

Role of Transport and Kinetics in Growth of Renal Stones

Mohammad Kassemi* Ilana Iskovitz

National Center for Space Exploration Research (NCSER) NASA Glenn Research Center Cleveland, Ohio

*Email: Mohammad.Kassemi@nasa.gov

July 16, 2012

- The risk of astronauts developing kidney stones has become a serious issue.
- A recent survey of renal stone formation in US astronauts has revealed a total of 14 episodes (Pietrrzyk et al, 2007).
- Some of these episodes occurred in the preflight period (n=5) while others (n=9) were in the post flight phase.
- Multiple stone events also reported among the Soviet cosmonauts with one reported episode of in-flight renal stone occurrence that nearly resulted in mission abortion (Sibonga et al, 2008).

- The physiological, environmental and dietary conditions of space travel increase the risk for development of renal stones.
 - Bone atrophy \rightarrow increased concentration of calcium
 - Dehydration & the lower urine output → reduced urine volumes
 - high sodium and animal protein diet \rightarrow increased salt low pH
 - low urinary citrate and magnesium → lack of sufficient stoneforming inhibitors
- These factors all provide favorable conditions for promoting increased crystallization and agglomeration (Whitson, 2010).

Renal Stone Growth Model Kassemi et al (JCG, 2011)

- Balance between *transport* and *surface reaction* determines concentration of Ca and Ox at the surface of stone
- Surface concentrations determine the growth rate

2nd Order Surface Reaction:

$$\dot{r} = \frac{dr}{dt} = K_G V_m K_s^{1/2} \left\{ \left[\frac{C_{ca}^* C_{ox}^* f_2^2}{K_s} \right]^{1/2} - 1 \right\}^2$$

Balance Between Transport & Reaction:

Damkohler Number

$$Da = \frac{K_G}{K_m(d)} \frac{\text{Reaction}}{\text{Transport}}$$

Relative Supersaturation

$$RS = \left[\frac{C_{ca}^{*} C_{ox}^{*} f_{2}^{2}}{K_{s}}\right]^{1/2}$$

Constituent	Primary Effect	Secondary	Super	Reaction	Nucleation
		Effect	Saturation	Rate, K _G	Rate
			(RS)	(or Da)	(N _o)
Calcium	Ca 🛉		1		
Oxalate	ox ≜ zo		†		
	Uric Acid Nidus				N ₀ †
Uric Acid	pH ↓ Renal Ca Reabs	Ca †	Ť		
	Citrate	Ca 🕇	+	<u>†</u>	
	Renal Ca Reabs	Ca 🕇	+		
Sodium 🕇	Vitamin D Intestinal Ca ↑ Abs	Ca 🛉	t		
	Salt Nidus				N _o 4
Protein	pH ↓ Renal Ca Reab	Ca 🕇	t		
Inorganic Inhibitor (K-Mg-Ci)	Ca ↑ Ox ↑ K _G ↑	Ox & ↑ Ca	t	t	
Organic Inhibitor (Glycosaminoglycans)	K _G			t	

Effect of Solution Supersaturation on CaOx Growth Rate

Microgravity Parametric Shift

Microgravity is marked by increased Ca concentration, lower inhibitor concentration and unaltered urine flow rate.

Case	Condition
Earth - Normal	 Low super-saturation 75% reduction of reaction constant by inhibition
Earth - Stone Former	High super-saturationNo reduction of reaction constant by inhibition
Microgravity - Normal	 Moderately high super-saturation 50% reduction of reaction constant by inhibition
Microgravity - Stone Former	Very high super-saturationNo reduction of reaction constant by inhibition

• Uninhibited reaction constant from Meyer Smith (1975): Kr = 22 (cm/(sec))(liter/(mole))

•
$$C_{\infty ca} / C_{\infty ox} = 10$$

1G Comparison: Normal versus Stone-Former

Microgravity Versus 1G Comparisons for Normal and Stone-Former

Effect of Urine Citrate Concentration on CaOx

Reaction rate co-related from published data (L. Wang et al, JCG, 2006)

- The previous prediction were based on growth as the only mechanism for increasing the stone size.
- The renal calculi problem is not a single stone event but a multiple stone phenomena.
- Stones can also change size by agglomeration and breakage
- A new mathematical framework is needed for enhancing the model to include the effects of calculi interaction

Future Directions: Nucleation, Agglomeration, Breakage

Kavanagh (2004): *Kidney is not a beaker but a Continuous Crystallizing Chemical Reactor*

Future Directions: Population Balance Framework (Randolph & Larson 1988)

Population Balance Equation

Microgravity Versus 1G Comparisons Stone Size Distribution for Normal Subject

- A combined kinetics-transport model for growth of renal calculi was developed and validated against published data.
- Our numerical results point to three interesting and important trends:
 Adverse effect of microgravity seems to be relatively greater for a non stone-former than for a stone-former This may prove important to astronaut screening protocols.
 - Administration of inorganic inhibitors such as citrates may provide an effective countermeasure for reducing the risk of renal stone development in space - even for inherent stone-formers.
 - ➤ Growth rates in microgravity will most likely be transport-limited and not determined by the surface reaction rate - as assumed a priori in most other predictive models.
 - The Growth model was cast into a PBE framework :
 - > Account for the important effects of agglomeration and breakage.
 - Predict evolution in renal calculi size distributions (CSD)

Extra Backup Slides

Preliminary Validation of the Renal PBE

(Finlayson, 1972)

 $\frac{\partial n(t,r)}{\partial t} + G \cdot \frac{\partial n(t,r)}{\partial r} = \frac{-n}{\tau}$

Key Experimental Parameters

In-Flow: $CaCl_2$, $K_2C_2O_4$, NaCl $\tau = V/Q = 55 \text{ min}$ G = .0008 mm/min