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Abstract. The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane 
displacements, strains, and stresses. The transverse shear stresses obtained from constitutive 
equations are layer-wise constant. Although these transverse shear stresses are generally 
accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer 
interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. 
Recently, Tessler applied Reissner’s mixed variational theorem and RZT kinematic 
assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, 
laminated composite, and sandwich beams, called RZT(m), where “m” stands for “mixed”.  
Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions 
for the transverse shear stresses field are examined: the first follows Tessler’s formulation, 
whereas the second is based on Murakami’s polynomial approach. Results for elasto-static 
simply supported and cantilever plates demonstrate that Tessler’s formulation results in a 
powerful and efficient structural theory that is well-suited for the analysis of multilayered 
composite and sandwich panels. 
 
 
1 INTRODUCTION 

Over the past two decades, composite materials have been increasingly used in civil, 
automotive, and aerospace applications. Numerous structural theories have been explored for 
the analysis of multilayered composite and sandwich structures. Since transverse shear 
deformations govern damage mechanisms that contribute to delamination initiation and 
propagation, efforts to develop accurate predictions of transverse shear strains and stresses 
have been extensive [1]. 
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In the framework of displacement-based lamination theories, a distinction is usually made 
between Equivalent Single Layer (ESL) and Layer-Wise (LW) theories [2]. The former 
assume a coarse approximation for the displacement components, thus reducing a 
multilayered plate to a single-layer plate whose behavior is governed by some average 
constitutive properties. In contrast to ESL theories, LW theories employ kinematic 
assumptions for every layer, hence the number of kinematic variables increases with the 
number of layers. Although the LW theories are sufficiently accurate, they become 
computationally intensive for application to laminates that have a large number of layers. 

Generally, the transverse shear stresses obtained from the constitutive equations, using 
either ESL and ZZ theories, suffer from the lack of interlaminar continuity and often exhibit 
rather inaccurate magnitudes across the laminate thickness. A post-processing analysis, which 
usually results in improved transverse shear stresses, is integration of equilibrium equations of 
elasticity theory. Since these computations involve second-order partial derivatives of 
kinematic variables, their application in finite element analysis is often associated with 
significant errors. Alternatively, mixed-field variational principles have been used [3-5], 
wherein the displacement and transverse shear stress assumptions are made independently. 

A viable compromise between adequate accuracy and computational efficiency is offered 
by the so-called ZigZag (ZZ) theories, wherein the assumed kinematic field is a superposition 
of the coarse and fine distributions through the thickness. The fine distribution, also known as 
zigzag, is commonly piecewise linear, and it enables the inplane-displacement partial 
derivative taken with respect to the thickness coordinate to be discontinuous at the layer 
interfaces. The ZZ theories are computationally efficient because they have a fixed number of 
variables regardless of the number of layers. These theories also achieve global response 
predictions comparable to those of  the LW theories [6,7]. Recently, Tessler et al. [8,9] 
developed the so-called Refined Zigzag Theory (RZT), wherein the displacement field of 
First-order Shear Deformation Theory (FSDT) is enriched by the addition of suitable zigzag 
functions that have C0-continuous distributions through the thickness. Each of the in-plane 
zigzag displacements is controlled by a single amplitude variable. Thus, the FSDT five-
variables plate kinematics is increased to seven variables. Efficient, C0-continuous, RZT-
based finite elements have also been developed for beams, plates, and shells [10-12]. 

In this paper, a mixed-field formulation is undertaken in the framework of RZT plate 
kinematic assumptions and Reissner’s mixed variational theorem [13]. Two alternative 
strategies for the approximation of transverse shear stresses are examined. The first strategy 
adopts Tessler’s  methodology in [14] and is denoted as (m)

1RZT  . The transverse shear stresses 
are derived using three-dimensional equilibrium equations of elasticity theory. The second 
strategy, (m)

2RZT , is based on Murakami’s [3] polynomial approach. The two approaches are 
assessed by way of elasto-static problems for simply supported and cantilever plates subjected 
to bi-sinusoidal and uniformly distributed loading. Analytic solutions are obtained and 
compared with three-dimensional exact elasticity solutions, high-fidelity finite element 
solutions, and RZT (displacement theory) solutions. The comparisons indicate that (m)

1RZT is 
consistently more accurate than (m)

2RZT , hence it can be used effectively in the analysis of 
multilayered composite and sandwich plates.  
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2 RZT(m) ASSUMPTIONS 
Consider a laminated plate of uniform thickness 2h made by N perfectly bonded 

orthotropic layers. The plate is referred to the orthogonal Cartesian coordinate system 
1 2( ( , )x xx ,z), where the plate midplane is placed on the x -plane, whereas the through-

the-thickness coordinate z ranges from –h to h. Throughout this paper, Greek subscripts take 
the values 1, 2.  

Reissner’s mixed variational theorem [13] permits independent assumptions to be used for 
displacements and transverse shear stresses. This theorem enforces, as a constraint, the 
compatibility between the transverse shear strains resulting from the strain-displacement 
relations and those that are assumed a priori, i.e., 

T
h

T
e

h

dz d Wa aε σ τ γ γ  (1) 

where  is the variational operator and eW  represents the work of the external loads. The 
strain vector 11 22 12 1 2, , , ,T

z zε  contains the in-plane and transverse-shear, 

1 2,T
z zγ , strains obtained by means of the linear strain-displacement relations. The 

stress vector 11 22 12 1 2, , , ,T
z za aσ  contains the in-plane stresses obtained by means of 

Hooke’s law and the transverse-shear stresses, 1 2,T
z za a aτ , that are assumed 

independently.  The vector 1 2,T
z za a aγ  is obtained from the assumed stresses, aτ , using 

Hooke’s law.  
In what follows, the assumed displacement and transverse-shear stress fields are described 

in detail. 

2.1 Displacement field 
The kinematic assumptions of RZT are adopted, having demonstrated superior predictive 

capabilities to model both the global and local response quantities [8-12,15]. The 
displacement components are defined in the Cartesian coordinate system as [9] 

( , ) ( ) ( ) ( ) ( )
( , ) ( )

k k

z

u z u z z
u z w

x x x x
x x

 
(2) 

 

In Eq. (2), and in the following, the superscript (k) indicates quantities corresponding to the 
kth lamina, u  is a uniform displacement component along the x -axis,  is the average 
bending rotation of the transverse normal about x -axis ( ), and w  is the transverse 
deflection. The kinematic variable  represents the amplitude of the zigzag rotation, 

whereas k , derived in [9] , is a piecewise linear zigzag function that is independent of the 
state of deformation. The RZT kinematic variables include those of  FSDT, u , w , and , as 
well as the two additional variables called the zigzag rotations, . 
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RZT is characterized by a multi-scale kinematic description since the displacement field is 
given by the superposition of the coarse and fine contributions: the former, modeling the 
kinematics with the resolution on the scale of the entire plate thickness, corresponds to the 
FSDT, whereas the latter models the mechanical behavior with the resolution on the scale of 
the kth material layer.  

The strains are obtained using the linear strain-displacement relations 

( ) ( ) ( ) ( ) ( )
, , , , , ,2 ;k k k k k

zu u z  (3) 

with ,w  and ( ) ( )
,

k k
z .  Hooke’s constitutive relations are then invoked to compute 

the stresses  

( ) ( ) ( ) ( ) ( ) ( );    k k k k k k
z zC Q  (4) 

where ( )kC  and ( )kQ  are the transformed elastic stiffness coefficients referred to the ( ), zx  
coordinate system and relative to the plane-stress condition that assumes that transverse 
normal stress is negligibly small in relation to the in-plane stresses.  

2.2 Transverse shear stresses 
In this study, two thickness-wise distributions of the transverse shear stresses that are 

continuous along the layer interfaces and satisfy traction conditions at the top and bottom 
plate surfaces are considered: (i) a distribution derived by way of three-dimensional elasticity 
equilibrium equations, and (ii) an assumed polynomial distribution. In both cases, the 
transverse shear stresses can be expressed as 

( ) ( ) ( ) ( )z za f v n vτ Z f x Z n x  (5) 

where the matrices fZ , nZ  are dependent on the thickness coordinate, and the vector vf  is a 
stress function of the in-plane coordinates; ( ) ( ) ( ) ( )

1 1 2 2, , ,T b t b tp p p pvn  is a vector containing 

prescribed  surface tractions that act along the x -direction; ( )tp  are prescribed on the top 
surface,  tS , and ( )bp on the bottom surface, bS .    

2.2.1 Integrated transverse shear stresses (version (m)
1RZT )  

Three-dimensional equilibrium equations of elasticity are commonly used in an attempt to 
derive improved, layer interface-continuous transverse shear stresses. Auricchio and Sacco [4] 
used an equilibrium-integration approach to derive transverse shear stresses for the FSDT-
based plate analysis. It was recognized that due to a large number of independent stress 
parameters, the mixed-field variational formulation tends to fit the constitutive-based stresses 
very closely, yielding only insignificant improvements for either the equilibrium- or 
polynomial-based stresses.  Moreover, an ad hoc function had to be added to the integrated 
transverse shear stresses in order to satisfy the traction-free boundary conditions on the top 
bounding surface, whereas the bottom zero-traction condition was enforced a priori. 
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Recently, Tessler [14] presented a mixed-field formulation for RZT beams, which derives 
the transverse shear stress from the two-dimensional elasticity equilibrium equations. A key 
step in the formulation is that the transverse shear stress is made to satisfy exactly the first 
(axial) equilibrium equation, and hence it satisfies a priori the top and bottom traction 
conditions of arbitrary distributions, including the special cases of zero-traction conditions. 
The derived stress is also fully continuous along layer interfaces. The problem is reduced to 
replacing two second-order derivatives of the kinematic variables with two unknown stress 
functions that are determined using Reissner’s mixed-field theorem.  

Herein, Tessler’s [14] methodology is used to derive an RZT mixed-field formulation for  
plate analysis. By neglecting the body forces, the first two equilibrium equations of elasticity 
theory may be written as 

, , , ,          z z  (6) 

 Integrating with respect to the z-coordinate and enforcing the traction conditions at the 
bottom plate surface (z=-h) yields 

( )
, , ,         

z
b

z
h

p dz  (7) 

Introducing  Eq. (4) into Eq. (7), and after some straightforward manipulations, the transverse 
shear stresses involving eighteen second-order partial derivatives of  u ,  and  are 
obtained. To circumvent the over fitting deficiency encountered in [4], a simple strategy is 
pursued  herein that leads to the functional simplicity associated with the mixed-field RZT 
beam formulation [14].  To simplify Eq. (7),  cylindrical bending is considered for each of the
x  directions, resulting only in the second partial derivatives of u ,  and  (with respect 
to x  in the ( , )x z -plane) in the expressions for the transverse shear stresses.  Thus, the 
integrated shear stresses become 

( ) ( ) ( ) ( ) ( )
, , ,

z z z
b k k k k

z
h h h

p C dz u zC dz C dz  (8) 

To fulfill the full shear traction equilibrium on the top plate face, the first two RZT 
equilibrium equations, describing the in-plane equilibrium, (see [9]), are written for  
cylindrical bending case as  

( ) ( ) ( ) ( )
, , , 0

h h h
k k k k

h h h

C dz u zC dz C dz p  (9) 

where ( ) ( )t bp p p . Solving Eq. (9) for ,u  gives 
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1

( ) ( ) ( ) ( )
, , ,

h h h
k k k k

h h h

u C dz zC dz C dz p  (10) 

Substituting  Eq. (10) into Eq. (8) results in the transverse shear stresses that have only two 
second-order partial derivatives, ,  and , , per stress component, and the thickness-
distribution functions that satisfy all traction equilibrium conditions exactly, including the 
layer-interface equilibrium conditions. The final form of the transverse shear stresses is given 
by Eq. (5) in which the surface tractions are grouped in vn , and the second-order partial 
derivatives are replaced by independent functions of x  and are grouped in vf . The 
corresponding version of the theory is herein denoted by (m)

1RZT . 

2.2.2 Polynomial approximation of shear stresses (version (m)
2RZT )  

The use of polynomial approximation for the transverse shear stresses in a mixed-field 
formulation appears for the first time in [3], and since has been adopted by many 
investigators. For each material layer, a polynomial thickness distribution is assumed and is 
expressed as  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )k b k k t k k k k
z z b z t mF z F z T F za  (11) 

where ( )b k
z and ( )t k

z  are the values of transverse shear stress ( )k
za  at the bottom and top 

interface of the kth layer, respectively; ( )kT stands for the average shear stress in the kth layer 
of thickness ( )2 kh   

( )

( 1)

( ) ( )
( )

1
2

k

k

zk k
zk z

T dz
h a  (12) 

Moreover  

2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 1 1 3 1 1 3;  ;  1
4 2 4 4 2 4 2

k k k k k k k k
b t mF F F  (13) 

with ( ) ( ) ( ) [ 1; 1]k k k
mz z h , ( )k

mz  representing the coordinate of the kth midplane. 
The mixed-field formulation which is based on the RZT kinematic assumptions, Eq. (2), 

and the assumed transverse shear stresses, Eq. (11), is herein denoted as (m)
2RZT . 

3 RZT(m) GOVERNING EQUATIONS 
The RZT(m) plate equilibrium equations are derived from Reissner’s mixed variational 

theorem, wherein the body forces are neglected. The plate is subjected to a transversely 
distributed pressure q , acting on the midplane , to tangential surface tractions ( )tp  and 
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( )bp , acting along the x -direction  and applied at the top, tS , and bottom, bS , plate surfaces, 

respectively, and to the tractions , zT T  applied on a part of the midplane boundary. 

The left-hand side of Eq. (1) has two contributions: the first term is the variation of the 
strain energy, the second term enforces compatibility between the γ and  aγ  strain fields. 
These two terms are decoupled since the variational operator is applied to independent 
variables; hence, the compatibility term may be treated separately, that is 

0
h

T

h

dzda aτ γ γ  (14) 

Regardless of the type of approximation, the assumed transverse shear stresses have the 
general form given by Eq. (5). Substituting Eq. (5) into Eq. (14) and performing the 
variational operation and through-the-thickness integration yields the following expression for 
the transverse shear stresses  

( ) ( ) ( )z z za g ψ e vτ Z g Z ψ Z n  (15) 

where 1 2,Tg , 1 2,Tψ , and where ( )zgZ , ( )zψZ  and ( )zeZ  are matrices of 
functions of the  z-coordinate. 

Performing the integration by parts on the remaining part of Eq. (1)  

h
T

e
h

dzd Wε σ  (16) 

gives rise to the equilibrium equations of RZT(m)   

, , , ,0;   0;   0;   0N p Q q M Q m M Q  (17) 

and a set of variationally consistent boundary conditions that are identical to those of RZT 
(refer to [9]). In Eq. (17), ( ) ( )t bp p p , ( ) ( )t bm h p p ; N , M , and M  are the 
same stress resultants as those defined in RZT [9]. For this new theory, the transverse shear 
stress resultants are given by 

( )
1 1

( )
2 2

( ) ( )
1 11
( ) ( )
2 22

h k
z

k
zh

h k k
z

k k
zh

Q
dz

Q

Q
dz

Q

a
T T e v

a

a
T T e v

a

A g B ψ E n

C g D ψ F n
 (18) 

where , , , ,T T T T TA B C D E , and TF  are the resulting shear-stiffness coefficient matrices.  
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4 NUMERICAL RESULTS 

To assess the accuracy of both (m)
1RZT  and (m)

2RZT , exact and approximate solutions are 
developed for the bending of rectangular plates defined on the domain 

1 2[0, ], [0, ], [ , ]x a x b z h h : (1) A plate that is simply supported along the four edges and 
subjected to a bi-sinusoidal transverse pressure, and (2) A cantilever plate subjected to a 
uniform transverse pressure. For problem (1), an exact solution is readily obtained  using 
trigonometric expansions for the kinematic variables. For problem (2), an approximate 
solution is obtained using the Rayleigh-Ritz method, where the kinematic variables are 
approximated using the Gram-Schmidt polynomials. For details on these solutions, refer to 
[9].  

The mechanical material properties and the stacking sequences are summarized in Tables 1 
and 2. 

Table 1: Mechanical properties of orthotropic materials 

Material ( ) ( ) ( )
1 2 3/ /k k kE E E  (GPa) ( ) ( ) ( )

12 13 23/ /k k kG G G  (GPa) ( ) ( ) ( )
12 13 23/ /k k k  

A  157.9/9.584/9.584 5.93/5.93/3.227 0.32/0.32/0.49 
F 50/10/10 5/5/5 0.25/ 0.25/ 0.25 
N 10-5/10-5/75.85×10-3 22.5×10-3/22.5×10-3/22.5×10-3 0.01/0.01/0.01 
Q 525/21/21 10.5/10.5/10.5 0.25/0.25/0.25 

  

Table 2: Laminate stacking sequences (layers sequence is in the positive z-direction) 

Laminate  Normalized lamina thickness, h(k)/h Lamina materials Lamina orientation (°) 
L1  (0.5/0.5) (A/A) (0/90) 
L2  (0.25/0.25/0.25/0.25) (A/A/A/A) (0/90/0/90) 
L3  (0.1/0.7/0.2) (F/N/Q) (0/0/0) 

Problem 1. A simply supported rectangular plate (b=3a) subjected to a bi-sinusoidal 
transverse pressure, 1 2 0 1 2( , ) sin( / )sin( / )q x x q x a x b .  

For comparison purposes, both the three-dimensional elasticity [16] and exact RZT [9] 
solutions are used. Two cross-ply laminates (L1 and L2) are considered, and the non-
dimensional maximum deflections  corresponding to various values of the span-to-thickness 
ratio, a/2h, are compared. Results in Table 3 demonstrate that the use of a mixed-field 
formulation can lead to slight enhancements of the deflection predictions when compared 
with the displacement-based RZT, since the improvements in the transverse shear stresses 
contribute directly to the transverse-shear stiffness. In addition, it is evident that (m)

1RZT  yields 
consistently more accurate results than the (m)

2RZT  formulation. Similar observations in 
relation to the RZT beam analysis were made by Gherlone [15], where it was also pointed out 
that the mixed-field zigzag formulations retain the same level of accuracy for the in-plane 
response quantities as those obtained using the displacement-based formulations.  
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Subsequently, to focus on the transverse shear stresses, their through-the-thickness 
distributions are examined in detail. 

Table 3: Problem 1, Laminates L1, L2: Normalized maximum (central) deflection, 
2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b . 

Laminate a/2h 3D Elasticity RZT (m)
1RZT  (m)

2RZT  

L1 

8 2.546 2.512 2.547 2.545 
10 2.449 2.427 2.449 2.448 
20 2.319 2.314 2.319 2.319 
50 2.283 2.282 2.283 2.283 

100 2.278 2.277 2.278 2.278 

L2 

8 1.505 1.472 1.507 1.487 
10 1.375 1.353 1.375 1.362 
20 1.198 1.193 1.198 1.195 
50 1.148 1.147 1.148 1.148 

100 1.141 1.141 1.141 1.141 
 
Figure 1 shows a comparison of the through-the-thickness distributions of normalized 

transverse shear stresses for laminate L1 (a/2h = 8). The (m)
1RZT  solution is highly accurate as 

evidenced by the comparison with the reference solution, labeled as 3D Elasticity. Moreover, 
the RZT and RZT-Integrated solutions refer to the transverse shear stresses based on, 
respectively, the constitutive equations and the integration of three-dimensional equilibrium 
equations. The integrated shear stresses are also very accurate. However, in contrast to the 

(m)
1RZT solution, the integrated stresses are obtained by means of a post-processing scheme that 

makes use of second-order partial derivatives of the kinematic variables. On the other hand, 
the (m)

2RZT  stresses are significantly less accurate because they follow closely the piecewise-
constant distributions of the RZT stresses that are derived from constitutive relations. This 
behavior is due to the fact that the number of stress variables inherent in the polynomial 
scheme is proportional to the number of layers. In contrast, the (m)

1RZT  formulation uses only 
two stress variables for each of the transverse-shear stress components, and these variables are 
independent of the number of layers (see details in Section 2.2.)         

Problem 2. A cantilever square plate subjected to a uniform transverse pressure, 
1 2 0( , )q x x q .  

For this problem, the exact solution does not exist. To assess the accuracy of RZT(m), a 
high-fidelity FEM (MSC/MD-NASTRAN® [17]) solution is used. The model is regularly 
discretized using linear-strain solid elements, HEXA8. There are sixty-five elements along 
each span direction, five elements through the thickness of the bottom face, eight elements 
along the top face and fifteen elements through the core thickness. 
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In Figure 2, five through-the-thickness distributions of the transverse shear stress are 
compared, with the (m)

1RZT  distribution demonstrating the closest correlation with the three-
dimensional FEM solution, that is comparable in accuracy only to the RZT-Integrated 
solution.   

 

Figure 1: Problem 1, Laminate L1: Through-the-thickness distribution of normalized transverse shear stresses 
2 ( )

02 k
z zh q a .

 

Figure 2: Problem 2, Laminate L3: Through-the-thickness distribution of normalized transverse shear stresses 
2 ( )

1 0 12 k
z zh q a . 
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5 CONCLUSIONS 
In this paper, a multi-scale refined zigzag theory for the analysis of multilayered composite 

and sandwich plates has been presented. The new theory, called RZT(m) (Refined Zigzag 
Theory, Mixed-formulation), is developed following the RZT(m)  formulation for beam 
analysis recently proposed by Tessler. The approach is based on Reissner’s mixed variational 
theorem and on the kinematic assumptions of the Refined Zigzag Theory (RZT). Two 
alternative formulations for the transverse-shear stresses were examined. The first, (m)

1RZT , 
follows the RZT(m)  beam formulation by Tessler, which is based on a closed-form integration 
procedure of elasticity-theory equilibrium equations. The second formulation, (m)

2RZT , 
incorporates Murakami’s polynomial approach.  

Results for simply supported and cantilevered rectangular laminated composite and 
sandwich plates in bending have been examined using the (m)

1RZT , (m)
2RZT  and the original 

RZT (displacement-based) formulation. For comparison purposes, corresponding results were 
obtained using three-dimensional elasticity and high-fidelity FEM solutions. Both RZT(m) 
formulations have demonstrated improved modeling of the transverse shear stiffness and 
stresses, achieving slightly more accurate deflection predictions when compared with those of 
RZT. Of the two formulations, however, (m)

1RZT  produced consistently superior results. In 
contrast, the polynomial-based formulation, (m)

2RZT , has shown to exhibit serious deficiencies: 
the assumed transverse shear stresses tend to approximate closely those of their constitutive 
counterparts, leading to unsatisfactory results. 

In this paper it has been clearly demonstrated that a mixed-field formulation, based on 
Reissner’s variational theorem and coupled with the refined zigzag theory for plates, may 
offer substantial improvements in predicting the transverse-shear stresses and stiffness. The 
accuracy of a mixed-field formulation depends on the choice of the assumed transverse shear 
stresses. The transverse shear stresses obtained by integration of three-dimensional 
equilibrium equations produced an improved theory, (m)

1RZT , that offers superior predictions  
of the in-plane behavior, typical of RZT, along with the enhanced predictions for the 
transverse shear stresses and stiffness.  This new formulation is thus perfectly suited for the 
analysis of multilayered composite and sandwich structures. The (m)

1RZT  formulation may also 
be used for developing simple and efficient C0-continous plate and shell finite elements. 
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