
34 NASA Tech Briefs, July 2013

Development of the DeCoM comes
from the requirement of analyzing the
performance of a condenser. A compo-
nent of a loop heat pipe (LHP), the con-
denser, is interfaced with the radiator in
order to reject heat. DeCoM simulates
the condenser, with certain input param-
eters. Systems Improved Numerical
Differencing Analyzer (SINDA), a ther-
mal analysis software, calculates the ad-
joining component temperatures, based
on the DeCoM parameters and interface
temperatures to the radiator. Applica-
tion of DeCoM is (at the time of this re-
porting) restricted to small-scale analy-
sis, without the need for in-depth LHP

component integrations. To efficiently
develop a model to simulate the LHP
condenser, DeCoM was developed to
meet this purpose with least complexity.
DeCoM is a single-condenser, single-pass
simulator for analyzing its behavior. The
analysis is done based on the interac-
tions between condenser fluid, the wall,
and the interface between the wall and
the radiator.

DeCoM is based on conservation of
energy, two-phase equations, and flow
equations. For two-phase, the Lockhart-
Martinelli correlation has been used in
order to calculate the convection value
between fluid and wall. Software such as

SINDA (for thermal analysis analysis)
and Thermal Desktop (for modeling)
are required. DeCoM also includes the
ability to implement a condenser into a
thermal model with the capability of un-
derstanding the code process and being
edited to user-specific needs. DeCoM re-
quires no license, and is an open-source
code. Advantages to DeCoM include
time dependency, reliability, and the
ability for the user to view the code
process and edit to their needs.

This work was done by Deepak Patel of God-
dard Space Flight Center. Further information
is contained in a TSP (see page 1). GSC-
16296-1

Deepak Condenser Model (DeCoM)
Goddard Space Flight Center, Greenbelt, Maryland

The flight software (FSW) math li-
brary is a collection of reusable math
components that provides typical math
utilities required by spacecraft flight
software. These utilities are intended to
increase flight software quality reusabil-
ity and maintainability by providing a set
of consistent, well-documented, and
tested math utilities. This library only
has dependencies on ANSI C, so it is eas-
ily ported.

Prior to this library, each mission typi-
cally created its own math utilities using
ideas/code from previous missions. Part
of the reason for this is that math li-
braries can be written with different
strategies in areas like error handling,
parameters orders, naming conventions,
etc. Changing the utilities for each mis-

sion introduces risks and costs. The obvi-
ous risks and costs are that the utilities
must be coded and revalidated. The hid-
den risks and costs arise in miscommuni-
cation between engineers. These utilities
must be understood by both the flight
software engineers and other subsystem
engineers (primarily guidance naviga-
tion and control).

The FSW math library is part of a
larger goal to produce a library of
reusable Guidance Navigation and Con-
trol (GN&C) FSW components. A
GN&C FSW library cannot be created
unless a standardized math basis is cre-
ated. This library solves the standardiza-
tion problem by defining a common fea-
ture set and establishing policies for the
library’s design. This allows the libraries

to be maintained with the same strategy
used in its initial development, which
supports a library of reusable GN&C
FSW components.

The FSW math library is written for an
embedded software environment in C.
This places restrictions on the language
features that can be used by the library.
Another advantage of the FSW math li-
brary is that it can be used in the FSW as
well as other environments like the
GN&C analyst’s simulators. This helps
communication between the teams be-
cause they can use the same utilities with
the same feature set and syntax.

This work was done by David McComas of
Goddard Space Flight Center. Further informa-
tion is contained in a TSP (see page 1).
GSC-16102-1

Flight Software Math Library
Goddard Space Flight Center, Greenbelt, Maryland

It adds new features to code automati-
cally, such as recovering from a lost
node or the ability to modify the code
while running.

In this project, the innovators at the
time of this reporting intend to develop
two distinct technologies that build upon

each other and both of which serve as
building blocks for more efficient HPC
usage. First is the scheduling and dy-
namic execution framework, and the sec-
ond is scalable linear algebra libraries
that are built directly on the former.

This work was done by John Humphrey and

Kyle Spagnoli of EM Photonics, Inc. for God-
dard Space Flight Center. Further information
is contained in a TSP (see page 1). GSC-
16472-1

