’s Single Stage Continuous
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