

April 2013

NASA/CR–2013-217984

Investigating Actuation Force Fight with

Asynchronous and Synchronous Redundancy

Management Techniques

Brendan Hall, Kevin Driscoll, and Kevin Schweiker

Honeywell International, Inc., Golden Valley, Minnesota

Bruno Dutertre

SRI International, Menlo Park, California

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the

auspices of the Agency Chief Information Officer.

It collects, organizes, provides for archiving, and

disseminates NASA’s STI. The NASA STI

program provides access to the NASA Aeronautics

and Space Database and its public interface, the

NASA Technical Report Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in

both non-NASA channels and by NASA in the

NASA STI Report Series, which includes the

following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

Programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers, but

having less stringent limitations on manuscript

length and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of

specialized interest, e.g., quick release reports,

working papers, and bibliographies that contain

minimal annotation. Does not contain extensive

analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia, seminars,

or other meetings sponsored or co-

sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI

program, see the following:

 Access the NASA STI program home page

at http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Fax your question to the NASA STI

Information Desk at 443-757-5803

 Phone the NASA STI Information Desk at

443-757-5802

 Write to:

 STI Information Desk

 NASA Center for AeroSpace Information

 7115 Standard Drive

 Hanover, MD 21076-1320

http://www.sti.nasa.gov/
file:///C:/Users/shstewar/Documents/Templates_Reports/Templates_PubWebSite/Templates_RevJan2009/help@sti.nasa.gov

National Aeronautics and

Space Administration

Langley Research Center Prepared for Langley Research Center

Hampton, Virginia 23681-2199 under Contract NNL10AB32T

April 2013

NASA/CR–2013-217984

Investigating Actuation Force Fight with

Asynchronous and Synchronous Redundancy

Management Techniques

Brendan Hall, Kevin Driscoll, and Kevin Schweiker

Honeywell International, Inc., Golden Valley, Minnesota

Bruno Dutertre

SRI International, Menlo Park, California

Available from:

NASA Center for AeroSpace Information

7115 Standard Drive

Hanover, MD 21076-1320

443-757-5802

1

Abstract

Within distributed fault-tolerant systems the term force-fight is colloquially used to describe the level of

command disagreement present at redundant actuation interfaces. This report details an investigation of

force-fight using three distributed system case-study architectures. Each case study architecture is

abstracted and formally modeled using the Symbolic Analysis Laboratory (SAL) tool chain from the

Stanford Research Institute (SRI). We use the formal SAL models to produce k-induction based proofs of

a bounded actuation agreement property. We also present a mathematically derived bound of redundant

actuation agreement for sine-wave stimulus. The report documents our experiences and lessons learned

developing the formal models and the associated proofs.

2

3

Contents

1 Introduction ... 5

1.1 Scope ... 5

1.1.1 Background and Motivation .. 5

1.2 Domain-Specific Architecture Evolution .. 6

2 Case-study Architecture Review ... 7

2.1 Asynchronous Tripplex High Integrity Control .. 7

2.2 Asynchronous BRAIN-based Ethernet Architecture .. 9

2.3 Synchronous Two-tier Network Architecture ... 11

3 A Discussion of the Case-study Architectures .. 12

3.1 Overview ... 12

3.2 Assumed Failure Modes.. 12

4 Formally Modeling Actuation Agreement Using SAL ... 14

4.1 Formal Model Description .. 14

4.1.1 Asynchronous Interaction ... 15

4.1.2 Modeling Synchronous Interaction ... 16

4.1.3 Fault-Injection ... 16

4.1.4 MVS Evaluation .. 17

4.1.5 The Agreement Monitor .. 18

4.1.6 Model Composition... 18

4.1.7 Proving Agreement Properties .. 19

4.1.8 Additional Model Validation Experiments ... 19

4.2 Discussion of Initial Model and Findings ... 20

4.3 Initial Model Checking Performance and findings ... 21

4.4 An Alternative Timeout Automata Based Abstraction ... 22

4.4.1 Clock Module .. 22

4.4.2 Source Module .. 22

4.4.3 FCM Module ... 23

4.4.4 MVS Module .. 23

4.4.5 Fault Injection ... 24

4.4.6 System Composition ... 24

4.4.7 Investigating and Proving the System Agreement Properties ... 24

4.5 Investigating Faults with the Timeout Automata Based Abstraction ... 26

3

4.5.1 Proving Agreement with Faults .. 27

4.6 Run Scripts and Model Source Files ... 28

5 Mathematical Analysis of Mid-Value-Selection ... 28

5.1 Inconsistent Omission Error Force Fight .. 31

6 Conclusions and Future Work ... 33

References ... 34

4

List of Figures

Figure 1 Asynchronous Three Channel Switched Ethernet Architecture .. 7
Figure 2 Ethernet Brain Based Case-study Architecture .. 9
Figure 3 Two-tier Synchronous Network Case -study Architecture ... 11
Figure 4 Actuation Force-Fight Instrumentation .. 12
Figure 5 Formal Model High Level Structure .. 14
Figure 6 CM Sinusoidal Outputs .. 28
Figure 8 Disagreement between CM channels and Mid-Value Select... 30
Figure 7 Mid-value selection from 3CMs, Channel 3 fails at time=3.0 sec. .. 30
Figure 9 Dual ACE Force Fight - Inconsistent Omission Error. ... 31
Figure 10 Force Fight - Inconsistent Omission Error at t=3.0 sec. ... 31
Figure 11 Triangle Wave used in SAL Analysis. ... 32
Figure 12 Force Fight from Triangle CM Commands - Single Channel Inconsistent Omissions. 32

file:///C:/Users/E559146/Desktop/NASA_VVFCS_AREA2_Phase2/Deliverables/HW3-7-30-2012-Force-Fight-Analysis/HW3-4_15_2013a.docx%23_Toc353806928
file:///C:/Users/E559146/Desktop/NASA_VVFCS_AREA2_Phase2/Deliverables/HW3-7-30-2012-Force-Fight-Analysis/HW3-4_15_2013a.docx%23_Toc353806929
file:///C:/Users/E559146/Desktop/NASA_VVFCS_AREA2_Phase2/Deliverables/HW3-7-30-2012-Force-Fight-Analysis/HW3-4_15_2013a.docx%23_Toc353806930
file:///C:/Users/E559146/Desktop/NASA_VVFCS_AREA2_Phase2/Deliverables/HW3-7-30-2012-Force-Fight-Analysis/HW3-4_15_2013a.docx%23_Toc353806935
file:///C:/Users/E559146/Desktop/NASA_VVFCS_AREA2_Phase2/Deliverables/HW3-7-30-2012-Force-Fight-Analysis/HW3-4_15_2013a.docx%23_Toc353806936
file:///C:/Users/E559146/Desktop/NASA_VVFCS_AREA2_Phase2/Deliverables/HW3-7-30-2012-Force-Fight-Analysis/HW3-4_15_2013a.docx%23_Toc353806937
file:///C:/Users/E559146/Desktop/NASA_VVFCS_AREA2_Phase2/Deliverables/HW3-7-30-2012-Force-Fight-Analysis/HW3-4_15_2013a.docx%23_Toc353806938
file:///C:/Users/E559146/Desktop/NASA_VVFCS_AREA2_Phase2/Deliverables/HW3-7-30-2012-Force-Fight-Analysis/HW3-4_15_2013a.docx%23_Toc353806939

5

1 Introduction

The document has been generated under NASA Task Order NNL10AB32T. It presents the modeling and

exploration of the control system case-study architectures presented in [1].

In this document we have constructed formal model abstractions of key system strategies related to

redundancy management. We use the models to prove characteristics of case-study architectures. In this

initial work these proofs a single property is selected for formal examination. This selected property,

colloquially termed force-fight denotes the level of command disagreement that exists across redundant

actuation interfaces.

1.1 Scope

This work is based on the Phase 2 control system case-studies that are documented in [1]. Although the

case studies embody control-system models, the focus of our work is not related to control theory. The

focus of this work is the formal investigation of distributed-system redundancy management logic. The

control element of the problem is included here only to enable the interaction of the distribution and

replication management policies with the higher level requirements of the external control system. For

this initial work, the behavior of the control law was abstracted out of the formal representation, to enable

simpler bounds of agreement to be formally established.

Full listings of the SAL and Matlab models presented herein are available at the NASA DASHlink

site AFCS – Distributed Systems (https://c3.nasa.gov/dashlink/projects/79/).

1.1.1 Background and Motivation

During Phase 1 of this research, most of the system modeling and analysis activities were focused on

modeling system communication infrastructures and their associated protocols. However, during the

review of the asynchronous case study [2], we learned that many real-world systems neither built upon

nor leveraged the layered fault-tolerant services prescribed by formal fault-tolerance theory. In place of

structured, layered, fault-tolerant services, these systems implement application-specific, fault mitigation

strategies derived from field-proven domain experience. In such systems, as illustrated in [1], the system

fault-tolerant strategies are often dispersed throughout the system control-law implementation. This

dispersal complicates incremental verification, as the system fault tolerance is coupled with the

application’s behavior. Consequently, formal validation (i.e., formally proving the correctness and

sufficiency of the system fault-tolerance) is also non-trivial. However, given the wide-spread proliferation

of these techniques, we believe that developing a formal framework that enables the validation of such

system strategies will be very beneficial.

We hope that this analysis will yield more systematic review, and potentially automation, of some of

the validation activities required for this class of systems. To this end, as part of the Year 3 efforts, we

intend to explore the feasibility of test generation from the system formal model to support the current

manually-generated design validation activities. This work supports improved completeness claims with

respect to system-level validation activities.

In addition, given that many aspects of this class of system design are based upon years of domain-

centric experience, we hope that formally capturing the knowledge associated with these systems will

offset the risks associated with retaining this critical knowledge as the current workforce retires.

Finally, by contrasting the performance of the different case-study architectures we further hope to

develop some insights about the potential and strengths and weaknesses related to the theoretical fault-

tolerance strategies and industrial pragmatic fault-tolerance approaches.

6

1.2 Domain-Specific Architecture Evolution

Our discussion above explained that the design philosophy of many real-world approaches to fault

tolerance has evolved pragmatically as the systems have taken on increasing levels of authority and

system responsibility. Osder [3] describes this evolution within the flight control system architectures as

analog and later digital electronic technologies where introduced. As these system architectures evolved,

the increasing dependence and specific failure models of digital hardware need to be mitigated and

domain-specific architectural techniques [4] developed. These techniques were largely influenced by the

voting and fault detection strategies used to select among multiple lanes of redundancy. Some early

designs leveraged global synchronization to reduce the complexity of cross-lane voters. With system-

level synchronization, the error tolerance of the voters can be easily calculated from the system’s

precision performance. However, the potential brittleness and common-mode influence of the system

synchronization service led others to develop asynchronous cross-channel voting strategies [4]. Further

background descriptions of synchronous and asynchronous system architectures are given in [5][6].

For commercial flight control, the asynchronous design strategy is most prevalent today. This strategy

is an interesting choice, given the complexities of designing and validating such systems, which are

complicated due to the inexact agreement across redundant lanes
1
. However, it appears that modern

flight control systems do not to require exact agreement. Therefore, the approximate agreement properties

possible with asynchronous system architectures are sufficient. On the positive side, the asynchronous

architectures based on approximate agreement yield systems that claim to be remarkably fault-tolerant to

communication loss; for example, channels may remain operational with up to 20% communication

packet loss. Interestingly, in the systems that we analyzed, Byzantine fault-tolerance is not specifically

addressed other than for strategies to isolate asymmetric faults, as detailed in [1] . Hence, this aspect will

be a part of our research agenda. Of particular interest is the behavior of the system during the time

window required for asymmetric failure detection
2
.

.

1
 As outlined in [7] the design of the voting strategies and control used in asynchronous systems are complex and

non-trivial
2
 Up to 10 seconds of delay is required to confirm an asymmetric failure.

7

2 Case-study Architecture Review

The following sections present a summary of the architectures analyzed here-in. Further details of the

detailed architectural mechanism are given [1].

2.1 Asynchronous Tripplex High Integrity Control

The first case-study architecture is illustrated in Figure 1. This system comprises three asynchronous

computation modules (CM's) connected to four actuation and sense modules (ASMs). Each computation

module communicates with the ASMs using a dedicated Ethernet network. The computation modules also

communicate among themselves using the Ethernet networks.

All computation is done using self-checking hardware, incorporating a command and monitor

computation lane within each CM. The monitor lane performs independent computation of the control

algorithms and continuously monitors the output of the command lane. For each successful comparison,

the monitor lane authenticates the validity of the commanded output by updating the values of the

independent command signature and command confirmation heartbeat that are embedded within the each

output message. The signature and heartbeat sequence
3
 are validated by each ASM before the out

message is used. A computational error by the command processor would result in an invalid signature or

heartbeat value and the ASM would reject the message. To monitor the integrity of the Ethernet network

transportation, the system also incorporates a wrap-back acknowledgement protocol. The ASMs also

reflect an encoded function of each input message back to the sender for end-to-end integrity

confirmation. The monitor lane of each control computer also monitors this reflected status of the

previous command. If this reflected status is found to be erroneous, the monitor ceases authentication of

the output command scheme and heartbeat. The lack of a valid signature and/or heartbeat signifies that

the control channel is invalid.

3
 For any message to be considered valid, a heartbeat sequence counter embedded within the message is required to

increment in a prescribed sequence.

Figure 1 Asynchronous Three Channel Switched Ethernet Architecture

8

The ASMs also use self-checking hardware with a command and monitor lane in each ASM that prevent

failures in ASM processing from corrupting sensor input or causing hazardous hardware actuation.

In each ASM, a hybrid, mid-value selection function is used to select between the computation

channel output commands. This selection is a function of how many of the computational output

commands that an ASM receives are valid, with validity determined by the reception passing some in-line

syntax tests that do not involve comparison among the command inputs. The function is implemented as

follows:

 If all three command streams are valid, an ASM selects the mid-value of the three valid

computation input streams.

 If only two of the computation input command streams are valid, the ASM uses the previous mid-

value selection to supplement the two remaining streams, substituting the previous mid-value

selection in-place of the missing or invalid command stream.

 If only one computation command input stream is valid the ASM uses this stream.

All tasking and communication within the system is implemented using a timed-asynchronous,

model, i.e., each component independently executes a local periodic schedule of activity. The ASMs

executes at the highest rate of the system, for example 80 Hz; whereas, the computations of the control

computers are distributed across multiple rates, ranging from 80 to 1 Hz. Multiple ASMs operate

cooperatively to drive the output actuation services, connected in dual and triplex configurations. The

ASMs also process external and feedback sensor data and provide it to the CMs.

The system incorporates a number of strategies to ensure that the control computers remain aligned

with respect to the commanded state. These strategies include the following:

 Internal integrator and discrete state equalization -- where each of the control computers

continuously adjusts its state towards a fault-tolerant, mid-value function of the values from all

operating lanes (which translates to majority voting for discrete signals)

 Communication asymmetry management -- where a control computer or ASM that is confirmed

to be asymmetrically communicating, (i.e., a system component that is communicating with only

a subset of the other system components) is isolated from influencing the group

For the initial investigation of actuation agreement, this document does not elaborate on these

strategies; however, the details can be found in [1]. Our rationale is presented with the initial system

modeling in Section 4.

9

2.2 Asynchronous BRAIN-based Ethernet Architecture

 CM

 ASM

IOC

M

O

N

PSU

IOC

C

O

M

PSU

IOC

M

O

N

PSU

IOC

C

O

M

PSU

IOC

M

O

N

PSU

IOC

C

O

M

PSU

IOC

M

O

N

PSU

IOC

C

O

M

PSU

IOC

M

O

N

PSU

IOC

C

O

M

PSU

IOC

M

O

N

PSU

IOC

C

O

M

PSU

IOC

M

O

N

PSU

IOC

C

O

M

PSU

The second case-study architecture is depicted in Figure 2. This system comprises the same components

of the first system, but in place of the three switched Ethernet networks, a single Ethernet-based Braided

Ring Availability Integrity Network (BRAIN) is used to connect the system components.

In this case-study architecture the asynchronous BRAIN 3.0 protocol is considered. This is a layered

protocol that can be deployed on top of a standard Ethernet or a profiled Ethernet (e.g., ARINC 664)

implementation. BRAIN 3.0 assumes that routing authentication and bandwidth fairness allocation is

performed within the underlying Ethernet layer. For example, the underlying Ethernet layer can use fixed

routing tables and configured bandwidth allocation. The BRAIN 3.0 protocol leverages these underlying

properties to implement data integrity acceptance criteria that are a function of qualified, disjoint, data-

distribution path mapping. That is, received messages are not accepted as valid unless multiple copies of

the messages arrive from totally disjoint communication paths and the messages are bit-for-bit identical,

with the disjoint communication paths being enforced by path mapping mechanisms in the underlying

Ethernet layer. Using the enforced message routing strategy, we believe that the BRAIN 3.0 will yield a

dual fault-tolerant (assuming non-colluding faults
4
) high-integrity message broadcast guarantee. A full

summary of the BRAIN 3.0 protocol message routing and details of the data acceptances tests are given in

[1].

Note that the role of the network in this second architecture is more integral to the system redundancy

management arguments than the network of the initial case-study architecture. In the initial architecture,

an end-to-end wrap-back protocol was implemented above the network to detect network data corruption.

The BRAIN-based system also incorporates a number of high-level strategies to mitigate asymmetric

communication failure.

In the BRAIN 3.0 architecture, the underlying communication system is intended to guarantee a

Byzantine resilient data broadcast in the presence of up to and including two non-colluding faults. We

believe that this property of guaranteed data broadcast consistency will greatly improve system

4
 Colluding faults are faults that act in support of each other.

Figure 2 Ethernet Brain Based Case-study Architecture

10

performance while reducing the system complexity and overheads. This idea will be investigated as the

two system architectures are modeled and compared.

Another area where the BRAIN 3.0 and the initial case-study architecture differ is the comparison of

the command and monitor lane outputs. In the initial architecture, the control computer comparison is

implemented in software, with the monitor implementing bounded comparison of the command lane

output prior to authentication of the command transmission over the network. In the BRAIN 3.0-based

architecture the command and monitor comparisons are performed with the network distribution

function
5
. To produce congruent output, the COM and MON lanes of each self-checking pair rendezvous

and synchronize using the dedicated link that connects them. Other than this synchronization between

COM and MON, all other data flow of the BRAIN 3.0 architecture is asynchronous, with each pair

executing a local periodic schedule of tasking and communication activity.

5
 For this scheme we assume that the output of the lanes is bit-for-bit identical. Should dissimilar processing

hardware be employed the scheme assumes a fixed point arithmetic processing to ensure bit-for-bit lane congruency

11

2.3 Synchronous Two-tier Network Architecture

 CM

IOC

C

O

M

PSU

IOC

M

O

N

PSU

F
ie

ld
B

u
s V

a
lid

a
te

IOC

C

O

M

PSU

IOC

M

O

N

PSU

F
ie

ld
B

u
s V

a
lid

a
te

IOC

C

O

M

PSU

IOC

M

O

N

PSU
F

ie
ld

B
u

s V
a

lid
a

te

 ASM

M

O

N

C

O

M

PSU

IOC

M

O

N

C

O

M

PSU

IOC

M

O

N

C

O

M

PSU

IOC

M

O

N

C

O

M

PSU

IOC

Enable EnableEnable

The final case-study architecture is depicted in Figure 3. This system comprises the same components of

the first system, but in place of the three switched Ethernet networks, a hybrid network architecture is

deployed. In this architecture, a two-tier network architecture is considered. The control computers are

fully interconnected and synchronized using a Time-Triggered Ethernet [7] network backbone. We

assume that the quality of synchronization achieved in such a configuration will yield a synchronization

precision of 25 µs.
6
 To communicate with the ASMs, each control computer implements a dedicated

access bus
7
 connection using a typical access bus protocol, for example TTP [8]. To maintain system

synchrony, the TTP access bus connections are also synchronized to the master Time-Triggered Ethernet

schedule and timeline. Hence, this final system is globally synchronous with all system tasking and

communication coordinated in accordance with the global Time-Triggered Ethernet timeline.

In this third architecture, a separate TTP network is dedicated to each control computer channel.

Given this configuration, it is possible for asymmetric communication faults to manifest between the

control computers and the ASMs. Therefore, we assumed that this third architecture deploys similar

network management and asymmetric communication fault detection strategies as the first architecture.

We further assumed that this synchronous architecture implements an end-to-end wrap-back protocol to

mitigate network component integrity failures.

6
 A typical precision achieved in industrial configurations

7
 The Term "access bus" is used to denote the lower tier of a two-tier network.

Figure 3 Two-tier Synchronous Network Case -study Architecture

12

3 A Discussion of the Case-study Architectures

3.1 Overview

The case-study architectures introduced in the previous section presents a number of different redundancy

management policies. To facilitate a comparison of all three architectures, a single property is selected for

formal examination. This selected property, colloquially termed force-fight denotes the level of command

disagreement that exists across redundant actuation interfaces. Where multiple ASMs couple to a shared

actuation interface, it is important that they maintain command congruency, since any discordance in

command output may manifest as opposing forces applied to the actuation surface, which contribute

unwanted surface stress that can in turn result in premature surface degradation and/or aging
8
. This is

illustrated in Figure 4 below.

P
SU

PSU

S
W

T
C

H

P
SU

PSU

S
W

T
C

H

P
SU

PSU

S
W

T
C

H

P
S U

IO
C

COM

MON

PSU

cmd2

P
S U

IO
C

COM

MON

PSU

P
S U

IO
C

COM

MON

PSU
P

S U

IO
C

COM

MON

PSU OA

CI

OA

OA

OA

cmd1

CI

CI

CI

IO
C

COM

MON

IO
C

COM

MON

IO
C

COM

MON

Computation Modules Actuation Sense Modules

Agreement measured

at actuation interface

Post OASM Selection

as Abs(cmd1 – cmd2)

Figure 4 Actuation Force-Fight Instrumentation

Note that the level of agreement maintained at the actuation interface is determined solely by the

distributed architecture redundancy management policies (including the degree of synchronization the

redundancy management policy uses). In all of the three case-study architectures, the quality of actuation

agreement is largely influenced by the emergent properties of the hybrid mid-value-selection function

implemented within the ASMs, given possible asynchronous behavior of the commanded output streams

from the control channels operating in normal and faulted conditions.

3.2 Assumed Failure Modes

The first stage in any architecture analysis is to define the assumed failure modes of the system

components and communication. At first glance, the self-checking mechanisms of the computation and

ASM hardware would normally lead to a fail-silent failure model. However, since the network hardware

in the first and third architectures is not self-checking, this assumption would be invalid. These

8
 This is particularly important with composite airframe materials

13

architectures use a wrap-back based integrity check and isolation scheme that cannot contain all integrity

violations; there exists an unlikely, but non-zero, probability of a network-induced corruption escaping

the fault detection capability. Therefore, we assume that a single erroneous value may escape from the

self-checking computer channel without detection. Persistent integrity errors are not assumed, since the

encoded heartbeat protocol will cease command authentication on detection of the first error.

With respect to message distribution in the first and third architectures, we assume that some fault

conditions may cause a compute channel to communicate asymmetrically with the ASMs. After review,

we found that, in some systems, there is a significant fault detection lag in the systems' logic to mitigate

such asymmetric communication. Therefore, under worst-case conditions, communication asymmetry

may persist and contribute to output non-congruence before isolation takes place. We further assume that

up to two compute channels may be faulty at the same time.

For the second (BRAIN-based) architecture, we assume the claimed fault model of the BRAIN 3.0

protocol. That is to say, faults are consistently observed by all the consuming components, and the

network and computation functions are fail-silent with respect to integrity violation. Note that at the time

of writing this report, this fault model had not been formally verified, although informal experiments

based on model checking have demonstrated the assumed property.

14

4 Formally Modeling Actuation Agreement Using SAL

4.1 Formal Model Description

 Figure 5 Formal Model High Level Structure

To make the initial analysis more tractable, we focused our initial modeling on the behavior of the output

stage in isolation using the techniques proposed in [9]. From a high-level view, this model can be

conceived as a system where the cross-channel state equalization functions result in perfect control-

channel equalization. That is to say, we assume that there are no errors attributed to the internal state

divergence of the control channels. Further, we simplified our initial analysis by analyzing the output

behavior in an open-loop configuration to remove the complication of incorporating the continuous plant-

model into the control feedback path
9
. A high-level pictorial representation of the simplified model is

shown in Figure 5.

In this initial model, the controller can be viewed as a pass-though transfer function with a gain of 1.

The dominant behavior within the model comprises the interaction of the asymmetric fault-injection with

the asynchronous control execution and hybrid mid-value-selection logic of the ASMs.

The initial formal abstraction comprises the synchronous composition of the following components:

 The plant module produces a saw-tooth wave form and models the asynchronous sampling of

this waveform by the three computer control channels.

 The mvs module models the hybrid mid-value-selection function of the ASMs.

 The agreementmonitor module comprises synchronous observer monitoring of key properties

of interest.

 The faultinjectionbus module connects the plant and mvs modules. It distributes the computed

output from the plant to the mvs and injects value and/or omission faults on selected signal

paths.

9
 As part year 3 of our research we expect to integrate these details into the formal abstraction framework.

15

4.1.1 Asynchronous Interaction

In asynchronous systems modeling, time-dependent interaction is key and is necessary to understand the

phase-dependent behavioral relationships. In the initial formal abstraction, this aspect of the system is

explored using a bounded non-deterministic selection of the plant sampling point. It is captured in the

synchronous_plant_sampling module of the mvs.sal file. The sampling phase of the first control channel

is initialized to be non-deterministically assigned within the waveform period.

 % tt1 is initially constrained to be greater dt and less than period
 tt1 IN { z:REAL | z >= dt AND z <= period};

The sampling phase of the two remaining channels is initialized to be set within a sample period of

the value used for the first channel

 % tt2 and tt3 are constrained to be within one interval of dt less than tt1
 tt2 IN { z:REAL | z >= tt1 - dt AND z <= tt1 AND z >= 0 AND z <= period };
 tt3 IN { z:REAL | z >= tt1 - dt AND z <= tt1 AND z >= 0 AND z <= period };

In every state transition, the sampling time of the first channel is increased by the sample period.

However, since the plant waveform is only defined for a single-period boundary, the update of the

channel sampling point is constrained to fold back into the plant waveform period once it reaches the

interval within dt of the waveform period.

 tt1' = IF tt1 <= period - dt THEN tt1 + dt ELSE tt1 + dt - period ENDIF;

At each state transition, the sampling points of the second and third channels are bounded to a non-

deterministically assigned interval within a sample period dt of the current tt1 value.

 tt2 in { z:real | z >= tt1 and z <= tt1 + dt};
 tt3 in { z:real | z >= tt1 and z <= tt1 + dt};

Note that this arrangement does not maintain a consistent sampling interval for the second and third

channels. However, we believe that this is not necessary for the investigation of the ASM mid-value-

selection behavior. This assignment also forces the exploration of all possible phase relationships of tt2

and tt3 with tt1. Hence, in the update of the sample time period, we do not need to introduce additional

phase values to model phase drift.

To generate sample values, the plant simply returns the value of the test waveform for each of the

sample time points. Note that at the bounds of the period waveform within channels 2 and 3 may lie

beyond the scope of the sample waveform definition. To mitigate this, the sample times are simply

reflected back into the waveform space by either subtracting the period for times greater than the period

boundary or adding the period boundary for samples less than zero. This same structure is used for all

sample channels

 yp1 = waveform (tt1);
 yp2 = IF tt2 <= period THEN waveform(tt2) ELSE waveform(tt2 - period) ENDIF;
 yp3 = IF tt3 <= period THEN waveform(tt3) ELSE waveform(tt3 - period) ENDIF;

Note that verify the validity of the sampling assumptions the following test lemma was added

test1: LEMMA asynchronous_plant_sampling |- G(tt1 >= 0 AND tt1 <= period)

16

4.1.2 Modeling Synchronous Interaction

To model the time-triggered case study, we need to modify the channel timing alignment. This

modification is done by constraining all three channels to a defined synchronization precision that is

specified using the additional parameter sync_precision. This specification is captured in the

synchronous_plant_sampling module.

 % tt1 is initially constrained to be greater dt and less than period
 tt1 IN { z:REAL | z >= sync_precision AND z <= period};

 % tt2 and tt3 are constrained to be within one interval of sync precision interval less than tt1
 tt2 IN { z:real | z >= tt1-sync_precision AND z <= tt1};
 tt3 IN { z:real | z >= tt1-sync_precision AND z <= tt1};

In the model we assume an achieved synchronized precision of 25 µs a typical value for industrial

systems. For the model, the tighter agreement bound based on the synchronization precision was also

added

 sync_precision: real = 0.000025;

 sync_e: REAL = 1.0 * sync_precision * p2p

4.1.3 Fault-Injection

The faultinjectionbus modules are responsible for the distribution of the values from the plant modules to

the two instances of the mvs module. These modules also introduce erroneous value and signal omission

faults. Two fault injection scenarios are captured using the faultinjectionbus_IO23 and

faultinjectionbus_byzantine_channel models. The structure of these modules is equivalent. The signals

from the plant are input as ypn variables. These values are separately assigned to each of the output mvs

channels that are cn_xn values. The cn_bn flags are used to validate the channel data. When set to

FALSE, the data from the channel is considered invalid and the channel is omissive. In the

faultinjectionbus_IO23, one of the mvs client modules is subjected to inconsistent omission failure of one

or two computer control channels via the non-deterministic assignment of the validity flags for channels

two and three.

faultinjectionbus_IO23: MODULE =
BEGIN
 INPUT
 yp1, yp2, yp3: REAL

 OUTPUT
 c1_x1, c1_x2, c1_x3: REAL,
 c2_x1, c2_x2, c2_x3: REAL,
 c1_b1, c1_b2, c1_b3: BOOLEAN,
 c2_b1, c2_b2, c2_b3: BOOLEAN

 DEFINITION
 % OUTPUT values are good
 c1_x1 = yp1; c1_x2 = yp2; c1_x3 = yp3;
 c2_x1 = yp1; c2_x2 = yp2; c2_x3 = yp3;

 % First Channel of MVS gets all good status values
 c1_b1 = TRUE; c1_b2 = TRUE; c1_b3 = TRUE;

 % Second Channel of MVS channels 2 and 3 are inconsistently omissive
 c2_b1 = TRUE;
 c2_b2 IN { TRUE, FALSE};
 c2_b3 IN { TRUE, FALSE};

END;

In the faultinjectionbus_byzantine_channel, the Byzantine failure of one of the computer channels is

modeled. These errors are coded to present inconsistent and/or erroneous values from one of the computer

channels and from both of the mvs clients.

faultinjectionbus_byzantine_channel: MODULE =
BEGIN
 INPUT

17

 yp1, yp2,yp3: REAL

 OUTPUT
 c1_x1, c1_x2, c1_x3: REAL,
 c2_x1, c2_x2, c2_x3: REAL,
 c1_b1, c1_b2, c1_b3: BOOLEAN,
 c2_b1, c2_b2, c2_b3: BOOLEAN

 DEFINITION
 % Channels 1 and 3 have good values
 c1_x1 = yp1; c1_x3 = yp3;
 c2_x1 = yp1; c2_x3 = yp3;

 % And Good Status Indication
 c1_b1 = TRUE; c1_b3 = TRUE;
 c2_b1 = TRUE; c2_b3 = TRUE;

 % Channel 2 is inconsistently omissive
 c1_b2 IN { TRUE, FALSE};
 c2_b2 IN { TRUE, FALSE};

 % And Byzantine
 c1_x2 IN { z:REAL | z >= 0 AND z <= p2p };
 c2_x2 IN { z:REAL | z >= 0 AND z <= p2p };

END;

For the BRIAN 3.0 architecture, a symmetric fault manifestation of up to two of the computer control

channels is assumed
10

. This assumption is coded in the faultinjectionbus_brain3 module. At each cycle of

execution, the computer control outputs from Channels 2 and 3 to the first channel of the mvs are non-

deterministically selected from TRUE and FALSE (good or faulty). The selected values of the Channel 2

and 3 faults are presented to the input of the second mvs channel.

 c2_b1' = TRUE;
 c1_b2' IN { TRUE, FALSE};
 c1_b3' IN {TRUE,FALSE};

 c2_b2' = c1_b2';
 c2_b3' = c1_b3';

4.1.4 MVS Evaluation

The mvs module calculates the mid-value selection output of the ASM. As described in [1], the

selected output is a function of the number of input streams. When all three streams are valid, the mid

value of the three inputs is used. When only two inputs are valid, the function selects using the two valid

inputs and the previous mid-value selection as a substitute input for the missing stream, as illustrated in

the code below.

% 3 INPUTs, 3 valid bits, OUTPUT 1 value
mvs :MODULE =
BEGIN
 INPUT
 x1, x2, x3 : REAL,
 b1, b2, b3 : BOOLEAN

 OUTPUT
 x : REAL

 INITIALIZATION
 x = 0

 TRANSITION
 % new mvs coasts when no good INPUT is available
 x' = midval(
 IF b1' THEN x1' ELSIF b2' AND not(b3') THEN x2' ELSIF b3' AND not(b2') THEN x3' ELSE x ENDIF,
 IF b2' THEN x2' ELSIF b1' AND not(b3') THEN x1' ELSIF b3' AND not(b1') THEN x3' ELSE x ENDIF,
 IF b3' THEN x3' ELSIF b1' AND not(b2') THEN x1' ELSIF b2' AND not(b1') THEN x2' ELSE x ENDIF);
END;

For the selected inputs, the module calls a function returning the mid-value selection.

 midval(y1: REAL, y2: REAL, y3: REAL): REAL =
 IF y1 <= y2 then
 (IF y2 <= y3 THEN y2 elsIF y1 <= y3 THEN y3 ELSE y1 ENDif)
 ELSE
 (IF y1 <= y3 THEN y1 elsIF y2 <= y3 THEN y3 ELSE y2 ENDif)
 ENDif;

10

As discussed earlier, it is emphasized that at the time this property has not been formally verified.

18

4.1.5 The Agreement Monitor

The agreementmonitor implements a synchronous observer [9] that monitors key points of interest within

the model.

The obvious instrumentation is the value difference observer between the two mvs channels. The

expected bound of the agreement is dependent on the case-study architectural policies. Hence, the

agreement monitor module includes dedicated flags for each of the agreement thresholds.

 flag_async_bounded_agreement = (mvs_1_x - mvs_2_x <= error AND mvs_2_x - mvs_1_x <= error);

 flag_sync_bounded_agreement = (mvs_1_x - mvs_2_x <= error AND mvs_2_x - mvs_1_x <= error);

4.1.6 Model Composition

The modules described in the previous section were composed synchronously to support the evaluation of

the cases-study architectures.

 systemmonitor_IO23_asynchronous: Represents the asynchronous system with inconsistent

omission failure of up to two compute channels.

 systemmonitor_byzantine_channel_asynchronous: The prevous architecture with a Byzantine

failure of a single compute channel.

 systemmonitor_IO23_synchronous: Represents the time-triggered synchronous system with

inconsistent omission failure of up to two compute channels.

 systemmonitor_brain3_asynchronous: Represents the asynchronous system with the

symmetric fault model of the BRAIN 3 architecture.

To further validate the abstraction, we composed additional system configurations that included a

transient failure of the sampled waveform. This inclusion violated the expected rate of change assumption

of the sawtooth waveform. Therefore, we wanted to check if the use of such a waveform would result in

counter examples. These scenarios are captured in the systemmonitor_IO23_asynchronous_wt. The

modified sample waveform code is shown below.

 waveform_wt(t : REAL,tr : REAL): REAL =
 IF t <= period/2 THEN t
 elsif t >= tr then 0
 ELSE
 1.0 - ((t - 1.0))
 ENDif;

The position of the transient was non-deterministically assigned to lie within the plant period.

 tr IN {z:REAL | z >=0 and z <= period};
 % tt1 is initially constrained to be greater dt and less than period

19

4.1.7 Proving Agreement Properties

We used the formal models of the study architectures to explore the fault-tolerance and agreement

properties of the case-study system. These initial experiments were performed using the sal-inf-bmc

model checker. Initially, the depth of the exploration was set to be larger than the waveform period. The

calculation of the required depth is dependent on the model structure. In this example, the periods of the

mvs, fcm and the sampled plant waveform are harmonically related, therefore exploring to the depth of

the plant waveform is sufficient.

 Following these informal experiments, we used the k-induction capability of the sal-inf-bmc model

checker to prove agreement. Using this initial abstraction both theorems were proven to be true.

Using these additional lemmas, we could prove the bounded agreement using a depth k= 2. For the

asynchronous architecture with two omission faults, the level of agreement corresponded to the temporal

skew of the computer channel sampling. That is to say, the level of agreement was determined by the

maximum rate of change of the plant waveform and the corresponding maximum divergence that may

occur over the sampling period.

 expected_error : REAL = 1.0 * dt * p2p

For the asynchronous architecture, the Byzantine fault-scenario also was explored. Interestingly,

under the Byzantine failure scenario, the level of bounded agreement was equivalent to the omission

scenarios.

For the synchronous architecture, the level of expected error was reduced to correspond to the

synchronous system precision. Using k-induction, this level of expected behavior was found to be a

correct bound.
 sync_e: REAL = 1.0 * sync_precision * p2p ;

We repeated this process with the Byzantine channel present and once again did not observe a

violation of the agreement bound property proving.

Finally, for the BRAIN-based asynchronous architecture, we instrumented the agreement monitor to

monitor exact agreements; (i.e., zero error). This property also was proven using an induction depth of k =

1.

4.1.8 Additional Model Validation Experiments

To further validate the asynchronous model, we lowered the threshold of bounded agreement to 0.99999

of the expected value. This threshold returned a counter example as expected. In addition, the models

with the transient disturbance injected into the plant waveform also returned counter examples as the rate

of input change under the transient scenarios increased beyond the expected maximum assumed skew.

20

4.2 Discussion of Initial Model and Findings

The initial formal investigation of the Phase 2 case-studies yielded a number of lessons and, in some

cases, lessons re-learned. In the asynchronous architecture, the bound of agreement at the actuation

interfaces is solely determined by the asynchronous plant sampling. With our simplified saw-tooth plant

waveform this corresponded to the delta change in the plant waveform that occurs during the period

duration of the sampling task. Using the sal-inf-bmc model checker we were able to prove this bound of

agreement, for fault scenarios comprising one or two inconsistent omissive faults. Interestingly the

presence of a single Byzantine fault did not degrade this level of agreement. Therefore it may be argued

that this class of architecture is not vulnerable to Byzantine failure
11

. Although, this finding was initially

surprising it is in line with our definitions[10] of Byzantine faults and Byzantine failure:

 Byzantine fault: a fault presenting different symptoms to different observers.

 Byzantine failure: the loss of a system service due to a Byzantine fault in systems that

require consensus.

Using the above, if the level of disagreement due to the asynchronous sampling is sufficient for

performance, then additional strategies for exact agreement are not required. This finding helps qualify

our findings from the asynchronous case-study of the first year [2]. From this study, we concluded that

the overhead required for exact agreement may be too expensive for practical use. This new finding

further helps to illuminate the differences between the asynchronous and synchronous design mindsets. If

the system can perform with such levels of inexact agreement, it easier to understand why system

architects with an asynchronous system design preference resist any suggestion to increase the level of

channel coupling to achieve a tighter bound of agreement if it is not be needed. Such strategies allow

them to avoid common-mode influence from such agreement services that can increase system brittleness.

That being said, as illustrated [11], developing voting and fault-isolation strategies with inexact

agreement can be relatively complex, requiring extensive knowledge of the system dynamics. The

increase in channel coupling from cross-lane equalization also needs also to be considered and analyzed

under normal and failure modes.
12

 Consequently, validating the effectiveness of such strategies is also

non-trivial.
13

 In addition, arguing platform fault-tolerant properties independent of the hosted application

is very difficult within an asynchronous architecture, since the plant dynamics and asynchronous tasking

rates are closely coupled to the fault-detection thresholds and performance.

 For the time-triggered synchronous architecture, the platform fault-tolerant properties are simpler to

establish, since they are dominated by the system precision and less influenced by tasking rate and plant

dynamics. In our study, the mid-value-selection also constrained the influence of a single Byzantine fault

to be within the agreement bound supported by the synchronous precision. Obviously, the

synchronization services underpinning such a system must also be validated for Byzantine fault-tolerance.

Finally, it is interesting to note that the consistent broadcast guarantee
14

 of the BRAIN may achieve

exact agreement in either synchronous or asynchronous operational modes. This is an interesting option

for such architectures. However, the impact of transient errors also needs to be assessed. The extended

hierarchal agreement services detailed in [12] may be one option to increase the transient robustness.

11

 Alternatively it may be argued that the asynchronous sampling may itself be considered equivalent to a Byzantine

fault.
12

 Given the complexity and application-specific nature of equalization schemes, such analysis may be more

complex than that of a fault-tolerant synchronization service.
13

 Fortunately, in the case-study architecture the majority of the fault-detection is implemented at the source via the

comparison of the Command and Monitor lanes. Hence in such systems, the fault detection threshold calculation

may be simpler to establish.
14

 Yet to be formally verified

21

4.3 Initial Model Checking Performance and findings

The model checking performance also was acceptable for all models, with proofs completing within a few

seconds. We believe that the non-deterministic assignment of the initial plant sampling phase-offsets

facilitates the exploration of phase-related emergent behavior. The performance of the bounded model

checker was satisfactory, yielding results within a few seconds. In addition, in this initial model, deriving

a proof from the model was straight forward, since it did not require the generation of any additional

auxiliary lemmas.

However, in this initial model the synchronous composition of the mvs modules is a deficiency and

the synchronous abstraction may miss effects resulting from the asynchronous boundary between the mvs

modules and their respective tasking rates. In addition, although this initial model is sufficient for the

open loop exploration, we are uncertain how to evolve this model to integrate the closed-loop control and

plant models model. To ameliorate these shortcomings, we explore an alternative abstraction in the next

section.

22

4.4 An Alternative Timeout Automata Based Abstraction

To address the issues discussed in the previous section, we developed an alternative abstraction using the

timeout automata[13]. We hope that this abstraction will enable the impact of the asynchronous

interaction of the mvs systems to be analyzed. We further hope that this revised abstraction will facilitate

for the integration of closed- loop control and plant behavior into the model.

 The initial timeout-automata based abstraction contains very similar components to those described

in the previous section. Hence the details of the subcomponents are not elaborated in detail below. Instead

we concentrate on the differences related to the capture of the asynchronous tasking using the timeout

automata based framework.

4.4.1 Clock Module

A central component of the revised model is the clock module. This central module is responsible for

incrementing the global time. The progression of time is governed by this module. Each system

component provides an input to this module (via the _timeout signals). This input corresponds to the time

of the respective components next timed action (i.e., the value of its local timeout). The clock module

evaluates the global array of timeout events and advances a global time variable to the lowest value in the

global timeout array.

 % Clock module: advance time to min(fcm_timeout1, fcm_timeout2, fcm_timeout3, mvs_timeout1, mvs_timeout2)
 %
 clock: MODULE =
 BEGIN
 INPUT
 fcm_timeout1, fcm_timeout2, fcm_timeout3: TIME,
 mvs_timeout1, mvs_timeout2: TIME
 OUTPUT
 time: TIME
 INITIALIZATION
 time = 0;
 TRANSITION
 [time < fcm_timeout1 AND time < fcm_timeout2 AND time < fcm_timeout3 AND time < mvs_timeout1 AND time < mvs_timeout2

-->
 time' IN { t: TIME | t <= fcm_timeout1 AND t <= fcm_timeout2 AND t <= fcm_timeout3
 AND t <= mvs_timeout1 AND t <= mvs_timeout2
 AND (t = fcm_timeout1 OR t = fcm_timeout2 OR t = fcm_timeout3 OR t = mvs_timeout1 OR t =

mvs_timeout2) };
]
 END;

4.4.2 Source Module

This second abstraction also introduces a source module to represent the stimulus of the system. This

enables improved modeling of the fcm sampling
15

. This module derives a period count from the time and

this is value is subtracted from the time value before calling the waveform function (because the

waveform function is only defined for a single plant period).

 %
 % Source module: at time t, the output is x = waveform(t - k * period)
 % where period * k <= t < period * (k + 1)
 %
 source: MODULE =
 BEGIN
 INPUT time: TIME
 LOCAL period_counter: INTEGER
 OUTPUT x: REAL
 DEFINITION
 period_counter IN { n: INTEGER | n * plant_period <= time AND time < (n+1) * plant_period };
 x = waveform(time - period_counter * plant_period);

 END;

 waveform(t: REAL): REAL =

15

 Note that this is a simplification from real system, where the input sampling is performed in the ASM modules.

23

 IF t < 0 OR t > plant_period THEN 0
 ELSIF t <= plant_period/2 THEN A * t
 ELSE amplitude - A * (t - plant_period/2)
 ENDIF;

4.4.3 FCM Module

The fcm is very similar to the fcm of the initial model. In comprises a very simple state transition. When

the value of time equals the timeout value the fcm updates the sample value y, to the current value of the

source x. In this initial model y is initialized to 0 and timeout is initialized to the 1
st
 value. Due to the

synchronous system composition (see section 4.1.6) the fcm module also defines an empty else transition.

 faulty_fcm: MODULE =
 BEGIN
 INPUT
 time: TIME
 OUTPUT
 timeout: TIME,
 y: REAL
 INITIALIZATION
 timeout IN { t: TIME | 0 <= t AND t < fcm_period };
 TRANSITION
 [time = timeout -->
 timeout' IN { t: TIME | time + epsilon <= t };
 y' IN { x: REAL | true };
 []
 ELSE -->
]
 END;

Note: The initial value pre_y has been included to support the proof by induction. This is discussed

later with the proof.

4.4.4 MVS Module

The mvs module is very similar to the previous model. When the time is equal to the timeout function the

modules updates the mvs output using the midval function. Similar to the initial abstraction, the mvs

calculation is a function of the number of valid inputs, with input validity been denoted by Boolean flags

bn for input each channel. The model also defines an empty ELSE transition. This is to support the

synchronous composition of this module with other system modules (see section 4.1.6).

mvs_period: TIME = 0.05;

 midval(y1: REAL, y2: REAL, y3: REAL): REAL =
 IF y1 <= y2 THEN
 (IF y2 <= y3 THEN y2 ELSIF y1 <= y3 THEN y3 ELSE y1 ENDIF)
 ELSE
 (IF y1 <= y3 THEN y1 ELSIF y2 <= y3 THEN y3 ELSE y2 ENDIF)
 ENDIF;

 mvs: MODULE =
 BEGIN
 INPUT
 y1, y2, y3: REAL,
 b1, b2, b3: BOOLEAN,
 time: TIME
 OUTPUT
 timeout: TIME,
 mvs: REAL

 INITIALIZATION
 timeout IN { t: TIME | 0 <= t AND t < mvs_period };
 mvs = 0;

 TRANSITION
 [time = timeout -->
 timeout' = time + mvs_period;
 mvs' = midval(IF b1' THEN y1' ELSIF b2' AND NOT(b3') THEN y2' ELSIF b3' AND NOT(b2') THEN y3' ELSE mvs ENDIF,
 IF b2' THEN y2' ELSIF b1' AND NOT(b3') THEN y1' ELSIF b3' AND NOT(b1') THEN y3' ELSE mvs ENDIF,
 IF b3' THEN y3' ELSIF b1' AND NOT(b2') THEN y1' ELSIF b2' AND NOT(b1') THEN y2' ELSE mvs ENDIF);
 []
 ELSE -->
]

 END;

24

4.4.5 Fault Injection

This module also incorporates fault injection. In the initial experiments this However, due to the

difficulties encountered with the agreement proof (see later discussion), the faults are set to be inactive.

 % Fault model: sampler 2 is faulty so c1_b2 and c2_b2 can true or false
 %
 fault_injection : MODULE =
 BEGIN

 OUTPUT
 c1_b1, c1_b2, c1_b3: BOOLEAN,
 c2_b1, c2_b2, c2_b3: BOOLEAN

 DEFINITION

 c1_b1 = true;
 c1_b2 IN { true, false } ;
 c1_b3 = true;

 c2_b1 = true;
 c2_b2 IN { true, false };
 c2_b3 = true;

 END;
 c2_b3 = true;

 END;

4.4.6 System Composition

The system composition is depicted below. The mvs and fcm modules are first synchronously composed

into a system. This system is then asynchronously composed with the synchronous composition of the

clock and source modules. It is crucial to compose the clock module asynchronously with the system.

Otherwise, there would be a clear deadlock.

%
 % Full system:
 % - synchronous composition of these components
 %
 system: MODULE =
 (RENAME timeout TO fcm_timeout1, y TO y1, pre_y TO pre_y1 IN fcm)
 || (RENAME timeout TO fcm_timeout2, y TO y2 IN faulty_fcm)
 || (RENAME timeout TO fcm_timeout3, y TO y3, pre_y TO pre_y3 IN fcm)
 || fault_injection
 || (RENAME b1 TO c1_b1, b2 TO c1_b2, b3 TO c1_b3, timeout TO mvs_timeout1, mvs TO mvs1 IN mvs)
 || (RENAME b1 TO c2_b1, b2 TO c2_b2, b3 TO c2_b3, timeout TO mvs_timeout2, mvs TO mvs2 IN mvs);

With this composition two types of transitions are taken alternatively:

 'transition in the physical model (clock + source)'

 'transitions in the system (samplers + voters)'.

In the first type of transition, time advances and x is updated. In the second type of transition, time

and x are fixed but at least one of the samplers/mvs/fcm modules makes a discrete step. On every

transition of clock, 'time' is increased where as on every transition of system 'time' stays unchanged.

Therefore the clock and system can't be composed synchronously. However, the clock and source can

be composed synchronously given that the output variable of the source module changes when 'time'

changes.

4.4.7 Investigating and Proving the System Agreement Properties

This second model presented many more difficulties than the course abstraction of the first model. Firstly,

given that the initial phase of the plant waveform is set to 0 in this second abstraction, the bounded model

checking experiments require a significant depth of exploration. The required depth is calculated by the

plant waveform period (2s) divided by the highest sampling rate (0.05s), i.e., a value of 40. However,

25

since the mixed asynchronous/synchronous composition of the system components requires two steps to

increase the value of the clock value, this value needs to be doubled to 80. To cross-check this value, a

simple time-based lemma was added to the model to validate time against the depth of model exploration.

 t: LEMMA full |-G(time < plant_period);

However, given this required depth of examination, the bounded model checking experiments were

relatively slow, requiring approximately one hour of compute time on a high performance processor.

Secondly, a significant effort was required to produce the auxiliary lemma to support a k-induction based

proof of the agreement (even under no-fault scenarios).

The first set of invariants constrains the value of time and the timeout parameters. The value time is

constrained to be less than the current timeout and the timeout is, in turn, bounded to be less than the

current time plus the respective period. These invariants are provable by an induction depth of 1.

 %
 fcm_timeout_bounds1: LEMMA full |- G(time <= fcm_timeout1 AND fcm_timeout1 <= time + fcm_period);

 fcm_timeout_bounds2: LEMMA full |- G(time <= fcm_timeout2 AND fcm_timeout2 <= time + fcm_period);

 fcm_timeout_bounds3: LEMMA full |- G(time <= fcm_timeout3 AND fcm_timeout3 <= time + fcm_period);

 mvs_timeout_bounds1: LEMMA full |- G(time <= mvs_timeout1 AND mvs_timeout1 <= time + mvs_period);

 mvs_timeout_bounds2: LEMMA full |- G(time <= mvs_timeout2 AND mvs_timeout2 <= time + mvs_period);

The second set of invariants constrains the fcm sample values (y). These are constrained to be within

a fixed delta of stimulus source waveform output (x), where the size of the delta is derived from the fcm

sampling period and the stimulus amplitude.

 %
 % Provable by induction at depth 1
 %
 sampling_error1: LEMMA
 full |- G(x - y1 <= A * (time - (fcm_timeout1 - fcm_period)) AND y1 - x <= A * (time - (fcm_timeout1 - fcm_period)));

 sampling_error2: LEMMA
 full |- G(x - y2 <= A * (time - (fcm_timeout2 - fcm_period)) AND y2 - x <= A * (time - (fcm_timeout2 - fcm_period)));

 sampling_error3: LEMMA
 full |- G(x - y3 <= A * (time - (fcm_timeout3 - fcm_period)) AND y3 - x <= A * (time - (fcm_timeout3 - fcm_period)));

The next set of lemmas constrain the behavior of two successive samples; that is, a previous sample is

constrained to be within a fixed delta of the current sample, where the delta once again is a function of the

waveform amplitude and the sampling

 %
 % Bound on the difference between two successive samples
 % - provable by induction at depth 1, using sampling_error<i> as a lemma
 %
 pre_sampling_delta1: LEMMA
 full |- G(y1 - pre_y1 <= A * fcm_period AND pre_y1 - y1 <= A * fcm_period);

 pre_sampling_delta2: LEMMA
 full |- G(y2 - pre_y2 <= A * fcm_period AND pre_y2 - y2 <= A * fcm_period);

 pre_sampling_delta3: LEMMA
 full |- G(y3 - pre_y3 <= A * fcm_period AND pre_y3 - y3 <= A * fcm_period);

The set of auxiliary lemmas below constrains the sampling differences across the fcm channels. These

are pair-wise that constrain the channel samples (y) to be within the fixed delta derived from the

waveform amplitude and sampling rate. The invariants can be proven using the respective period

channel’s sampling error.

 %
 % Bound on the difference betweeen two sampling channels
 % - to prove sampling_delta(i,j) use induction at depth 1, with sampling_error<i> and sampling_error<j> as lemmas
 %
 sampling_delta12: LEMMA
 full |- G(fcm_timeout1 >= fcm_timeout2 => y1 - y2 <= A * (fcm_timeout1 - fcm_timeout2)
 AND y2 - y1 <= A * (fcm_timeout1 - fcm_timeout2));

 sampling_delta21: LEMMA
 full |- G(fcm_timeout2 >= fcm_timeout1 => y1 - y2 <= A * (fcm_timeout2 - fcm_timeout1)

26

 AND y2 - y1 <= A * (fcm_timeout2 - fcm_timeout1));

 sampling_delta13: LEMMA
 full |- G(fcm_timeout1 >= fcm_timeout3 => y1 - y3 <= A * (fcm_timeout1 - fcm_timeout3)
 AND y3 - y1 <= A * (fcm_timeout1 - fcm_timeout3));

 sampling_delta31: LEMMA
 full |- G(fcm_timeout3 >= fcm_timeout1 => y1 - y3 <= A * (fcm_timeout3 - fcm_timeout1)
 AND y3 - y1 <= A * (fcm_timeout3 - fcm_timeout1));

 sampling_delta23: LEMMA
 full |- G(fcm_timeout2 >= fcm_timeout3 => y2 - y3 <= A * (fcm_timeout2 - fcm_timeout3)
 AND y3 - y2 <= A * (fcm_timeout2 - fcm_timeout3));

 sampling_delta32: LEMMA
 full |- G(fcm_timeout3 >= fcm_timeout2 => y2 - y3 <= A * (fcm_timeout3 - fcm_timeout2)
 AND y3 - y2 <= A * (fcm_timeout3 - fcm_timeout2));

The final two lemmas constrain the behavior for the mvs selection under no fault scenarios. Each is

defined to be the mid-value functions of the current active sample or the previous sampled value. Each is

provable at induction depth 1 using the fcm_timeout auxiliary lemmas introduced above.

 mvs_invar1: LEMMA full |- G(mvs1
 = midval(IF fcm_timeout1 - fcm_period <= mvs_timeout1 - mvs_period THEN y1 ELSE pre_y1 ENDIF,
 IF fcm_timeout2 - fcm_period <= mvs_timeout1 - mvs_period THEN y2 ELSE pre_y2 ENDIF,
 IF fcm_timeout3 - fcm_period <= mvs_timeout1 - mvs_period THEN y3 ELSE pre_y3 ENDIF));

 mvs_invar2: LEMMA full |- G(mvs2
= midval(IF fcm_timeout1 - fcm_period <= mvs_timeout2 - mvs_period THEN y1 ELSE pre_y1 ENDIF,
 IF fcm_timeout2 - fcm_period <= mvs_timeout2 - mvs_period THEN y2 ELSE pre_y2 ENDIF,
 IF fcm_timeout3 - fcm_period <= mvs_timeout2 - mvs_period THEN y3 ELSE pre_y3 ENDIF));

Using the mvs_invar1, mvs_invar2 ,sampling_delta12 , sampling_delta13 , sampling_delta23,

sampling_delta21 , sampling_delta31 , sampling_delta32 , pre_sampling_delta1, pre_sampling_delta2,

pre_sampling_delta3 auxiliary lemmas, the agreement property can be proved at an induction depth of

1.

 agreement: THEOREM full |- G(mvs1 - mvs2 <= error AND mvs2 - mvs1 <= error);

4.5 Investigating Faults with the Timeout Automata Based Abstraction

The previous model facilitates the proof of agreement in the fault-free case. However, the proof does not

hold under fault conditions. In addition, the depth of required exploration in the previous model precludes

practical interactive model checking, since each run requires over 2 hours of execution time. Therefore,

the model was modified to incorporate a non-deterministically selected initial plant waveform phase

offset. To do this, an additional global start_phase_type and an associated unbounded start-phase

constant was added to the context

 start_phase_type : TYPE = { t: TIME | 0 <= t AND t < plant_period - fcm_period };
 start_phase : start_phase_type;

The initialization value of time of the clock, mvs, and fcm modules were then defined as a function of

the start_phase constant. Similarly, the initial sample (y), pre-sample (pre_y), and mvs values were

initialized to be the value of the source waveform at the time of the start_phase value.

mvs module …
timeout IN { t: TIME | start_phase <= t AND t < start_phase + mvs_period };
 mvs = waveform(start_phase);

timeout IN { t: TIME | start_phase <= t AND t < start_phase + fcm_period };
 y = waveform(start_phase);
 pre_y = waveform(start_phase);

27

With this modification, the depth of model exploration and search time can be greatly reduced as the

depth of exploration can be reduced to 4. This value accommodates for the two steps incurred from the

asynchronous composition of (clock || source) and two discrete steps for 'system'
16

.

4.5.1 Proving Agreement with Faults

To support the proof of agreement using the timeout automata model additional auxiliary lemmas were

required. The following lemmas constrain the values of the samples on channels 1 and 3 to be a function

of the source waveform at the time of reference

 y_invar1: LEMMA
 full |- G(fcm_timeout1 >= fcm_period => y1 = waveform(fcm_timeout1 - fcm_period - n1 * plant_period));

 y_invar3: LEMMA
 full |- G(fcm_timeout3 >= fcm_period => y3 = waveform(fcm_timeout3 - fcm_period - n3 * plant_period));

Similarly the previous samples of channels 1 and 3 are also constrained

 % depth 1, lemma: y_invar1
 pre_y_invar1: LEMMA
 full |- G(fcm_timeout1 >= 2 * fcm_period => pre_y1 = waveform(fcm_timeout1 - 2 * fcm_period - pre_n1 * plant_period));

 % depth 1, lemma: y_invar3
 pre_y_invar3: LEMMA
 full |- G(fcm_timeout3 >= 2 * fcm_period => pre_y3 = waveform(fcm_timeout3 - 2 * fcm_period - pre_n3 * plant_period));

The initial values of the sample and pre-sample values are also constrained

 y_init1: LEMMA
 full |- G(fcm_timeout1 < fcm_period => y1 = 0);

 y_init3: LEMMA
 full |- G(fcm_timeout3 < fcm_period => y3 = 0);

 pre_y_init1: LEMMA
 full |- G(fcm_timeout1 < 2 * fcm_period => pre_y1 = 0);

 pre_y_init3: LEMMA
 full |- G(fcm_timeout3 < 2 * fcm_period => pre_y3 = 0);

Each of the above invariants is provable using an induction depth of 1.

Additionally the lemmas constraining the bounds on the mvs values were revised as shown below

mvs_bounds1: LEMMA full |- G((z11 <= mvs1 AND mvs1 <= z13) OR (z13 <= mvs1 AND mvs1 <= z11));

mvs_bounds2: LEMMA full |- G((z21 <= mvs2 AND mvs2 <= z23) OR (z23 <= mvs2 AND mvs2 <= z21));

These can be proved using an induction depth of 2 in conjunction with the fcm_timeout auxiliary

lemmas presented in the previous section.

 Agreement can then be proved at an induction depth of 1 using all of the above lemmas in

conjunction with the fcm_timeout lemmas of the previous section.

16

 However it is emphasized that this assumes depth assumes the harmonic relationship among the plant,

mvs and fcm period. If this property is not valid, this depth may need to be revised and increased.

28

4.6 Run Scripts and Model Source Files

Source files and run scripts for the models described in the previous sections are posted at the NASA

DASHlink site AFCS – Distributed Systems (https://c3.nasa.gov/dashlink/projects/79/).

Section Model Run File
4.1.1 - 4.1.7 mvs.sal run_mvs.sh
4.4.1 - 4.4.74 mvs_with_timout1.sal run_mvs_with_timeout1.sh
4.5.1 mvs_with_timeouts3.sal run_mvs_with_timeouts3.sal

5 Mathematical Analysis of Mid-Value-Selection

This section presents a mathematical analysis of the actuation force-fight, with the intention of formally

bounding the level of actuation agreement. Figure 6 illustrates three 1Hz sinusoidal CM outputs where

the third channel drops off when time equals 3.0 seconds. In this example

Figure 6 CM Sinusoidal Outputs

Let, be the output from the channel, where . An

intersection between two channels will occur when . Using standard

trigonometric identities, both sides of the equation can be expanded to

 (1)

Two special cases emerge. One, where the commands are identical and intersect

everywhere. The other, where , the commands intersect at with a zero

value. For all other cases, we can simplify (1),

 ,

and find the points of intersection at

29

(2)

Note, these values are in radians and need to be converted back to time by dividing the results by
From (2) we have three sets of intersections, in seconds:

The model for the mid-value select is to use the median of the three channels if all are available. If

only two channels are available, replace the missing channel with the previous mid-value and recalculate

the median. If only one channel is available, the use that channel without any modification.

The mid-value select algorithm, described above, is implemented in MATLAB notation as:

 function mv=midval(y1,y2,y3)
 if (y1 <= y2)
 if (y2 <= y3)
 mv=y2;
 elseif (y1 <= y3)
 mv=y3;
 else
 mv=y1;
 end
 else
 if (y1 <= y3)
 mv=y1;
 elseif (y2 <= y3)
 mv=y3;
 else
 mv=y2;
 end
 end
 end

It is possible to bound this disagreement in closed form. The main disagreement is due to the

difference between sinusoids. Recall, is the output from the channel, where
 . The difference between these channels is

 (3)

Using the same identity as above (3) expands to

 (4)

Which simplifies to

(5)

We can write (5) in the form

 ,
where,

 .

(6)

But,

. So,

,

 ,

(7)

30

The phase shift, can be calculated as

(8)

For the example in the previous figures, .

Note, the phase shift is expressed in seconds, not radians.

(9)

For the three FCM command outputs from Figure 7, the resulting mid-value select algorithm

generated the dark blue. The disagreement between the mid-value select and the individual channels can

be calculated by simple differencing. This is illustrated in Figure 8.

Figure 8 Disagreement between CM channels and Mid-Value Select.

Figure 7 Mid-value selection from 3CMs, Channel 3 fails at time=3.0 sec.

31

5.1 Inconsistent Omission Error Force Fight

Figure 7 and the associated analysis allow us to calculate the force fight resulting from a dual Actuator

Sense Module (ASM) with an inconsistent omission error with an asynchronous, sinusoidal plant.

Illustrated in Figure 9, three signals are provided to one mid-value select algorithm, while only two

signals are presented to the other ASM. The difference in the output of the MVS algorithms represents the

force fight.

For the example presented in Figure 7, the period before the 3 second mark represents the output of

ASM1 MVS. The period after 3 seconds represents the ASM 2 MVS. Note, in this that each MVS tracks

a different signal for most of the time bounding the force fight by the sinusoid defined in (6). The force

fight is presented in Figure 10.

In the earlier SAL analysis a triangle wave command was used in lieu of a sin wave. Figures 11

presents the equal amplitude commands used in the SAL study. Figure 12 presents the force fight when

either Channel 1, 2, or 3 fail.

Figure 9 Dual ACE Force Fight - Inconsistent Omission Error.

Figure 10 Force Fight - Inconsistent Omission Error at t=3.0 sec.

32

Figure 11 Triangle Wave used in SAL Analysis.

Channel 2 Fail Channel 1 Fail Channel 3 Fail

Figure 12 Force Fight from Triangle CM Commands - Single Channel Inconsistent Omissions.

33

6 Conclusions and Future Work

The Phase-2 case-study architectures [1] present a number of interesting challenges with regard to formal

verification. Originally, it was our intention to form an integrated model that would support the

verification of the agreement properties within the context of the plant model and control system logic.

Our hope was that the SAL and Hybrid SAL tool chains would support the model capture and formal

verification. However, the lessons learned from the open-loop simplified model indicate that such a

strategy may not be the best option and that the SAL tool chain may not be the best vehicle to develop the

proof. The effort and time required to manually develop the auxiliary lemmas to support the required

proof was significant. Although automated invariant generation methods do exist, for example [15], these

methods have not yet been implemented within SAL. We further conjecture that the invariant used by the

mvs model may be beyond what these automated method can find because auxiliary variables are

required. Given this experience at the time of writing we believe that it may be preferable to use SAL as a

debug tool and use PVS or related technologies to formalize the proof arguments. In addition, the visual

results using MATLAB allowed us to develop an intuition that was then used to form a closed form

solution to the force fight for both sinusoidal and triangle CM command waveforms. When learning new

technologies, such as SAL, it is easy to get lost in the intricacies of the new tool and language, which may

allow more simple solutions to be overlooked.

Given the above, it is our intuition that an integrated model may not be the best approach and

attacking the problem in stages may be preferable. For example, use SAL or Hybrid SAL to characterize

and potentially prove the control feedback characteristics (e.g. maximum rate of change, etc.) then use

these abstracted characteristics to formally investigate agreement in a separate module. At the current

time, the ability to reason and verify complex agreement strategies that incorporate cross-lane

equalization and mode consolidation within the control logic is also uncertain. This will be an area of

focus in Year 3 of the work.
The work performed to date, focusing on the output agreement, has proved to be very educational

with respect to our understanding of the distributed agreement properties under inconsistent omissive and

Byzantine fault-scenarios. We believe that the alternative behavior and properties of the BRAIN 3.0

protocol is also an interesting contribution to such architectures, supporting a discussion of agreement

without the asynchronous vs. synchronous system philosophical discussions.

In upcoming work, we intend to focus on the asynchronous architectures. We intend to refine the

techniques to develop an integrated argument. We further intend to augment the model with

representative lane-equalization, input selection, and asymmetric fault management logic. We also intend

to explore the system validation actives performed on similar real-world system to assess the applicability

and feasibility of applying the analysis developed here-in. We will also investigate the feasibility and

potential benefit that can be derived from tests generated from the formal model abstractions.

We further intend to extending this work to investigate more elaborate equalization strategies such as

[14], and to explore the issues of multi-rate system [15].

Finally, we intend to characterize these implications of the asynchronous control architecture and to

contrast the bandwidth and CPU efficiency of our three case-study architectures; for example, to formally

evaluate the required computational for equivalent levels of agreement.

34

References

[1] B. Hall, K. Driscoll, and K. Schweiker, “Verification and Validation of Flight Critical Systems

Research Project: Report Detailing Phase-2 Case Study Development,” to be published.

[2] K. Driscoll, G. Madl, and B. Hall, “Modeling and Analysis of Mixed Synchronous/Asynchronous

Systems,” NASA/CR-2012-217765, September 2012.

[3] S. Osder, "Chronological overview of past avionic flight control system reliability in military and

commercial operations," AGARD-AG-224 , P. R. Kurzhals, ed., NATO Research and Technology

Organization, vol. 224, Jan 1977, pp. 2-1-2-17. Available from NTIS HC A16/MF A01.

[4] S. Osder, "Generic Faults and Architecture Design Considerations in Flight Critical Systems," AIAA

Journal Of Guidance, Control and Dynamics, vol. 6, no. 2, March-April 1983, pp. 65-71.

[5] B. Wittenmark, B. Bastian, and J. Nilsson, “Analysis of time delays in synchronous and

asynchronous control loops,” Decision and Control, 1998. Proceedings of the 37th IEEE

Conference on, vol. 1, pp. 283–288, 1998.

[6] V. A. Regenie, C. V. Chacon, and W. P. Lock, “Experience with synchronous and asynchronous

digital control systems," NASA Ames Research Center, NASA Tech. Mem. 88271, August 1986.

Presented at the AIAA Guidance, Navigation, and Control Conference, Williamsburg, Virginia,

August 18-20, 1986.

[7] SAE AS6802 November 2011 Time-Triggered Ethernet.

[8] SAE AS6003 February 2011 TTP Communication Protocol.

[9] A. Tiwari and B. Dutertre, “Modeling and Analysis of Asynchronous Systems Using SAL and

Hybrid SAL,” NASA/CR-2013-217960, February 2013.

[10] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, “Byzantine fault tolerance, from theory to

reality,” Knowledge-Based Intelligent Information and Engineering Systems, S. Anderson et al.

(Eds): SAFECOMP 2003, Computer Safety, Reliability, and Security Lecture Notes in Computer

Science Volume 2788, pp. 235–248, 2003.

[11] G.Davis, “An analysis of redundancy management algorithms for asynchronous fault tolerant

control systems,” NASA Ames Research Center, NASA Tech. Rep. TM-100 007, 1987.

[12] K. Driscoll, B. Hall, and K. Schweiker, “Application Agreement And Integration Services,”

NASA/CR-2013-217963, February 2013.

[13] B. Dutertre, M. Sorea, “Timed systems in SAL,” SRI Technical Report, SRI-SDL-04-03, July 2004.

http://www.csl.sri.com/users/bruno/publis/sri-sdl-04-03.pdf (accessed April 11, 2013).

[14] L. R. Tomlinson and R. E. Freeman, “Signal selection and fault detection apparatus and method,”

U.S. Patent 5,710,776, January 20, 1998.

[15] T. W. Johnson, “A qualitative analysis of redundant asynchronous operation,” Proceedings of the

IEEE 1978 National Aerospace and Electronics Conference NAECON 78, May 16-18, 1978,

Dayton, OH, USA, 1978.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Contractor Report
 4. TITLE AND SUBTITLE

Investigating Actuation Force Fight with Asynchronous and Synchronous
Redundancy Management Techniques

5a. CONTRACT NUMBER

NNL10AB32T

 6. AUTHOR(S)

Hall, Brendan; Driscoll, Kevin; Schweiker, Kevin; Dutertre, Bruno

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Paul S. Miner

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

Within distributed fault-tolerant systems the term force-fight is colloquially used to describe the level of command
disagreement present at redundant actuation interfaces. This report details an investigation of force-fight using three
distributed system case-study architectures. Each case study architecture is abstracted and formally modeled using the
Symbolic Analysis Laboratory (SAL) tool chain from the Stanford Research Institute (SRI). We use the formal SAL models to
produce k-induction based proofs of a bounded actuation agreement property. We also present a mathematically derived bound
of redundant actuation agreement for sine-wave stimulus. The report documents our experiences and lessons learned
developing the formal models and the associated proofs.

15. SUBJECT TERMS

Distributed systems; Fault tolerance; Force fight; Redundancy management
18. NUMBER
 OF
 PAGES

39
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

534723.02.02.07.30

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2013-217984

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

04 - 201301-

