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edition of this Encyclopedia. Yoram’s many creative ideas greatly enriched this field, and 
his untimely passing in June 2006 was a great loss to our community. 

 

 

 



50-100 word synopsis 

 

Because aerosols vary on many spatial and temporal scales and exhibit a diversity of 
environmental impacts, satellite remote sensing makes an essential and contribution to the 
study of airborne particles.  Since the very first orbiting imagers began observing Earth, the 
scope of satellite data products has provided inspiration, qualitative indications, and 
increasingly, quantitative constraints on the regional and global influences aerosols exert.  
Major advances in this field have taken place in the last decade, providing better 
constraints on atmospheric processes, short-term forecasting, and climate modeling. 
Further advances can be expected from greater integration of satellite and suborbital data 
with models. 
 



 

Main body 

 

Satellite Remote Sensing: Aerosol Measurements  
 
 

Introduction 
 
Aerosols are solid or liquid particles suspended in the air, and those observed by satellite 
remote sensing are typically between about 0.05 and 10 microns in size.  (Note that in 
traditional aerosol science, the term “aerosol” refers to both the particles and the medium 
in which they reside, whereas for remote sensing, the term commonly refers to the 
particles only.  In this article, we adopt the remote-sensing definition.)  They originate from 
a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking 
waves, natural biological activity, agricultural burning, cement production, and fossil fuel 
combustion.  They typically remain in the atmosphere from several days to a week or more, 
and some travel great distances before returning to Earth’s surface via gravitational 
settling or washout by precipitation.  Many aerosol sources exhibit strong seasonal 
variability, and most experience inter-annual fluctuations.  As such, the frequent, global 
coverage that space-based aerosol remote-sensing instruments can provide is making 
increasingly important contributions to regional and larger-scale aerosol studies. 
 
Aerosols affect Earth’s energy balance through direct radiative forcing – scattering sunlight 
back to space, which increases the top-of-atmosphere albedo over most surfaces, 
producing net surface cooling.  Darker particles absorb some incoming light, warming the 
ambient atmosphere, changing cloud properties locally, and possibly altering regional 
atmospheric circulation patterns.  Aerosols also exert “indirect” effects on clouds, as they 
provide cloud-condensation nuclei and ice nuclei essential for cloud particle formation, and 
can thus mediate cloud microphysical properties and regional water cycles.  In addition, the 
near-surface aerosol concentration is a factor affecting local air quality.  Many of these 
topics are explored elsewhere in this Encyclopedia (Aerosols: Climatology of Tropospheric 
Aerosols; Physics and Chemistry of Aerosols; Aerosols: Role in Radiative Transfer; 
Aerosols: Role in Cloud Physics; Satellite Remote Sensing: Cloud Properties; Precipitation).  
Suborbital observations, which can provide microphysical and chemical detail 
unobtainable from space, are covered in “Aerosols: Observations and Measurements.”  {Are 
there Encyclopedia entries covering Air Quality or Aerosol Transport Modeling?} 
 
The current article focuses on what has been and can be learned about aerosols from 
space-based remote sensing.  Compared to the much older field of in situ aerosol sampling, 
satellite remote sensing is a blunt object, offering at present snapshots of the horizontal 
and vertical distribution of aerosol amount over land and water, typically at several-
kilometer horizontal spatial resolution, and loose classification of aerosol type under 
favorable retrieval conditions.  Its essential contribution is the scope of coverage, which, 
even in the early days of satellite imagery in 1960s, helped establish the trans-continental 
mineral dust pathway from the North African desert to the Caribbean (Figure 1), and has 
since provided regional and global context for a broad range of leading climate and health-



related aerosol questions.  More recently, advanced passive imagers and active lidar 
systems have been flown successfully in space; we tell their story here. 
 
 
Aerosol Remote Sensing Over Ocean 
 
Two of the main challenges for satellite aerosol remote sensing are (1) separating the 
surface from the atmospheric contributions to the top-of-atmosphere observations, and (2) 
identifying the light-scattering properties of the particles, which are related to aerosol type.  
The first of these is dramatically reduced where satellite aerosol retrievals are performed 
over dark, uniform water surfaces.  So early efforts to retrieve aerosol column amount from 
space were performed over ocean.   
 
AVHRR – From a single red-band spectral channel centered at 0.63 µm, where the ocean 
surface tends to be dark, together with an assumed optical model for the particles involved, 
estimates of total-column aerosol amount were derived from Advanced, Very High-
Resolution Radiometer (AVHRR) reflectance measurements.  These revealed the seasonal 
patterns of major dust, smoke and pollution aerosol plumes on a global scale (Figure 2), 
providing both inspiration for improved aerosol measurement and modeling, and some 
actual constraints on chemical transport models that aimed at simulating, and to some 
extent predicting, the environmental impacts of airborne particles.  AVHRR instruments 
began collecting continuous data from space in 1981, and offer a substantial time series of 
global aerosol distributions.  Some more recent algorithms incorporate a second AVHRR 
spectral channel, making it possible to derive limited particle size constraints.  But poor 
radiometric calibration accuracy and the small number of relatively broad spectral bands 
on these wide-swath, single-view instruments limited the quantitative application of the 
data to aerosol research.  Similar products related to aerosol amount have been derived 
with higher temporal resolution from NOAA’s Geostationary Environmental Satellites 
(GOES) and European Space Agency’s Spinning Enhanced Visible and Infrared Imager 
(SEVIRI) geostationary instrument, and also from NASA’s polar-orbiting Sea-viewing Wide 
Field-of-view Sensor (SeaWiFS), a space-based multi-spectral imager having much 
narrower and better-calibrated spectral bands than the AVHRR. 
 
MODIS/VIIRS – Whereas the intensity of sunlight reflected by aerosols is closely related to 
column amount, the spectral dependence of the aerosol-reflected component contains 
some information about particle size.  The MODerate resolution Imaging 
Spectroradiometers (MODIS), part of the NASA Earth Observing System (EOS), represent a 
second-generation of multi-spectral imagers, having 36 spectral channels spanning 0.4 to 
14.4 µm, high radiometric calibration accuracy and stability, and sub-kilometer pixel 
resolution.  These features make it possible to produce a significantly higher quality 
constraint on the optically equivalent aerosol column amount, generally reported as the 
extinction aerosol optical depth (AOD), a measure of the amount of light removed from an 
incident beam at a given wavelength, due to both scattering in all directions, and 
absorption by particles.  The first MODIS instrument was launched with the EOS Terra 
satellite and began acquiring data in early 2000; a second MODIS began its mission on EOS 
Aqua in April 2002.  Over ocean, MODIS top-of-atmosphere, scattered-light measurements 
from six visible and near-infrared spectral channels are interpreted in terms of AOD and 
fine-mode AOD fraction (FMF), along with estimates of the fine- and coarse-mode effective 
sizes, providing global coverage approximately every two days (Figure 3).  A standard dark 



ocean surface model is assumed, including sun-glint exclusion and wind-dependent 
whitecap reflectance, and particle properties are selected from a pre-determined list of 
likely aerosol types.  The FMF is helpful in identifying aerosol type, as mechanically 
produced desert dust and maritime aerosols formed by breaking waves tend to be 
dominated by “coarse-mode” particles larger than a micron in diameter, whereas the 
populations of smoke, pollution, and other combustion and biogenic aerosols fall largely 
into the sub-micron “fine mode.”   
 
Over-ocean AOD Trends – One important application of the regional-to-global-scale AOD 
time-series derived from satellite observations has been the identification of trends.  
Aerosol amount varies on many spatial and temporal scales, so determining systematic 
tendencies requires relatively long, high-precision data records, having sufficient spatial 
coverage and temporal frequency to account for measurement anomalies and isolated 
events such a volcanic ash and wildfire smoke plumes.  Such analysis was first performed 
with 25 years of AVHRR data, and subsequently, with the first decade of carefully filtered 
MODIS AOD retrievals (Figure 4).  The globally averaged over-ocean trend derived between 
2000 and 2009 was negligible, but some significant regional AOD increases and smaller 
decreases were found, in most cases traced to changes in human activity.  To continue this 
time-series, a broad-swath, multi-spectral Visible Infrared Imaging Radiometer Suite 
(VIIRS) imager, having capabilities in some respects similar to MODIS, was launched on the 
National Polar-orbiting Operational Environmental Satellite System Preparatory Project 
(NPP) satellite in 2011, the first in a series planned for future NOAA operational polar-
orbiting satellites. 
 
Retrieving AOD over land with comparable accuracy from space-based observations is 
more difficult, but significant progress has been made in this area as well. 
 
 
Aerosol Remote Sensing Over Land 
 
The land surface of Earth is generally brighter and more variable than that of the ocean. To 
retrieve aerosol amount and type over land from satellite observations, the typically 
smaller aerosol-reflected component of upwelling radiation must be distinguished from the 
surface-reflected component.  Since the early days of satellite aerosol observation, a range 
of approaches has been conceived, developed, and applied to address this challenge. 
 
TOMS/OMI – Atmospheric gas molecules scatter ultraviolet (uv) light very efficiently, partly 
obscuring the surface as viewed from space, and in addition, Earth’s surface tends to be 
darker in the uv than in the visible.  So the differential absorption in two uv spectral 
channels from the Total Ozone Mapping Spectrometers (TOMS) instruments, which began 
taking data in 1979, and subsequently from the Ozone Mapping Instrument (OMI), have 
been interpreted as an Aerosol Index, a qualitative measure of aerosol amount, over land 
and water.  With some assumptions and constraints on aerosol vertical distribution and on 
the aerosol uv absorption properties (usually represented by the single-scattering albedo 
(SSA, which is the ratio of fraction of light scattered to that scattered  and absorbed by the 
particles at a given wavelength), these data also yield the AOD (Figure 5).  As the retrieval 
is based on aerosol absorption of the upwelling uv radiation, it tends to be less sensitive to 
near-surface aerosol.  A similar approach was used for the European GOME satellites.    
 



MODIS Dark Target, Deep Blue, and MAIAC – Several approaches have been used to obtain 
AOD over land from the MODIS instruments.  The “dark target” method over land relies on 
the 2.1 micron MODIS channel, in which atmospheric gas and aerosol opacity is generally 
low, to provide a constraint on the surface reflectance. The surface reflectance is then 
transferred to visible wavelengths where the AOD is determined, using an empirical 
relationship; a similar approach is used for ESA’s medium resolution imaging spectrometer 
(MERIS), and is planned for the next generation of US geostationary satellite multi-spectral 
imagers.  Over land, the aerosol type used in the algorithm is assumed, based on a 
climatology derived from the global AEosol RObotic NETwork (AERONET) network of 
surface sun and sky-scanning photometers (Figure 6).  AERONET also provides high-
quality AOD measurements used to validate many satellite AOD products.  As MODIS also 
has a relatively short wavelength “deep blue” channel at 0.41 microns, a variant of the uv 
absorption technique provides AOD from that instrument over brighter surfaces, such as 
desert.  The combination of MODIS dark water, dark target land, and deep blue AOD 
products is illustrated in Figure 3a.  A third approach for extracting AOD over land from 
MODIS relies on detecting temporal variations in the observed radiance.  The changing 
AOD, Ångström exponent (i.e., the spectral dependence of the AOD; specifically, minus the 
spectral slope of AOD in log-log coordinated), and surface angular reflection properties are 
extracted from 16-day time-series of MODIS imagery that capture different angular views 
of a region, a technique called Multi-Angle Implementation of Atmospheric Correction 
(MAIAC). 
 
AATSR, MISR – As Earth is viewed at steeper angles, the atmospheric contribution to the 
top-of-atmosphere reflectance systematically increases, and the surface is increasingly 
obscured.  Multi-angle observations make it possible to separate surface from atmosphere 
based on the varying air-mass-factors through which the observations are made. The 
European Space Agency’s (ESA) Along-Track Scanning Radiometer-2 (ATSR-2) imagers 
made use of this approach with a two-angle configuration beginning in 1995, and in 2000, 
the NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR), with 
nine cameras pointed at angles ranging from 70˚ aft, through nadir, to 70˚ forward along 
the orbit track, began operations.  AOD over land and ocean is produced from both ATSR-2 
and MISR instrument data sets; ATSR also reports Ångström exponent, and MISR provides 
a classification of aerosol “type” under favorable retrieval conditions, based on loose 
aerosol size, shape, and single-scattering albedo constraints that can be derived from the 
multi-angle, multi-spectral data (Figure 7). 
 
POLDER – Polarization is an additional property of light from which information about a 
scene can be extracted. The inclusion of polarization sensitivity with multi-spectral, multi-
angle capabilities allows the French Space Agency’s (CNES), POLarization and 
Directionality of the Earth’s Reflectances (POLDER) series of imagers to retrieve fine-mode 
and total AOD over land and water.  The analysis takes advantage of the relative spectral 
independence of polarized reflectance for most land surfaces, and the greater polarization 
of light scattered by smaller and more spherical particles, such as smoke or pollution, 
compared to larger, non-spherical desert dust. The POLDER instruments began acquiring 
data in 1997, and combine spectral, angular, and polarization information to monitor 
aerosol (Figure 8).   
 
More About Particle Properties – In general, having constraints on particle properties 
improves the accuracy of AOD results for both the uv absorption and the various scattering 



retrieval techniques.  Knowing aerosol type is also critical for source attribution, the 
assessment of aerosol radiative forcing, the determination of material fluxes, and other 
applications that depend upon knowing the chemical or physical nature of the particles.  So 
in addition to the multi-spectral assessment of particle size, and the multi-angle multi-
spectral determination of particle type with and without polarization, several other 
techniques for constraining properties from space have been demonstrated, at least on a 
case-by-case basis.   
 
The critical reflection technique relies on the idea that if particles reflect more light at a 
given view angle and wavelength than the surface below, the top-of-atmosphere (TOA) 
reflectance will increase with AOD, whereas if the particles reflect less light than the 
surface below, the TOA reflectance will decrease as AOD increases.  So if a layer of uniform 
aerosol amount and type overlies a surface of varied albedo, some parts of the scene will be 
brightened more than others by the aerosols.  From images of the scene on several days 
when the aerosol type is similar but the AOD is different, the SSA of the particles can be 
deduced.  As aerosol properties for a given source in a given season tend to be repeatable, 
even if the amount of aerosol varies considerably, this is a credible approach for deriving 
aerosol type information over variable land surfaces in some locations. 
 
Other methods combine the capabilities of several instruments to help constrain 
underdetermined remote-sensing retrievals.  For example, the TOMS and OMI uv AOD 
retrievals are sensitive to particle SSA and aerosol vertical distribution, and pixels several 
tens of kilometers in size from these instruments can be affected by undetected sub-pixel 
clouds.  Combining TOMS or OMI observations with near-coincident MODIS AOD and 
relatively high-spatial-resolution cloud clearing can produce more accurate constraints on 
SSA. When aerosol vertical distribution from an active sensor such as the NASA Earth 
Observing System’s Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
(CALIPSO) (Figure 9) are included, even tighter constraints can be derived on aerosol 
properties and scene conditions.  Similarly, data from the two-angle-viewing AATSR, 
providing AOD and cloud identification at relatively high spatial resolution, have been 
combined with high-spectral-resolution observations from the SCanning Imaging 
Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) spectrometer, both 
aboard ESA’s ENVISAT, to distinguish mineral dust, sea salt, soot and water soluble aerosol 
types.   
 
With recent technological advances and the demonstrated value of multi-angle, multi-
spectral, polarizing imagery covering the uv through the visible into the near infrared, 
future satellite aerosol instruments will likely combine all these capabilities into a single 
passive, broad-swath, remote-sensing imager.   
 
 
Constraints on Climate Models 
 
Synthesizing the collection of observations into a global picture while taking account of the 
relative strengths, limitations, and gaps in the various data records is a challenge in itself. 
But it is an essential step in applying the measurements to short-term forecast models, and 
to longer-term climate models, which are the primary tools for diagnosing many 
atmospheric processes, and for making predictions.  One approach has been to assimilate 
the observations into models, “nudging” the model AOD based on available measurements.  



The frequent (one-to-two-day) global coverage of the MODIS AOD data has been 
successfully used to improve several-day AOD model forecasts, once the satellite data set 
was filtered to remove outliers and retrievals that might have been affected by unscreened 
cloud, leaving about 50% of the original points. 
 
For longer-term climate modeling, more uniform global products are generally required. 
Monthly, global maps of AOD were created from the combination primarily of MODIS, 
MISR, and surface-sun-photometer AERONET data.  These are being used to constrain 
leading numerical climate models.  In this case, the frequent coverage of MODIS over water, 
the approximately once-weekly but generally more accurate over-land AOD from MISR, and 
the most accurate AERONET data, but with only spot sampling, were the main components 
aggregated into a unified AOD product (Figure 10). 
 
Knowing aerosol vertical distribution is especially important for climate modeling, as 
aerosol reflection and absorption of sunlight at different levels in the atmosphere not only 
alter the surface energy budget, but can affect the atmospheric stability structure, regional-
scale atmospheric circulation, and aerosol impacts on clouds.  The vertical distribution is 
also critical for assessing aerosol transports, as aerosols residing above the atmospheric 
boundary layer tend to stay aloft longer, travel farther, and have greater environmental 
impact.  The CALIPSO lidar generates a curtain of backscatter profiles at two wavelengths 
and having polarization sensitivity, with up to about 330 m horizontal resolution and 30 m 
vertical resolution.  Some vertically resolved aerosol type classification is also possible with 
these data. Coverage is limited to the width of the lidar beam, which means most aerosol 
sources are missed, but the great sensitivity of the observations to very thin aerosol layers 
far downwind of sources provides accurate snapshots that can be aggregated into general 
climatological constraints (Figure 9b-e).  
 
Aerosols are usually introduced into models by providing an inventory of injection heights, 
source strengths, and locations for different aerosol types.  Aerosol injection heights, 
derived from the parallax in multi-angle imaging views of aerosol plumes, can provide such 
information (Figure 11).  Unlike lidar, stereo imaging requires aerosol plumes to exhibit 
discrete features that can be tracked in multiple angular views, so the technique applies 
mainly within a few hundred kilometers of major aerosol sources such as wildfires, 
volcanoes, and places where desert dust storms form.  So the lidar and stereo-imaging 
techniques are complementary; as aerosols tend to travel in discrete layers, having upwind 
injection height from multi-angle imaging and downwind layer heights from space-based 
lidar combine to provide powerful constraints on model simulations of aerosol vertical 
distribution.   
 
Efforts to determine aerosol source strength from satellite observations all involve tight 
coupling between available measurements and the aerosol transport models themselves.  
The inverse modeling approach takes the observed AOD distribution over a wide area and 
in effect, runs the model backwards to derive the sources.  An alternative method involves 
running the model forward for a range of assumed source strengths and whatever 
constraints on injection height are available, and determines which assumed values best 
match the observed snapshot of AOD spatial distribution at the appropriate time step.  Both 
methods have been demonstrated for individual cases (Figure 12), motivating continuing 
work to generalize these results. 
 



One of the main applications for which frequent, global satellite aerosol observations are 
required is direct aerosol radiative forcing (DARF), the net change in energy flux (e.g., in 
W/m2) at the surface produced directly by aerosol scattering and absorption.  Uncertainty 
in the amount of surface cooling aerosols produce is a limiting factor in determining the 
ability of climate models to predict changes in global mean surface temperature.  Given the 
accuracy with which the radiative warming of long-lived greenhouse gases can be 
calculated, the required accuracy on aerosol properties to bring this factor into line is quite 
stringent.  It is estimated that instantaneous, mid-visible AOD measurements need to be 
accurate to about 0.02 over much of the globe. Current capabilities are of order 0.05 or 
20% of AOD, whichever is larger, over land, and somewhat better over dark water.  Some 
improvement is expected as the algorithms used for current operational instruments are 
refined, but a substantial advance will likely require a next-generation space-based 
instrument, combined with better constraints on particle microphysical properties that will 
probably require a systematic program of aircraft and surface-based direct sampling along 
with continued surface-based remote-sensing (such as AERONET).  
 
 
Applications to Cloud Formation and Air Quality 
 
One of the most challenging questions to which satellite observations have been applied is 
assessing aerosol impacts on clouds, often call aerosol “indirect” effects, as distinct from 
the direct radiative forcing aerosols produce.  Aerosols are essential for cloud droplet and 
ice particle formation; they serve as collection sites for water molecules, referred to as 
cloud condensation nuclei (CCN) and ice nuclei (IN), respectively.   
 
Aircraft instruments are generally best suited to study indirect effects in detail, as they can 
sample the 10s-to-100s-of-meters spatial and minutes-to-hours temporal scales that 
capture the cloud development process.  Nevertheless, satellite instruments have a 
contribution to make, taking advantage of the frequent, global coverage they offer, for 
exploring larger-scale patterns.  With imaging from passive remote sensing, cloud albedo, 
cloud droplet radius, and cloud optical depth can be mapped, along with cloud top 
temperature and pressure, aerosol amount, and aerosol type.  However, typical CCN 
populations are skewed toward particle sizes that remote sensing techniques cannot 
distinguish from atmospheric gas molecules.  So efforts have been made to identify proxies 
derived from those parts of the aerosol size spectrum that can be retrieved from space.  In 
addition, the aerosol retrieval process itself is hampered by the presence of clouds – 
particles residing beneath clouds, in the critical cloud droplet formation regions, usually 
cannot be detected from orbit, and aerosol retrievals in the vicinity of clouds are often 
complicated by the influence of large relative-humidity gradients and cloud-scattered light.  
As a result, most space-based studies of indirect effects amount to mining the satellite data 
for correlations that test theoretical expectations about how aerosol impact clouds. 
 
Figure 13 (a-c) presents examples of correlations between aerosol amount and cloud 
droplet size, in two situations where there are both perturbed and unperturbed 
observations of the same environments.  All other things being equal, increasing aerosol 
amount is expected to result in smaller cloud droplets (what is commonly called the “first 
indirect effect”), and if the amount of condensed water in the cloud remains constant, 
higher cloud albedo. Globally, this qualitative relationship is observed in some regions 
more than others (Figure 13d); the most reliable demonstrations involve liquid water 



clouds relatively near the surface.  Other consequences of aerosol impacts on clouds 
include longer cloud lifetimes and reduced precipitation, due to smaller cloud droplets that 
are less likely to grow to raindrop size, though these have been more difficult to 
demonstrate, let alone quantify, with satellite remote sensing.   
 
However, space-based measurements have observed cloud “invigoration” (Figure 13e).  
Here higher concentrations of CCN reduce the size of cloud droplets, inhibiting droplet 
coalescence until the droplets pass the freezing level.  The resulting extra release of energy 
invigorates the cloud, increasing the cloud fraction and enhancing precipitation.  Other 
recent work has demonstrated a relationship between aerosol concentration and open vs. 
closed convective cell formation, and has shown a correlation between AOD and lightning 
occurrence as observed from space.   
 
Air quality is monitored primarily with surface-based sampling instruments that directly 
observe the near-surface particle concentration and can obtain detailed information about 
particle size distribution and chemical composition.  But as it is feasible to cover only a 
minuscule fraction of the planet with surface samplers, satellite observations can again 
play a significant role, simply by providing frequent maps of AOD during acute air pollution 
events.  They are also beginning to contribute to longer-term exposure studies, especially 
when combined with chemical transport model results that provide particle vertical 
distribution and chemical speciation that is otherwise lacking observationally (Figure 14).   
 
Conclusions 
 
Because aerosol amount and type vary on such a wide range of spatial and temporal scales, 
and exhibit such a diversity of environmental impacts, satellite remote sensing makes an 
essential contribution to the study of airborne particles.  Since the very first orbiting 
imagers began observing Earth, the scope of satellite data products has provided 
inspiration, qualitative indications, and increasingly, quantitative constraints on the 
regional and global influences aerosols exert.  Major advances in this field have taken place 
in the last decade, since the previous edition of the Encyclopedia of Atmospheric Science 
was published, from monthly, global AOD climatologies and time series, to near-source and 
downwind aerosol vertical distribution measurements, regional aerosol type 
discrimination, aerosol source strengths, and correlative analyses showing the indirect 
effects of aerosols on clouds.  Much of this advance has come from the current generation 
of satellite instruments, increasingly sophisticated aerosol field measurement campaigns, 
ground-based instrument networks, and from combining data from multiple sources with 
models.  Further advances can be expected as retrieval algorithms continue to be refined, 
as data and models are analyzed and combined in new and innovative ways, and 
eventually, as next-generation space-based aerosol remote-sensing instruments are 
deployed. 
 
 
 
See also 
 
Aerosols: Climatology of Tropospheric Aerosols; Observations and Measurements; Physics 
and Chemistry of Aerosols; Role in Cloud Physics; Role in Radiative Transfer. Dust. 
Satellite Remote Sensing: Cloud Properties; Precipitation. 
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Figure Captions 
 
Figure 1. (a) Trajectory of a Saharan dust plume, tracked over eight days from the source 
region in North Africa across the Atlantic Ocean to the Caribbean, based on images from a 
wide-swath vidicon camera aboard the polar-orbiting ESSA 5 satellite. (b) ESSA 5 satellite 
image of the plume (indicated by white arrow) over Mauritania, Western Sahara, and the 
eastern Atlantic on 7 June 1967.  Dust particles more than 20 µm in diameter from this 
storm were recovered subsequently in Barbados. [From: Prospero et al., Earth & Planet. Sci. 
Lett. 9, 1970, pp. 287-293.] 
 
Figure 2. Global, over-ocean estimates of total-column aerosol amount for the northern (a) 
winter and (b) summer seasons, derived from two years (July 1989-June 1991) of mid-
visible reflectance measurements from the Advanced, Very High-Resolution Radiometer 
(AVHRR) instruments aboard NOAA polar-orbiting satellites. The winter peak in grassland 
burning produces a smoke plume over the Atlantic west of the sub-Sahara region, whereas 
in summer, dust from northern Africa and smoke from central Africa produce plumes over 
the adjacent water, and dust from the Middle East blankets the Arabian Sea. Pollution 
sources off the east coast of China vary little between these two seasons, whereas pollution 
off the east coast of the United States is more prominent in summer. [From: Husar, 
Prospero, and Stowe, J. Geophys. Res. 102, 1997, pp. 16889-16909] 
 
Figure 3. Figure 3. MODIS global, monthly average aerosol products for July 2010. (a) AOD 
from the combination of “dark target” and “deep blue” algorithms, and (b) fine-mode 
fraction (FMF) over ocean, with AOD, related to the confidence with which FMF can be 



determined, encoded as the saturation of the color applied, all derived with the dark target 
algorithm. [From: MODIS Team, NASA Goddard Space Flight Center] 

Figure 4. Global/Regional, over-water, (a) mid-visible AOD trends and (b) associated 
confidence levels, derived from ten years (2000-2009) of MODIS operational aerosol 
products. The MODIS time-series was first filtered to remove outliers and reduce possible 
cloud contamination, and calibrated using less frequent but more accurate MISR and 
AERONET observations. Confidence levels were assessed as the derived trend (ω), 
normalized by the estimated time series standard deviation (σω), on 1˚ x 1˚ grid cells. 
Increasing AOD trends are found over the Bay of Bengal, east coast of Asia, and Arabian Sea, 
whereas weaker, AOD decreases were derived off Central America, the east coast of North 
America, and the west coast of Africa. [From: Zhang and Reid, Atmos. Chem. Phys, 10, 2010, 
doi:10.5194/acp-10-1-2010] 
 
Figure 5. TOMS Aerosol Data Products.  (a) Aerosol Index (AI) map over south and 
southeast Asia and surrounding water, for 13 April 2001. Dust over central Asia, smoke and 
pollution aerosol over southeast Asia, and dust combined with pollution over east-central 
Asia stand out. [Hsu, et al., Geophy. Res. Lett., 23, 1996, pp. 745-748.] (b) Zonal-average AOD 
time-series at 380 nm, covering 1979-1992 and 1996-2000. Note the prominent volcanic 
plumes from El Chichon in 1982 and Mt. Pinatubo in 1991, each lasting many months. 
[From: Torres et al., J. Atmosph. Sci. 59, 2002, pp. 398-413] 

Figure 6. Averaged particle spectral single-scattering albedos (SSA) and size distributions 
for several sites dominated by Pollution, Smoke, Dust, and Oceanic aerosols, as derived 
from AERONET surface-based sun photometer measurements. AOD at 440 nm for the cases 
shown are indicated as “τ440,” the real part of the particle refractive index is given as “n,” 
and the spectral dependence of the AOD (Ångström exponent), evaluated at 440 and 870 
nm, is designated “α” in this figure.  Note how the size distributions vary with aerosol type, 
and how SSA varies considerably even within the Urban/Industrial and Biomass Burning 
categories. [From: Dubovik et al., J. Atmosph. Sci. 59, 2002, pp. 590-608] 
 
Figure 7. . MISR (a) true-color, nadir viewing image of a Saharan Desert dust plume over 
the Atlantic Ocean north and east of the Cape Verde Islands (which are visible in the center 
of the image), and retrieved (b) AOD, (c) Ångström exponent, and (c) fraction AOD non-
spherical. North is roughly toward the top of the images, and the swath is about 380 km 
wide. The plume has higher AOD, and the dust particles are larger (i.e., smaller Ångström 
exponent) and more non-spherical compared to background values. [From: MISR Team, 
NASA Goddard Space Flight Center and Jet Propulsion Lab/Caltech] 

Figure 8. Three-month (Sept.-Nov.), global fine-mode AOD at 550nm over land and water, 
derived from POLDER observations: (a) averaged over five years (2005-2009), and (b-f) 
AOD anomaly for each individual year. Blue in the anomaly panels indicates the AOD for 
that year was lower than the longer-term mean, whereas red indicates higher values. Note 
the high inter-annual variability in the biomass burning regions of Brazil, southern Africa, 
Indonesia, and the northern boreal latitudes. [Adapted from: Tanré et al., Atmos. Meas. Tech. 
4, 2011, pp. 1383-1395, doi:10.5194/amt-4-1383-1395-2011] 

Figure 9. CALIPSO vertical profiles.  (a) Backscatter curtain plot, showing cloud and 
aerosol layers over the region highlighted in dark blue in the adjacent context map. 
Spectral and depolarization lidar signals identify transported dust (yellow arrow) 



overlying a surface layer of polluted continental aerosol (red arrow). Clean maritime and 
maritime mixed with dust and pollution particles (cyan arrow) are found farther south 
along the orbit track. [From: CALIPSO Team, NASA Langley Research Center] (b-e) 
Seasonally aggregated dust (orange) and non-dust, mainly smoke and pollution (blue) 
vertical extinction profiles over Eastern China in 2007. Note how the vertical extent is a 
minimum in the autumn (SON) and winter months (DJF), and that dust amount peaks in the 
winter and spring (MAM) seasons. The total column AOD (τc) and effective aerosol scale 
height (Hc) are indicated in each panel. [From: Yu et al., J. Geophys. Res. 115, D00H30, 2010, 
doi:10.1029/2009JD013364.] 

Figure 10. Maps of multi-year, annual-average, mid-visible aerosol optical depth (AOD) 
from multiple remote-sensing data sets: Mi=MISR, Mo=MODIS land+water, Mn=MODIS 
over-ocean, Po=POLDER, To=TOMS, An, Ag=AVHRR (1- and 2-channel retrieval algorithms, 
respectively); Ae=AERONET ground-based sun photometer network. A “synthesis” of these 
AOD products (S*), primarily from MISR, MODIS, and AERONET, used extensively for model 
validation, is highlighted in red. The global-average AOD for each data set is given below its 
label. [From: Kinne et al., Atmos. Chem. Phys. 6, 2006, pp.1815–1834]  
 
Figure 11. Satellite views of the Station Fire that burned in the Los Angeles California area 
in late August and early September 2009.  (a) True-color image from the MISR nadir-
viewing camera on 30 August 2009, showing smoke plumes from multiple active fires, and 
an arc-shaped cloud upwind of the fire front, possibly formed by incoming air forced to rise 
over the buoyant air mass heated by the fires. Pyrocumulus clouds, formed over several 
highly convective spots in the burning region, appear as small white dots above the smoke 
plume. (b) MISR stereo-derived plume heights, reported as values above sea level, for 
individual pixels 1.1 km in size. [From: MISR Team, Jet Propulsion Lab/Caltech and NASA 
Goddard Space Flight Center] 

Figure 12. Characterizing aerosol source strength. (a) Average of daily global MODIS fine-
mode AOD maps covering August 18-30 2000. (b) Retrieved emission source location and 
strength from inverse run of the GOCART chemical transport model at 2˚ x 2.5˚ resolution, 
constrained by (a). [From: Dubovik et al., Atmos. Chem. Phys. 8, 2008, pp.209–250] (Second 
row; c-j) Successive panels showing: MODIS visible image of a Siberian wildfire smoke 
plume on 20 July 2006; MODIS retrieved AOD snapshot from the standard product at 10 
km spatial resolution; MODIS AOD averaged to the GOCART model 1˚ x 1.5˚ grid; AOD 
snapshots taken at MODIS overpass time from five GOCART model runs, each initialized 
with different, commonly used parameterizations for smoke source strength.  For wildfires 
in different biomes around the globe, different initialization choices performed 
systematically better compared to the corresponding MODIS observations. [From: Petrenko 
et al., J. Geophys. Res. 117, D18212, 2012, doi:10.1029/2012JD017870 ]  

Figure 13. Indirect effects of aerosols on clouds. (a) Ship tracks off the coast of California, 
as viewed by AVHRR. (b) Retrieved cloud droplet radius (rc) and cloud optical depth (τc) 
differences between observations within the polluted ship tracks and those in the 
surroundings, showing a decrease in droplet size in the polluted tracks. [From: Coakley and 
Walsh, J. Atmosph. Sci. 59, 2002, pp. 668-680]. (c) Red color indicates regions where large 
droplets were retrieved in this false-color AVHRR image encoding two infrared and one 
visible spectral channels, whereas yellow trails emanate from point sources of smoke that 
produce smaller droplets in this fairly uniform cloud deck over south Australia. [From: 
Rosenfeld, Science 287, 2000 pp. 1793-1796] (d) Illustration of the correlation between 



retrieved particle number concentration (Na) and cloud droplet concentration (Nc) globally, 
based on AVHRR measurements, aggregated over four months during 1990; Yellow 
indicates high Nc in the presence of large Na, whereas regions of high Nc despite small Na 
appear red. [From: Nakajima et al., Geophys. Res. Lett. 28, 2001, pp. 1171-1174] (e) Evidence 
from MODIS retrievals for invigoration of Atlantic convective clouds; panels show 
(clockwise from upper left) cloud top pressure (pc), cloud fraction (Cf), cloud droplet 
effective radius (rc), and cloud optical depth (τc) as a function of elevation, with AOD 
encoded in colors, increasing from blue to red to purple and green. [From: Koren et al., 
Geophys. Res. Lett 32, 2005, doi:10.1029/2005GL023187] 

Figure 14. Six-year (2001-2006), global average, near-surface concentration of particles 
smaller than 2.5 microns diameter (PM2.5) over land, derived from MISR+MODIS total-
column AOD, combined with vertical distribution from the GEOS-Chem chemical transport 
model. The vertical distributions were validated using CALIPSO profiles, and derived PM2.5 
can be compared with surface-station values, which are shown using the same color scale, 
superposed where available within black circles in this figure. [From: Van Donkelaar, et al., 
Environ. Health Perspect. 118, 2010, pp.847-855] 


