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Summary

 

     

 

Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated 
cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression 
loads are presented. These equations are solved exactly for the practical case of simply supported 
ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a 
stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a 
shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional 
buckling load. Ranges for the nondimensional parameters are established that encompass a wide 
range of laminated-wall constructions and numerous generic plots of nondimensional buckling 
load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of 
the other parameters. These plots are expected to include many practical cases of interest to 
designers. Additionally, these plots show how the parameter values affect the distribution and size 
of the festoons forming each response curve and how they affect the attenuation of each response 
curve to the corresponding solution for an infinitely long cylinder. 

     To aid in preliminary design studies, approximate formulas for the nondimensional buckling 
load are derived, and validated against the corresponding exact solution, that give the attenuated 
buckling response of an infinitely long cylinder in terms of the nondimensional parameters 
presented herein. A relatively small number of “master curves” are identified that give a 
nondimensional measure of the buckling load of an infinitely long cylinder as a function of the 
orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the 
design-variable space as compared to representations that use dimensional quantities as design 
variables. As a result of their inherent simplicity, these “master curves” are anticipated to be 
useful in the ongoing development of buckling-design technology.

 

Symbols
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 nondimensional modal amplitudes defined by 
equations (13)-(15)
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 orthotropic-cylinder membrane stiffnesses, lb/in.

c

 

x

 

 nondimensional coefficient defined by equations (44)

D
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, D

 

12

 

, D

 

22

 

, D

 

66

 

 orthotropic-cylinder bending stiffnesses, in-lb

D

 

m

 

( ), D

 

c

 

( ), D

 

b

 

( ) nondimensional linear differential operators defined by 
equations (3)-(5)

E, G Young’s modulus of elasticity and shear modulus of an
isotropic material, respectively, psi

  reference value of  Young’s modulus of elasticity (see
equation (44a)), psi

E
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E

 

L

 

, E

 

T

 

, G

 

LT

 

lamina moduli (see Table 1), psi

h cylinder thickness (see figure 1), in.

 

I

 

  

 

nondimensional wall nonhomogeneity measure defined by 
equation (19)

L cylinder length (see figure 1), in.

m 

 

∈

 

 {1, 2, 3, ...} number of axial half waves in buckle pattern (see equation (13))

m

 

cr

 

  

 

value of  m  at buckling

n 

 

∈

 

 {0, 1, 2, 3, ...} number of circumferential waves in buckle pattern (see equation
(13) and figure 2)

n

 

cr

 

  

 

value of  n  at buckling

N, N

 

cr

 

 

 

circumferential wave number defined by equation (20c) and 
value of  N  at buckling, respectively

N

 

x

 

, compressive axial prebuckling stress resultant and 
corresponding value at buckling, respectively

, nondimensional loading parameter defined by equation (12) 
and corresponding value at buckling, respectively

R cylinder radius (see figure 1), in.

x, y cylinder coordinate system (see figure 1), in.

X, X

 

cr

 

 

 

quantity defined by equation (28) and value at buckling,
respectively 

 

α

 

b

 

, 

 

α

 

m

 

  nondimensional stiffness-weighted length-to-radius ratios
defined by equations (8) and (6), respectively

 

β

 

 nondimensional orthotropy parameter defined by equation (9)

 

δ

 

F nondimensional buckling-stress function (see equations (1)
and (2))

 

δ

 

W nondimensional radial-displacement field at buckling (see
equations (1) and (2))

nondimensional cylinder circumferential coordinate

 

θ

 

lamina fiber angle (see figure 1), degrees

Nx

cr

p pcr

η = y
R
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λ

 

, 

 

λ

 

cr

 

 stiffness-weighted axial-buckle aspect ratio defined by 
equation (23) and value at buckling, respectively

 

Λ

 

, 

 

Λ

 

cr

 

 

 

nondimensional stiffness-weighted axial half-wave length of a
buckle pattern defined by equation (18) and value at buckling,
respectively

 

µ

 

 nondimensional orthotropy parameter defined by equations (7)

 

ν

 

m

 

 laminate membrane Poisson's ratio defined by equation (10)

 

ν

 

LT

 

 lamina major Poisson's ratio (see Table 1)

nondimensional cylinder axial coordinate

 

ρ

 

stiffness-weighted radius-to-thickness ratio defined by 
equation (11)

 value of the uniform axial stress at buckling, psi

 

Introduction

 

      As evidenced by recent studies, efforts to develop shell-buckling design technology for 
laminated-composite cylinders are still underway.

 

1, 2

 

 Despite these and other efforts, the 
technology still has not reached the level of maturity needed to obtain the full weight-saving 
potential of shell structures, especially those made of laminated-composite materials. The major 
impediment is a lack of validated analysis and design methods. As a result, NASA SP 8007,

 

3

 

 
developed in the late 1960s, is still the primary resource used by American industry for the design 
of buckling-resistant cylindrical shells. The procedure used in NASA SP 8007 has become a 
paradigm that accounts for the effects of initial geometric imperfections and edge support 
conditions by applying empirical “knockdown” factors to relatively simple classical linear-
bifurcation buckling solutions. Although this class of solutions are very approximate, they 
generally provide insight into how variations in design parameters affect performance. Thus, it is 
useful to have relatively simple approximate analyses and formulas for predicting response trends 
that can be used as part of a building-block design process.

      Recent examples of design-technology development for buckling of laminated-composite 
cylinders have been presented in references 1 and 2. Specifically, baseline design formulas are 
presented for balanced, symmetrically laminated cylinders with walls that are effectively 
homogeneous and specially orthotropic. This approach was motivated by existing designs in 
which the allowable range of structural dimensions are such that the laminate is composed of a 
relatively large number of plies that are distributed uniformly through the thickness. Thus, it 
follows that modelling a cylinder wall as a homogeneous and specially orthotropic material is not 
a serious limitation in a preliminary design process, for a significant number of practical 
applications. Moreover, this approach is a logical first step in a building-block approach for more 

ξ = x
L

σ x
cr = Nx

cr

h
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general, laminate constructions with plies at the outer faces that are substantially different from 
those near the mid-plane.  Most importantly, this approach yields significant simplification of the 
buckling equations and facilitates the development of simple design formulas in terms of useful 
nondimensional parameters, as evidenced by the results presented in references 1 and 2. Of 
particular importance are the “master curves” presented in these references that represent the 
behavior of a wide range of practical laminate constructions in a very concise manner. 
Specifically, the “master curves” presented in references 1 and 2 are plots of normalized buckling 
stress versus normalized buckling strain that are presented as a function of laminate composition. 
By including strain in these plots, both structural stiffness and load-capacity requirements can be 
considered in the design process. Moreover, curves such as these permit common behavior trends 
to be identified for a wide variety of laminated-cylinder configurations. The formulas and results 
presented in references 1 and 2 represent a significant first-approximation advancement in design 
technology for compression-loaded laminated-composite cylinders.

      The objective of the present study is to extend work presented in references 1 and 2 to include 
the cylinder-wall heterogeneity that cannot be neglected in a buckling analysis without 
introducing significant errors. Herein, cylinder-wall heterogeneity refers to laminate 
constructions in which there exists a significant through-the-thickness variation of the layer 
properties or orientations. Of particular interest herein are symmetric laminates with plies at the 
outer faces that are substantially different from those near the mid-plane. For convenience, this 
class of heterogeneous laminates are referred to herein as “sandwich-like” laminates. Use of the 
term “sandwich-like” herein is intended to connote the arrangement of plies and does not imply 
the existence of significant transverse shearing flexibility commonly associated with sandwich 
plates. To accomplish this objective, a set of nondimensional linear-bifurcation buckling 
equations and parameters are presented for balanced, symmetrically laminated cylinders 
subjected to uniform axial compression loads and in a membrane-stress prebuckling state.  
Anisotropy of the shell wall is presumed to be negligible. Then, a linear bifurcation buckling 
analysis is presented for the classical simply supported boundary conditions that are typically 
used in the preliminary design of cylinders.  Next, approximate formulas for the buckling loads of 
infinitely long cylinders are derived. Results that establish the range of the nondimensional 
parameters appearing in the buckling analysis and simplified formulas are then presented. With 
the parameter ranges established, plots of nondimensional buckling load versus a stiffness-
weighted length-to-radius ratio are presented for various combinations of the remaining 
parameters governing the behavior and for a very broad range of laminate constructions. Finally, 
relatively fewer “master curves” are presented for infinitely long cylinders that give a 
nondimensional measure of buckling as a function of  the orthotropy parameters and the wall 
inhomogeneity measure. In addition, approximate formulas for the critical stresses are given that 
utilize the information in these curves. Thus, these “master curves” are anticipated to be useful in 
the ongoing development of buckling-design technology.

 

Bifurcation-Buckling Equations

 

     To accomplish the objective of the present study, it is convenient to use the nondimensional 
parameters and equations presented in reference 4. When specialized to right circular cylindrical 
shells, such as that shown in figure 1, these equations correspond to Donnell-type, linear-
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bifurcation buckling equations for symmetric laminates. In particular, the compatibility equation 
is given by 

                                                     (1)

and the transverse equilibrium equation is given by

                                         (2)

where D

 

m

 

( ), D

 

b

 

( ), and D

 

c

 

( ) are nondimensional linear differential operators. The symbol 

 

δ

 

W 
denotes the nondimensional radial-displacement buckling mode and 

 

δ

 

F denotes the corresponding 
stress function.   For symmetric laminates with negligible coupling between inplane stretching 
and shearing deformations, and between pure bending and twisting deformations, these operators 
are given by 

                                       (3)

                                                          (4)

                                       (5)

The nondimensional coordinates in these equations are defined as  and , where  x  is 
the axial coordinate, y is the circumferential arc-length coordinate,  L  is the cylinder length, R is 
the cylinder radius, 0 

 

≤

 

 

 

ξ

 

 

 

≤

 

 1, and  0 

 

≤

 

 

 

η

 

 

 

≤

 

 2

 

π

 

.  The nondimensional parameters appearing in these 
equations are given by

                                                                  (6)

                                                      (7)

                                                                   (8)

                                                                  (9)

Dm δF = 12 Dc δW

Db δW + 12 Dc δF = − pπ2∂
2
δW
∂ξ

2

Dm δF = 1
αm

2
∂

4
δF
∂ξ

4 + 2µ ∂
4
δF

∂ξ
2
∂η2

+ αm
2 ∂

4
δF
∂η4

Dc δW = ρ ∂
2
δW
∂ξ

2

Db δW = 1
αb

2
∂

4
δW
∂ξ

4 + 2β ∂
4
δW

∂ξ
2
∂η2

+ αb
2 ∂

4
δW
∂η4

ξ = x
L η = y

R

αm = L
R

A 22

A 11

1
4

µ = A 11A 22 − A 12

2
− 2A 12A 66

2A 66 A 11A 22

αb = L
R

D22

D11

1
4

β = D12 + 2D66

D11D22



 

6

 

                                                                (10)

                                                 (11)

where  A

 

11

 

, A

 

12

 

, A

 

22

 

, A

 

66

 

, D

 

11

 

, D

 

12

 

, D

 

22

 

, and D

 

66

 

 are the stiffnesses of classical laminated-shell 
theory (see reference 5), and the corresponding stiffnesses A

 

16

 

, A

 

26

 

, D

 

16

 

, and D

 

26

 

 are presumed 
negligible. The parameter defined by equation (11) is a stiffness-weighted shell-wall thinness 
metric. The quantity   is the nondimensional loading parameter defined by

                                                                 (12)

where  N

 

x

 

  is the magnitude of the uniform compressive axial stress resultant, that is presumed to 
exist prior to buckling, in classical linear bifurcation analyses for cylinders.  

 

Buckling Analysis

 

     For the purpose of preliminary design, cylinders with simply supported edges that restrict 
circumferential displacements are often used because they faciliate a simple analytical solution.  
These boundary conditions are usually referred to as the classical boundary conditions for simply 
supported shells and are denoted as “S2” boundary conditions in the recent book by Jones (see p. 
477).
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 The nondimensional buckling modes for these boundary conditions are given by

                                                     (13)

where  0 

 

≤

 

 

 

ξ

 

 

 

≤

 

 1,  0 

 

≤

 

 

 

η

 

 

 

≤

 

 2

 

π

 

,  m 

 

∈

 

 {1, 2, 3, ...}  is the number of axial half-waves, n 

 

∈

 

 {0, 1, 2, ...}  
is the number of full circumferential waves (see figure 2), and  

 

A

 

  is the indeterminate modal 
amplitude.  A typical buckling mode is shown in figure 3a that exhibits one full axial wave and 
four full circumferential waves. The corresponding contour plot of the radial displacement is 
shown in figure 3b.   Buckling modes with  n = 0  and  n 

 

≠

 

 0  are referred to herein as 
axisymmetric and asymmetric modes, respectively.  

     Substituting equation (13) into equation (1) indicates that the stress function can be represented 
by 

                                                     (14)

where  

 

B

 

  is related to the amplitude  

 

A

 

.  Specifically, substituting equations (13) and (14) into 
equation (1) yields

νm = A 12

A 11A 22

ρ =
R
h

1 − νm
2 A 11A 22 h

4

144D11D22

1
4

p

p = NxR
2

π2 D11D22

δW = A sin mπξ cos nη

δF = B sin mπξ cos nη



 

7

 

                                          (15)

Substituting equation (15) into equation (14) and the result into equation (2), along with equation 
(13), and setting the coefficient of the trigonometric functions equal to zero yields the following 
equation for the eigenvalues 

                             (16)

For a given set of material properties and cylinder dimensions, the nondimensional parameters 
appearing in equation (15) are fixed values. The nondimensional buckling load, , is then given 
by the smallest value of    that is found for  m 

 

∈

 

 {1, 2, 3, ...}  and  n 

 

∈

 

 {0, 1, 2, ...}.  The 
corresponding wave numbers are denoted by  m

 

cr

 

  and  n

 

cr 

 

.  

 

Approximate Buckling Formulas

     To obtain simple, approximate buckling formulas, similar to that given in reference 1, equation 
(16) is differentiated as if    is a continuous function and  m  and  n  are real variables.  
Although not strictly correct, this approach gives useful results for certain ranges of the 
nondimensional parameters appearing in equation (16). To obtain a minimum set, 

                                               (17)

is enforced. In general, the partial  derivatives appearing in equation (17) are very complicated 
functions of the variables  m  and  n. To remedy this situation, it is convenient to introduce a 
nondimensional axial half-wave length  Λ  of a buckle pattern defined by 

                                                       (18)

and a positive-valued wall nonhomogeneity measure given by the following ratio of extensional 
and bending stiffnesses

                                                            (19)

B = −
2 3 ρ m2π2

n4αm
2 + 2µn2m2π2 + m4π4

αm
2

A

p = p m, n

pπ2 = n4αb
2

m2π2 + 2βn2 +
π2m2

αb
2 +

12ρ
2

n4αm
2

m2π2 + 2µn2 +
m2π2

αm
2

pcr

p

p = p m, n

dp = ∂p
∂m dm + ∂p

∂n dn = 0

Λ = L
πmR

2 A 22

A 11

1
2

I = A 11D22

D11A 22

1
2
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For a homogeneous wall, I = 1. Because  m  is the number of axial half waves in a given 
bifurcation eigenvector, it follows that the quantity  L/m  is the axial half-wave length of the 
eigenvector. Substituting equations (18) and (19) into equations (6) and (8) yields 

                                                            (20a)

                                                          (20b)

As the cylinder length increases to infinity,  Λ  behaves like a continuous variable and 
minimization of  by differentiation with respect to  Λ  represents solutions for an infinitely long 
cylinder that buckles into a local shell mode and not into an overall column mode. Likewise, it is 
convenient to introduce

                                                               (20c)

By using equations (20), equation (16) becomes

                                (21)

Now, it is observed that application of the chain rule of differentiation to equation (17) reveals that 
minimization of   with respect to  Λ  and  N  is equivalent to minimization with respect to  m  

and  n, respectively. Enforcing    and simplifying gives

                          (22)

Likewise, enforcing    gives  

                           (23)

for values of  N > 0, which yields

                                        (24)

αm
πm

2

= Λ

αb
πm

2

= ΛI

p

N = n2

pπ2 = N2
ΛI + 2βN +

1
ΛI

+
12ρ

2

ΛN2 + 2µN +
1
Λ

p

∂p
∂Λ = 0

IN2
−

1
IΛ

2
1
Λ

+ 2µ N + Λ N2
2

− 12ρ
2

N2
−

1
Λ

2 = 0

∂p
∂N = 0

β + IΛ N 1
Λ

+ 2µN + ΛN2
2

− 12ρ
2

µ + ΛN = 0

1
Λ

+ 2µN + ΛN2
2

= 12ρ
2 µ +ΛN
β + IΛ N
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Substituting equation (24) into equation (22) gives

                            (25a)

for values of  N > 0. For the case of  N = 0, minimization of equation (21) with respect to nonzero 
values of  Λ  is given by equation (22), which reduces to

                                                        (25b)

Here, it is important to note that values of  Λ  and  N  that satisfy equations (24) and (25), denoted 
by  Λcr  and  Ncr, respectively, yield the critical value of  , denoted by  , when substituted into 
equation (21).  

    Solutions that minimize the right-hand side of equation (21) are obtained by examining the 
cases of  N = 0  and  N > 0 separately. For the case of  N = 0,  equation (25b) yields

                                                              (26)

Substituting equation (26) for  Λ   and  N = 0  into equation (21) gives the result

                                                                (27)

where it is implied that  Ncr = 0. This solution corresponds to short-wave-length, axisymmetric 
buckle patterns.

     Solutions of equations (24) and (25a) for  N > 0  are found in the present study by defining a 
positive-valued quantity  X  given by

                                                                (28)

so that equation (25a) becomes

                                     (29)

equation (24) becomes

                                       (30)

I
2
Λ

2
N2

− 1 µ + ΛN − I β + IΛN Λ
2
N2

− 1 = 0

−
1
IΛ

2 + 12ρ
2

= 0

p pcr

Λ cr =
1

2 3I ρ

pcr =
4 3 ρ

π2 I

X = IΛN

β − Iµ X
2

+ 1 − I
2

X + I µ − Iβ = 0

I
X

+ 2µ + X
I

2

N2 =
12ρ

2

I
Iµ + X
β + X
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and equation (21) becomes

                                    (31)

This transformation allows  N  to be expressed in terms of the nondimensional parameters and the 
new variable  X. In particular, equation (30) is solved for  N  to get

                                   (32)

Equation (32) is now used to eliminate  N  from equation (31), which yields  a function of  X; 
that is, equation (31) becomes

                              (33)

The critical values of    are obtained by substituting the positive-valued solutions to equation 
(29), denoted by  X = Xcr, into equation (33). In particular, the solutions to equation (29) are given 
by

                        (34a)

for    and  I ≠ 1. The corresponding values of    and  Ncr  are given by

                  (34b)

                         (34c)

Additionally, equation (28) yields

                                                            (34d)

pπ2 = X + 2β +
1
X

N +
12ρ

2

X
I + 2µ +

I
X

N

N = 2ρX 3I Iµ + X
β + X I

2 + 2µIX + X2
− 1

p

p = 2 3Iρ
π2

Iµ + X
β + X

X2 + 2βX + 1

X2 + 2µIX + I
2 +

β + X
Iµ + X

p

Xcr =
I

2
− 1

2 β − Iµ
1 ± 1 +

4I β − Iµ Iβ − µ

I
2
− 1

2

β − Iµ ≠ 0 pcr

pcr = 2 3Iρ
π2

Iµ + Xcr

β + Xcr

Xcr

2 + 2βXcr + 1

Xcr

2 + 2µIXcr + I
2 +

β + Xcr

Iµ + Xcr

Ncr = 2ρXcr 3I
Iµ + Xcr

β + Xcr

Xcr

2 + 2µIXcr + I
2

− 1

Λ cr = Xcr

INcr
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These results correspond to short-wave-length, non-axisymmetric buckle patterns. It is important 
to note that as  Xcr + Iµ → 0,  → ∞.

     For, the case of  N > 0  and  I = 1  and either  or , the solution to 
equation (29) is given by  Xcr = 1  and equation (34b) reduces to

                                                   (35a)

which is identical to the corresponding result presented in reference 1. Additionally, equation 
(34c) reduces to

                                                    (35b)

and equation (34d) becomes

                                                    (35c)

For this case,  → ∞  as  µ → -1 and the corresponding axisymmetric buckling solution given 

by equations (26) and (27) govern the response. For cases with   and  I ≠ 1,  equation 

(29) reduces to which yields physically inadmissible solutions for positive values of  β, 
since  X > 0  by definition.  In addition, equations (34b)-(34d) become singular. Solutions for this 
case are obtained by re-examining equations (21)-(23). First, equation (23) yields 

                                     (36)

which is satisfied by selecting

                                               (37)

Substituting equation (37) into equation (22) gives

                                                          (38)

pcr

β − Iµ ≠ 0 β − Iµ = 0

pcr = 4 3ρ
π2

1 + β

1 + µ

Ncr = 3 ρ

1 + β 1 + µ

Λ cr =
1 + β 1 + µ

3 ρ

pcr

β − Iµ = 0

X = − β,

I 1
Λ

+ 2µN + ΛN2
2

− 12ρ
2

µ + ΛN = 0

1
Λ

+ 2µN + ΛN2
2

=
12ρ

2

I

I −
1
I

1
Λ

2 = 0
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Enforcing I ≠ 1  requires  Λ-1  to go to zero, which means that the buckle patterns have axial half 
waves that are on the order of the cylinder length. Next, substituting  Λ-1 = 0  back into equation 
(37) gives

                                               (39)

For this equation, and equation (21), it is presumed that  N → 0 such that N2Λ  and  NΛ  are finite 
valued.  As a result, equation (21) with  β = Iµ  yields the result  

                                                             (40)

    The results producing equation (40) indicate that long-wave-length buckle patterns exist. In 
addition, it is important to note that the analysis presented by equation (22)-(35) is not valid for 
very long cylinders that exhibit buckle patterns with axial half waves that are on the order of the 
cylinder length. For the general case of long-wave-length buckle patterns, the parameter  Λ   is 
presumed to approach infinity and the parameter  N  is presumed to approach zero such that N2Λ  
and  NΛ  remain finite. Applying these presumptions to equation (21) gives   

                                                       (41)

Minimization of this equation with respect to  N2Λ  gives 

                                                             (42)

which is identical to equation (40), with no restrictions on the values of I, β, or µ.  For this case, 
the buckle pattern is axisymmetric; that is, Ncr = 0. Note that the  appears in the numerator of 
equation (42) and in the denomenator of equation (27) for the short-wavelength axisymmetic 
buckle pattern.

Results and Discussion

     In the present section, results that indicate the possible ranges of the nondimensional 
parameters and coefficients defined by equations (6)-(11) and (19) are presented first.  Based on 
these ranges, generic buckling results obtained by minimization of equation (16) with respect to  
m  and  n  are presented entirely in terms of the nondimensional parameters defined herein. These 
generic results are based on very wide parameter ranges and, as a result, encompass a wide range 
of geometries and laminate constructions and also illustrate a wide spectrum of behavioral trends. 

2µN + ΛN2 = ± 2 3
I

ρ

pcr =
4 3I ρ
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ΛI +

12ρ
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Next, “master curves” for infinitely long cylinders are presented. In particular, two nearly 
identical sets of results are presented that were obtained by minimization of equation (16) with 
respect to  m  and  n  for extremely long cylinders and by using the approximate formulas derived 
herein. 

Parameter and Coefficient Ranges

      The nondimensional parameters and coefficients defined herein have been presented for a wide 
variety of balanced, symmetric laminates in reference 7 for the nine material systems given in 
Table 1. Two laminate families of particular interest that are discussed in this reference are the 
[(±45/0/90)p]S  and  [(0/90/±45)p]S quasi-isotropic laminates, and the [(+θ/−θ)p]S  and [(−θ/+θ)p]S  
angle-ply laminates. The results presented in reference 7 for the [(+θ/−θ)p]S  and the [(−θ/+θ)p]S  
angle-ply laminates indicate the following ranges:  

0.279 ≤ β ≤ 2.76     

-0.788 ≤ µ ≤ 5.43

0.341 ≤ (A22/A11)1/4 ≤ 2.93

I = 1

 

for the nine material systems, regardless of the value of the stacking sequence index p. Likewise, 
the results for the [(±45/0/90)p]S  quasi-isotropic laminates indicate:

1.03 ≤ β ≤ 2.22

0.926 ≤ (D22/D11)1/4 ≤ 1.00

for the nine material systems and for  p = 1,2, ..., 8. Moreover, for the [(0/90/±45)p]S  quasi-
isotropic laminates the results indicate:  

0.266 ≤ β ≤ 0.968

0.862 ≤ (D22/D11)1/4 ≤ 1.00

0.446 ≤ 1 − νm
2 A 11A 22 h

4

144D11D22

1
4

≤ 0.999

0.958 ≤ 1 − νm
2 A 11A 22 h

4

144D11D22

1
4

≤ 1.09
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for the nine material systems and p = 1,2, ..., 8. For both families of quasi-isotropic laminates,  
(A22/A11)1/4 = 1  and  µ = 1, regardless of the lamina material system and the number of plies. 
Thus, it follows that the heterogeneity parameter has the range  0.862 ≤ I ≤ 1.00  for both families 
of quasi-isotropic laminates, regardless of the lamina material system and the number of plies.

     Two other laminate families considered herein are the [(±45/02)p]S  axially stiff laminates and 
the  [(±45/902)p]S  circumferentially stiff laminates with integer values for the index  p = 1, 2, ..., 8. 
Results obtained in the present study for the  [(±45/02)p]S  laminates yielded:  

1.04 ≤ β ≤ 2.24

0.531 ≤ µ ≤ 0.987

1.01 ≤ I ≤ 1.72

0.687 ≤ (A22/A11)1/4 ≤ 0.941

for the nine material systems and p = 1,2, ..., 8. For the [(±45/902)p]S  laminates, the same ranges 

for  β, µ, and  were obtained. In contrast, the ranges  0.582 ≤ I ≤ 0.989, 

1.06 ≤ (A22/A11)1/4 ≤ 1.45 were obtained for the nine material systems and p = 1, 2, ..., 8.

     Sandwich-like laminates with pairs of 0-deg and 90-deg plies lumped between pairs of angle 
plies were also considered in the present study. In particular, results were obtained in the present 
study for  [(+θ/−θ)2/(0/90)4]S  laminates that revealed:  

0.083 ≤ β ≤ 1.58

1.22 ≤ µ ≤ 16.89

0.543 ≤ I ≤ 1.50

0.845 ≤ (A22/A11)1/4 ≤ 1.18

0.875 ≤ 1 − νm
2 A 11A 22 h

4

144D11D22

1
4

≤ 0.956

0.901 ≤ 1 − νm
2 A 11A 22 h

4

144D11D22

1
4

≤ 0.988

1 − νm
2 A 11A 22 h

4

144D11D22

1
4
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for the nine material systems and for  0 ≤ θ ≤ 90 deg. Results were also obtained in the present 
study for 24-ply  [90p/0q]S  laminates that indicate:  

0.065 ≤ β ≤ 0.697

1.71 ≤ µ ≤ 17.85

1.04 ≤ I ≤ 3.42

0.568 ≤ (A22/A11)1/4 ≤ 1.76

for the nine material systems and for  p = 1, 2, ..., 11.  Similarly, results for 24-ply [0p/90q]S  

laminates that exhibit the same ranges for  β, µ, (A22/A11)1/4, and  were 

obtained. In contrast, the range of the heterogeneity parameter given by  0.292 ≤ I ≤ 0.962  was 
obtained for the nine material systems and for  p = 1, 2, ..., 11. 

Generic Buckling Results

     The nondimensional buckling loads obtained by minimization of equation (16) with respect to  
m  and  n  are shown in figures 4-75 as a function of the stiffness-weighted length-to-radius ratio 
αm defined by equation (6).  Six curves are shown in each figure that correspond to values of the 
orthotropy parameter  µ = - 1, 0, 1, 5, 10 and 20. Figures 4-75 are also composed of three groups 
of related curves. In particular, figures 4-27 correspond to results for the stiffness-weighted 
thinness ratio ρ = 25, figures 28-51 correspond to results for ρ = 100, and figures 52-75 
correspond to results for ρ = 1000. Within each of these three groups, 24 curves are presented for 
combinations of the values of the orthotropy parameter  β = 0, 1, 2, and 3 and for values of the 
nonhomogeneity parameter  I = 0.25, 0.5, 1, 1.5, 2, and 4.  In computing these results, equations 
(6), (8), and (19) were used to obtain  

     The results in figures 4-75 generally show a series of festoon curves in which the amplitudes of 
the festoons attenuate to a negligible magnitude as the stiffness-weighted length-to-radius ratio αm  
increases.  Likewise, the nondimensional buckling loads forming a given curve attenuate to the 
constant value associated with the corresponding infinitely long cylinder that buckles into a local 

0.988 ≤ 1 − νm
2 A 11A 22 h

4

144D11D22

1
4

≤ 1.18

.829 ≤ 1 − νm
2 A 11A 22 h

4

144D11D22

1
4

≤ 1.69

1 − νm
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4
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1
4
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shell mode, not an overall column mode. The results in figures 4-75 also generally show that the 
festoons making up the curves become less prominent as  β  decreases, as  µ  increases, or as   I  
increases for each group of curves corresponding to a given value of  ρ.  Additionally, the festoons 
become generally less pronounced for a group of curves as the value of  ρ  increases.

“Master Curves”

     As evidenced by the parameter ranges presented herein, the numerous results appearing in 
figures 4-75 are applicable to a very broad range of symmetrically laminated cylinders. However, 
it is desirable to reduce these results into a compact form suitable for preliminary design that 
captures the essential trends and that provides adequate estimates of the buckling resistance. This 
reduction was performed in the present study by observing that each festoon curve appearing in 
figures 4-75 has a useful, practical lower bound that is given by the buckling load of the 
corresponding infinitely long cylinder. These lower-bound buckling loads were obtained in the 
present study for selected values of  β, µ, ρ, and  I  by minimizing equation (16) with respect to  
m  and  n  for relatively large values of αm. Moreover, the curves in figures 4-75 with the 
pronounced festoons required significantly larger values of αm than the curves that exhibit rapid 
attenuation of the buckling load with increasing values of αm. This process typically involves 
minimization over a very large set of values for  m  and  n.  As a result, the determination of a 
buckling load following this process involves a large number of computations.

     The approximate buckling loads for infinitely long cylinders that are given herein by the 
smallest positive value of  obtained from equations (27), (34b), and (42) require significantly 
fewer computations than the minimization of equation (16). To demonstrate the accuracy of these 
approximate buckling loads, several attempts were made during the present study to find a concise 
means of comparison applicable to the wide range of values for β, µ, ρ, and  I  appearing in 
figures 4-75. The comparisons presented in figures 76-79 were found to be adequate.  An 
important step in arriving at the form of these figures was found when parametric studies revealed 
that plots of    versus  µ  have the same shape for a fixed value of  β  and any value of  ρ. In 
addition, it was found that identical sets of curves were produced for a given values of  I  and its 

reciprocal. Moreover, equation (35a) revealed that    for an isotropic material. These 

facts led to the use of    as the ordinate in figures 76-79.

     Four pairs of red and blue curves are shown in each of figures 76-79. Each pair corresponds to 
a given value of the orthotropy parameter  β. The blue curves correspond to buckling loads 
obtained by minimizing equation (16) with respect to  m  and  n  for αm = 100. The red curves 
correspond to the smallest positive value   obtained from equation (27) for short-wave-length, 
axisymmetric buckle patterns, from equation (34b) for short-wave-length, non-axisymmetric 
buckle patterns, and from equation (42) for long-wave-length, axisymmetric buckle patterns.  All 

pcr
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π2pcr

4 3 ρ
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of the curves shown in these figures were computed for a value of  ρ = 100. In solving equation 
(34b), it was found that equation (34a) exhibited only one positive-valued root.

     Inspection of the results used to obtain figures 76-79 indicated differences in buckling loads for 
each pair of curves that are less than 3%. Similar results were obtained for values of  ρ = 1000  
and  25  which exhibited differences in buckling loads for each corresponding pair of curves that 
are less than 3% and 8%, respectively.  Overall, the differences in each pair of corresponding 
buckling loads obtained from the two solution methods are insignificant compared to the inherrent 
variability in the material properties. It is important to observe that the results in figures 76-79 are 
applicable to an enormous number of laminate constructions. Moreover, the compact form of 
figures 76-79 make the design space easier to navigate and interpret.

     The results presented in figures 76-79 show that the nondimensional buckling load  

decreases as the orthotropy parameters  β  or  µ  decrease. Moreover, the effect of decreasing  µ  
on the nondimensional buckling load is reduced as the nonhomogeneity parameter  I  becomes 
greater or less than a value equal to one. The further  I  departs from  I = 1,  the more the 
nondimensional buckling loads are reduced.

Approximate Formulas for Critical Stresses

     The results presented in figures 76-79 are also useful for estimating the critical stress in a 
cylinder incipient to buckling. Specifically, approximate formulas for the critical stress of a 

geometrically perfect cylinder, are obtained by using  with equation (12) to get

                                                       (43)

An insightful, alternate form of equation (43) is obtained by using equation (11) to get

                                                            (44a)

where

                             (44b)
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and the term in parentheses is the ordinate used in figures 76-79. The symbol  denotes a 
convenient reference modulus of elasticity and is included in equations (44) to provide some 
freedom in the way one may want to represent the critical stress for a given problem.  For 
example, consider an isotropic material with a modulus  E  and Poisson’s ratio  

 

ν

 

. For this 

material,   and using  = E in equations (44) yields the well-known formula

                                             (45)

that is often used in the design of isotropic cylinders. For a given class of laminated cylinders, 
picking the reference modulus to be the effective axial modulus of a specific laminate configura-
tion in the class may yield a desired physical interpretation of equation (44a) that is useful in the 
design of these cylinders.

 

Concluding Remarks

 

     A set of nondimensional linear-bifurcation buckling equations for balanced, symmetrically 
laminated cylinders subjected to uniform axial compression loads have been presented that are 
based on Donnell’s equations. These equations presume negligible shell-wall anisotropies and 
have been solved exactly for the practical case of simply supported ends. Nondimensional 
quantities have been used to characterize the buckling behavior that consist of a stiffness-
weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall 
nonhomogeneity parameter, two parameters that quantify membrane and bending orthotropies, 
and a nondimensional buckling load. Results that establish the range of the nondimensional 
parameters appearing in the buckling analysis have also been presented that encompass a wide 
range of laminated-wall constructions.  Numerous generic plots of nondimensional buckling load 
versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the 
remaining parameters governing the behavior. These plots span the established ranges of the 
nondimensional parameters and are expected to include many practical cases of interest to 
designers. Additionally, these plots show how the parameter values affect the distribution and size 
of the festoons forming each response curve and how they affect the attenuation of each response 
curve to the corresponding solution for an infinitely long cylinder. 

     To aid in preliminary design studies, approximate formulas for the nondimensional buckling 
load have been derived. These formulas give the attenuated buckling response of an infinitely 
long cylinder in terms of the previously described nondimensional parameters and have been 
validated against the corresponding exact solution. An important finding of the present study is 
that a relatively small number of “master curves” have been identified that give a nondimensional 
measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall 
inhomogeneity parameters. In particular, these curves reduce greatly the complexity of the 
design-variable space as compared to representations that use dimensional quantities as design 
variables. Approximate formulas for the critical stresses have also been given that utilize the 
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information in these curves. As a result of their inherent simplicity, these “master curves” are 
anticipated to be useful in the ongoing development of buckling-design technology.
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Table 1.  Lamina Properties

 

* The symbols  L and  T  denote the longitudinal fiber and transverse matrix directions of a specially orthotropic lamina, respectively.

 

Lamina   
property*

Material Systems

Boron-Al S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

E

 

L

 

, Msi 33 7.5 11.02 22.1 18.5 20.01 29.58 20.35 53.5
E

 

T

 

, Msi 21 1.7 0.8 1.457 1.64 1.30 2.68 1.16 0.73

 

ν

 

LT

 

 0.23 0.25 0.34 0.258 0.30 0.30 0.23 0.29 0.31
G

 

LT

 

, Msi 7.0 0.80 0.33 0.860 0.87 1.03 0.81 0.61 0.76

R

h

θθθθ
x

Typical lamina fiber

y

L

Figure 1.  Cylinder geometry, surface coordinate system, and lamina fiber orientation.
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Figure 2.  Circumferential waveforms used in equation (12).
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Figure 3. Typical buckle pattern of a compression-loaded cylinder.
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(a) Three-dimensional rendering of a buckling mode

(b) Contour plot of the radial displacement

ncr = 4



23

0 2 4 6 8
0

30

40

50

Figure 4.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on
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cylinders with  ββββ = 0, I = 0.25, and  ρρρρ = 25.
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Figure 5.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 1, I = 0.25, and  ρρρρ = 25.
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Figure 6.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 2, I = 0.25, and  ρρρρ = 25.
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Figure 7.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 3, I = 0.25, and  ρρρρ = 25.
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Figure 8.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 0, I = 0.5, and  ρρρρ = 25.
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Figure 9.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 1, I = 0.5, and  ρρρρ = 25.
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Figure 10.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 2, I = 0.5, and  ρρρρ = 25.
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Figure 11.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 3, I = 0.5, and  ρρρρ = 25.
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Figure 12.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

15

cylinders with  ββββ = 0, I = 1, and  ρρρρ = 25.
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Figure 13.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on
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cylinders with  ββββ = 1, I = 1, and  ρρρρ = 25.
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Figure 14.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on
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cylinders with  ββββ = 2, I = 1, and  ρρρρ = 25.
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Figure 15.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

15

cylinders with  ββββ = 3, I = 1, and  ρρρρ = 25.

µµµµ = -1, 0, and 1 pcr = Nx
cr R2

ππ2 D11D22

Stiffness-weighted length-to-radius ratio,  ααm = L
R

A 22

A 11

1
4

ρρ = R
h 1 −− ννm

2 A 11A 22 h4

144D11D22

1
4

ββ = D12 + 2D66

D11D22

I = A 11D22

D11A 22

1
2

µµ = A 11A 22 −− A 12
2
−− 2A 12A 66

2A 66 A 11A 22

5

10
µµµµ = 20

10



29

0 1 2 3 4
0

20

25

30

Figure 16.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

15

cylinders with  ββββ = 0, I = 1.5, and  ρρρρ = 25.
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Figure 17.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

15

cylinders with  ββββ = 1, I = 1.5, and  ρρρρ = 25.

µµµµ = -1 and 0 
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Figure 18.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

15

cylinders with  ββββ = 2, I = 1.5, and  ρρρρ = 25.

µµµµ = -1, 0, and 1 
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Figure 19.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

15

cylinders with  ββββ = 3, I = 1.5, and  ρρρρ = 25.

µµµµ = -1, 0, and 1 
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Figure 20.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

10

cylinders with  ββββ = 0, I = 2, and  ρρρρ = 25.
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Figure 21.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

10

cylinders with  ββββ = 1, I = 2, and  ρρρρ = 25.

µµµµ = -1, 0, and 1 

pcr = Nx
cr R2

ππ2 D11D22
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Figure 22.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

10

cylinders with  ββββ = 2, I = 2, and  ρρρρ = 25.

µµµµ = -1, 0, and 1 
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Figure 23.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

10

cylinders with  ββββ = 3, I = 2, and  ρρρρ = 25.

µµµµ = -1, 0, and 1 

pcr = Nx
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Figure 24.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

10

cylinders with  ββββ = 0, I = 4, and  ρρρρ = 25.

µµµµ = -1 and 0 
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Figure 25.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

10

cylinders with  ββββ = 1, I = 4, and  ρρρρ = 25.

µµµµ = -1, 0, and 1 

pcr = Nx
cr R2

ππ2 D11D22
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Figure 26.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

10

cylinders with  ββββ = 2, I = 4, and  ρρρρ = 25.

µµµµ = -1, 0, 1, and 5 
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Figure 27.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

5

10

cylinders with  ββββ = 3, I = 4, and  ρρρρ = 25.

µµµµ = -1, 0, 1, and 5 

pcr = Nx
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Figure 28.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 0, I = 0.25, and  ρρρρ = 100.
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Figure 29.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 1, I = 0.25, and  ρρρρ = 100.
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Figure 30.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 2, I = 0.25, and  ρρρρ = 100.

µµµµ = -1

1

pcr = Nx
cr R2

ππ2 D11D22

Stiffness-weighted length-to-radius ratio,  ααm = L
R

A 22

A 11

1
4

ρρ = R
h 1 −− ννm

2 A 11A 22 h4

144D11D22

1
4

ββ = D12 + 2D66

D11D22

I = A 11D22

D11A 22

1
2

µµ = A 11A 22 −− A 12
2
−− 2A 12A 66

2A 66 A 11A 22

5

10 µµµµ = 20

0

0 2 4 6 8
0

60

80

100

Figure 31.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 3, I = 0.25, and  ρρρρ = 100.

µµµµ = -1
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Figure 32.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 0, I = 0.5, and  ρρρρ = 100.
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Figure 33.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 1, I = 0.5, and  ρρρρ = 100.

µµµµ = -1
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Figure 34.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 2, I = 0.5, and  ρρρρ = 100.
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Figure 35.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 3, I = 0.5, and  ρρρρ = 100.
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Figure 36.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 0, I = 1, and  ρρρρ = 100.
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Figure 37.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 1, I = 1, and  ρρρρ = 100.

µµµµ = -1 and 0
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Figure 38.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 2, I = 1, and  ρρρρ = 100.

µµµµ = -1, 0, and 1
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Figure 39.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 3, I = 1, and  ρρρρ = 100.

µµµµ = -1, 0, and 1
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Stiffness-weighted length-to-radius ratio,  ααm = L
R

A 22

A 11

1
4

ρρ = R
h 1 −− ννm

2 A 11A 22 h4

144D11D22

1
4

ββ = D12 + 2D66

D11D22

I = A 11D22

D11A 22

1
2

µµ = A 11A 22 −− A 12
2
−− 2A 12A 66

2A 66 A 11A 22

5

10

µµµµ = 20



41

0 1 2 3 4
0

60

80

100

Figure 40.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 0, I = 1.5, and  ρρρρ = 100.

µµµµ = -1 and 0
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Figure 41.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 1, I = 1.5, and  ρρρρ = 100.

µµµµ = -1, 0 and 1
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Figure 42.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 2, I = 1.5, and  ρρρρ = 100.

µµµµ = -1, 0 and 1
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Figure 43.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

20

40

cylinders with  ββββ = 3, I = 1.5, and  ρρρρ = 100.

µµµµ = -1, 0 and 1
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Figure 44.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 0, I = 2, and  ρρρρ = 100.

µµµµ = -1 and 0
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Figure 45.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 1, I = 2, and  ρρρρ = 100.

µµµµ = -1 and 0
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Figure 46.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 2, I = 2, and  ρρρρ = 100.

µµµµ = -1, 0,  and 1

5

pcr = Nx
cr R2

ππ2 D11D22

Stiffness-weighted length-to-radius ratio,  ααm = L
R

A 22

A 11

1
4

ρρ = R
h 1 −− ννm

2 A 11A 22 h4

144D11D22

1
4

ββ = D12 + 2D66

D11D22

I = A 11D22

D11A 22

1
2

µµ = A 11A 22 −− A 12
2
−− 2A 12A 66

2A 66 A 11A 22

10

µµµµ = 20

0 1 2 3 4
0

30

40

50

Figure 47.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 3, I = 2, and  ρρρρ = 100.

µµµµ = -1, 0,  and 1
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Figure 48.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 0, I = 4, and  ρρρρ = 100.

µµµµ = -1 and 0
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Figure 49.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 1, I = 4, and  ρρρρ = 100.

µµµµ = -1, 0 and 1
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Figure 50.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 2, I = 4, and  ρρρρ = 100.

µµµµ = -1, 0, 1, and 5
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Figure 51.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

10

20

cylinders with  ββββ = 3, I = 4, and  ρρρρ = 100.

µµµµ = -1, 0, 1, 5, and 10
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Figure 52.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 0, I = .25, and  ρρρρ = 1000.
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Figure 53.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 1, I = .25, and  ρρρρ = 1000.

µµµµ = -1

pcr = Nx
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Figure 54.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 2, I = .25, and  ρρρρ = 1000.

µµµµ = -1

pcr = Nx
cr R2

ππ2 D11D22

ρρ = R
h 1 −− ννm

2 A 11A 22 h4

144D11D22

1
4

ββ = D12 + 2D66

D11D22

I = A 11D22

D11A 22

1
2

µµ = A 11A 22 −− A 12
2
−− 2A 12A 66

2A 66 A 11A 22

µµµµ = 20

10

5
1

0

Stiffness-weighted length-to-radius ratio,  ααm = L
R

A 22

A 11

1
4

0 1 2 3 4
0

600

800

1000

Figure 55.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 3, I = .25, and  ρρρρ = 1000.

µµµµ = -1
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Figure 56.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 0, I = 0.5, and  ρρρρ = 1000.
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Figure 57.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 1, I = 0.5, and  ρρρρ = 1000.

µµµµ = -1
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Figure 58.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 2, I = 0.5, and  ρρρρ = 1000.
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Figure 59.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 3, I = 0.5, and  ρρρρ = 1000.

µµµµ = -1
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Figure 60.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 0, I = 1, and  ρρρρ = 1000.
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Figure 61.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 1, I = 1, and  ρρρρ = 1000.

µµµµ = -1, 0, and 1

pcr = Nx
cr R2

ππ2 D11D22
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Figure 62.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 2, I = 1, and  ρρρρ = 1000.

µµµµ = -1, 0, and 1
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Figure 63.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 3, I = 1, and  ρρρρ = 1000.

µµµµ = -1, 0, and 1

pcr = Nx
cr R2

ππ2 D11D22
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Figure 64.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 0, I = 1.5, and  ρρρρ = 1000.

µµµµ = -1 and 0pcr = Nx
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Figure 65.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 1, I = 1.5, and  ρρρρ = 1000.

µµµµ = -1, 0, and 1pcr = Nx
cr R2

ππ2 D11D22
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Figure 66.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 2, I = 1.5, and  ρρρρ = 1000.

µµµµ = -1, 0, and 1pcr = Nx
cr R2
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Figure 67.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 3, I = 1.5, and  ρρρρ = 1000.

µµµµ = -1, 0, and 1pcr = Nx
cr R2

ππ2 D11D22
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Figure 68.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 0, I = 2, and  ρρρρ = 1000.

µµµµ = -1 and 0pcr = Nx
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Figure 69.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 1, I = 2, and  ρρρρ = 1000.

µµµµ = -1 and 0pcr = Nx
cr R2

ππ2 D11D22
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Figure 70.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 2, I = 2, and  ρρρρ = 1000.

µµµµ = -1, 0, and 1pcr = Nx
cr R2
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Figure 71.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

200

400

cylinders with  ββββ = 3, I = 2, and  ρρρρ = 1000.

µµµµ = -1, 0, 1, and 5pcr = Nx
cr R2

ππ2 D11D22
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Figure 72.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

100

200

cylinders with  ββββ = 0, I = 4, and  ρρρρ = 1000.

µµµµ = -1 and 0
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Figure 73.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

100

200

cylinders with  ββββ = 1, I = 4, and  ρρρρ = 1000.

µµµµ = -1, 0, and 1

pcr = Nx
cr R2

ππ2 D11D22

Stiffness-weighted length-to-radius ratio,  ααm = L
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Figure 74.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on

100

200
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Figure 75.  Effects of parameters  ααααm  and  µµµµ  on nondimensional buckling loads on
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cylinders with  ββββ = 3, I = 4, and  ρρρρ = 1000.
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Figure 76.  Nondimensional buckling loads of infinitely long cylinders with I = 1.  
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Figure 77.  Nondimensional buckling loads of infinitely long cylinders with I = 0.5 and I = 2.  
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Figure 78.  Nondimensional buckling loads of infinitely long cylinders with I = 0.67 and I = 1.5.  
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Figure 79.  Nondimensional buckling loads of infinitely long cylinders with I = 0.25 and I = 4.  
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