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II matrix cracking. Failure initiation is
determined using a failure criterion,
and the evolution of these ISVs is con-
trolled by a set of traction-separation
laws. The traction separation laws are
postulated such that the area under the
curves is equal to the fracture tough-
ness of the material associated with the
corresponding failure mechanism. A
characteristic finite element length is
used to transform the traction-separa-
tion laws into stress-strain laws. The ISV

evolution equations are derived in a
thermodynamically consistent manner
by invoking the stationary principle on
the total work of the system with re-
spect to each ISV.

A novel feature is the inclusion of
both pre-peak damage and appropri-
ately scaled, post-peak strain softening
failure. Also, the characteristic ele-
ments used in the failure degradation
scheme are calculated using the ele-
ment nodal coordinates, rather than

simply the square root of the area of
the element.

This work was done by Evan J. Pineda of
Glenn Research Center and Anthony M. Waas
of the University of Michigan. Further infor-
mation is contained in a TSP (see page 1).
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The synthesis and characterization of
six new ionic liquids, with fluoroether
moeties on the imidazolium ring, each
with vapor pressures shown to be <10–7

Torr at 25 °C, have been demonstrated.
Thermal stability of the ionic liquids up
to 250 °C was demonstrated. The ionic
liquids had no measurable influence
upon viscosity upon addition to perfluo-
ropolyether (PFPE) base fluids. They
also had no measureable influence upon
corrosion on steel substrates upon addi-
tion to base fluids. In general, 13 to 34%
lower COFs (coefficients of friction),
and 30 to 80% higher OK load of base

fluids upon addition of the ionic liquids
was shown. 

The compound consists of a 1,3-disub-
stituted imidazolium cation. The sub-
stituents comprise perfluoroether
groups. A bis(trifluoromethanesul-
fonyl)imide anion counterbalances the
charge. The fluorinated groups are in-
tended to enhance dispersion of the
ionic liquid in the PFPE base fluid. The
presence of weak Van der Waals forces
associated with fluorine atoms will limit
interaction of the substituents on adja-
cent ions. The longer interionic dis-
tances will reduce the heat of melting

and viscosity, and will increase disper-
sion capabilities.

This work was done by Bryan Bergeron,
David Skyler, Kyle Roberts, and Amy Stevens
of Physical Sciences, Inc. for Glenn Research
Center. Further information is contained in a
TSP (see page 1).

Inquiries concerning rights for the com-
mercial use of this invention should be ad-
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novative Partnerships Office, Attn: Steven
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Carbon Nanotube Microarrays Grown on Nanoflake Substrates
This process creates materials comprised predominantly of single-walled carbon nanotubes.
Lyndon B. Johnson Space Center, Houston, Texas

This innovation consists of a new com-
position of matter where single-walled
carbon nanotubes (SWNTs) are grown
in aligned arrays from nanostructured
flakes that are coated in Fe catalyst. This
method of growth of aligned SWNTs,
which can yield well over 400 percent
SWNT mass per unit substrate mass, ex-
ceeds current yields for entangled
SWNT growth. In addition, processing
can be performed with minimal wet
etching treatments, leaving aligned
SWNTs with superior properties over
those that exist in entangled mats.

The alignment of the nanotubes is
similar to that achieved in vertically
aligned nanotubes, which are called
“carpets.” Because these flakes are

grown in a state where they are airborne
in a reactor, these flakes, after growing
SWNTs, are termed “flying carpets.” 

These flakes are created in a roll-to-
roll evaporator system, where three sub-
sequent evaporations are performed on
a 100-ft (≈30-m) roll of Mylar. The first
layer is composed of a water-soluble “re-
lease layer,” which can be a material
such as NaCl. After depositing NaCl, the
second layer involves 40 nm of support-
ing layer material — either Al2O3 or
MgO. The thickness of the layer can be
tuned to synthesize flakes that are larger
or smaller than those obtained with a 40-
nm deposition.

Finally, the third layer consists of a
thin Fe catalyst layer with a thickness of

0.5 nm. The thickness of this layer ulti-
mately determines the diameter of
SWNT growth, and a layer that is too
thick will result in the growth of multi-
walled carbon nanotubes instead of sin-
gle-wall nanotubes. However, between a
thickness of 0.5 nm to 1 nm, single-
walled carbon nanotubes are known to
be the primary constituent. After this
three-layer deposition process, the
Mylar is rolled through a bath of water,
which allows catalyst-coated flakes to
detach from the Mylar. The flakes are
then collected and dried. The method
described here for making such flakes
is analogous to that which is used to
make birefringent ink that is coated on
U.S. currency.


