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ABSTRACT

The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) 
launched July 23, 2012, from NASA Wallops Flight 
Facility (WFF) on a Black Brant XI suborbital 
sounding rocket and successfully performed its 
mission, demonstrating the survivability of a 
hypersonic inflatable aerodynamic decelerator (HIAD) 
in the reentry heating environment and also illustrating 
the effect of an offset center of gravity on the HIAD’s 
lift-to-drag ratio.  IRVE-3 was a follow-on to 2009’s 
IRVE-II mission, which demonstrated exo-atmospheric 
inflation, reentry survivability – without significant 
heating – and the aerodynamic stability of a HIAD 
down to subsonic flight conditions.  NASA Langley 
Research Center is leading the development of HIAD 
technology for use on future interplanetary and Earth 
reentry missions. 

1. MISSION DESCRIPTION 

IRVE-3 performed its required mission flawlessly.  
The Black Brant XI launch vehicle accurately delivered 
the payload to the desired trajectory, the yo-yo de-spin 
mechanism eliminated the launch-stabilizing rotation, 
and the launch vehicle separated cleanly from the 
payload.  The attitude control system (ACS) then 
stabilized the payload, and the launch vehicle nosecone 
separated cleanly as well, leaving the reentry vehicle 
with its hard-packed inflatable aeroshell to coast 
through an apogee of 469km.  The aeroshell launch 
restraint cover was pyrotechnically released, and the 
inflation system inflated the aeroshell from the on-
board high-pressure nitrogen tank; the inflation system 
maintained the aeroshell at full pressure through 
reentry and into descent.  The ACS accurately aligned 
the vehicle for reentry, and also minimized roll motion 

during reentry and descent.  The center-of-gravity (CG) 
offset mechanism introduced a lateral CG offset just 
prior to reentry, to demonstrate the effect of the 
resulting lift vector on the reentry vehicle trajectory.  
Reentry heat flux reached a peak of 14.4 W/cm2, and 
reentry deceleration reached 20.2G’s, which the TPS 
and inflatable structure handled as planned [1].  
Performance data from the entire flight was 
telemetered to the ground in real-time for later analysis.  
All mission success criteria, both minimum and 
comprehensive, were successfully met. 

Fig. 1.  IRVE-3 Mission Events 

After the reentry experiment was complete, the CG 
offset mechanism performed four “bonus” maneuvers, 
providing additional data on the dynamic response of 
the aeroshell to changes in CG position.  Recovery of 
the vehicle after splashdown was also attempted, but 
unfortunately the reentry vehicle had sunk before the 
recovery boat was able to reach it.   
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4. ATTITUDE CONTROL 

The ACS used for the IRVE-3 mission was the NIACS 
(NASA Sounding Rocket Operations Contract 
(NSROC) Inertial ACS), which has a long heritage of 
successful use on sounding rocket flights.  It performed 
exactly as intended, meeting all ACS mission 
requirements [3].  After the yo-yo de-spin of the launch 
vehicle, the ACS damped lateral motion and the 
remaining roll before the axial release of the nosecone.  
The unfolding and inflation of the packed aeroshell 
imparted additional motion to the reentry vehicle, 
which the ACS damped out as part of the orientation 
for reentry.  The reentry orientation was timed to start 
after the aeroshell had inflated to half pressure (10psi) 
so that the aeroshell could be maneuvered as a rigid 
body; the timing also ensured that the reorientation 
would be complete before the start of the 2� earliest 
reentry.  During reentry the ACS shifted from 3-axis 
mode to only damp roll motion, to keep the lift vector 
pointed up and demonstrate the trajectory effects of the 
CG offset, while allowing the aerodynamic 
performance of the vehicle to control pitch and yaw. 

The ACS thrusters were fed from two 5000psi argon 
tanks; at the end of the reentry experiment, half of the 
available ACS gas still remained.  The ACS roll 
thrusters provided 11.4lbs thrust, but only operated at 
50% duty cycle during the peak aerodynamic 
disturbance, demonstrating more than adequate 
performance margin.  Like the inflation system, the 
ACS vented its pressure tanks before splashdown. 

5. CG OFFSET 

The CG offset mechanism allowed IRVE-3 to launch 
with its CG on the axis of the launch vehicle, as 
required for launch stability, but reenter with the CG 
shifted to one side to produce a lift vector.  Such a lift 
vector is typically used to steer a reentry vehicle 
toward a desired landing site, but IRVE-3 kept the 
vector fixed during reentry to measure the effect of the 
known lift vector on the trajectory of the inflatable.  
The CG offset mechanism used a DC motor to laterally 
shift the aft portion of the centerbody, about half the 
reentry vehicle mass, relative to the inflation system 
and the inflatable aeroshell. A set of eight roller 
bearings kept the halves of the centerbody aligned 
relative to each other, and a pair of string 
potentiometers measured the lateral translation of the 
mechanism during flight.  Previous mass-properties 
tests had measured the vehicle CG as a function of 
mechanism displacement. 

After the reentry experiment concluded, the CG offset 
mechanism shifted the vehicle CG four more times to 
provide data on the dynamic response of the vehicle 

trajectory to changes in the CG location.  The inflatable 
aeroshell was shown to respond no differently than a 
traditional rigid vehicle. 

6. TRAJECTORY RECONSTRUCTION 

The NIACS system included an inertial measurement 
unit (IMU), and the TM included a global positioning 
system (GPS) receiver; an independent set of 
accelerometers was also flown, and the reentry vehicle 
was tracked as well by five ground radar stations.  
These and other flight data were used to reconstruct the 
as-flown trajectory [4] as closely as possible, to 
confirm the flight environment and evaluate the 
resulting heat flux.  Numerous computational fluid 
dynamics models were used to calculate the effective 
heat flux on the vehicle TPS at different points in the 
trajectory.

The CG offset mechanism’s lateral shift before reentry 
provided an unexpected clean set of structural vibration 
data.  With the vehicle free-falling in a vacuum, the 
shift triggered structural vibrations which were 
measured by the IMU, allowing confirmation of the 
reentry vehicle’s first vibration mode. 

While most of the trajectory followed the expected 
smooth deceleration curve, there was a notable 
exception at about 46km altitude, when deceleration 
dropped from 16 to 14.5G’s for approximately 100ms.  
This event showed up as a small dip in the data from 
each of the multiple independent sensors monitoring 
the trajectory.  The flight video shows no 
corresponding jump in the inflatable aeroshell, 
indicating that the change was not a result of a shift of 
the aeroshell structure.  Our best estimate of the cause 
would be a small pocket where atmospheric density has 
decreased by 11%; such pockets are not included in the 
traditional atmospheric models, but have been observed 
on space shuttle missions [5].  This unexpected event 
also triggered structural vibrations, allowing 
confirmation of the first vibration mode with the 
structure loaded in flight. 

7. THERMAL PERFORMANCE 

The IRVE-3 TPS consisted of two layers of high-
temperature Nextel fabric covering Pyrogel insulation 
and a Kapton/Kevlar thin film gas barrier.  Numerous 
thermocouples were embedded in the flexible TPS in 
between the various layers, for measurement of in-
flight temperatures for post-flight performance 
analysis.  The TPS covering the rigid nose of the 
centerbody did not need to fold up for launch, so it was 
possible to add additional sensors without them being 
damaged, or causing damage, during packing of the 



aeroshell for launch.  Five heat flux gauges and five 
pressure ports were added to the nose TPS, in addition 
to the existing thermocouples. 

The nose heat flux gauges provided flight data that 
closely matched the heat flux calculations from the 
trajectory reconstruction effort.  The flight 
thermocouples, however, measured a peak temperature 
of 387C, much lower than expected.  This was 
eventually traced to the large size of the flight 
thermocouple beads, which gave them enough thermal 
mass to slow their response to the surrounding 
environment.  Since the reentry heat pulse was a fairly 
rapid transient, the flight thermocouples missed the 
peak temperatures.  This effect was exacerbated by the 
thermocouples being embedded in layers of insulating 
fabric, whose low thermal mass put less energy into the 
thermocouples than a typical piece of rigid structure.  
Final thermal analysis results closely matched the flight 
temperature data, and the project generated a list of 
sensor recommendations to avoid these difficulties in 
the future. 

Thermocouples on the aluminum skin of the 
centerbody provided temperature data from launch 
through reentry and loss of signal.  The skins of the 
ACS and TM, which formed the outer surface of the 
launch vehicle and were thus exposed to aerodynamic 
heating during ascent, reached 140-150C before 
beginning to radiatively cool once the vehicle reached 
space.  They continued to cool through reentry and 
descent, indicating that the inflated aeroshell protected 
the centerbody from significant reentry heating.  The 
thermocouple in the center of the camera deck, on top 
of the centerbody, stayed at room temperature during 
launch since it was shielded from ascent heating by the 
skin of the launch vehicle’s transition module.  It began 
warming up about 200 seconds into the mission, from 
direct solar heating in combination with the video 
processing electronics mounted to the camera deck; by 
the end of the mission the camera deck had reached 
50C.  The thermocouple attached to the inflation 
system skin, on the inside of where the inflatable 
aeroshell connected to the centerbody, stayed 
essentially at room temperature throughout the entire 
flight. 

8. CONCLUSIONS 

The IRVE-3 reentry vehicle demonstrated that 
inflatable vehicles with flexible TPS can survive 
reentry with flight-relevant heating, and that an offset 
CG can be used to steer an inflatable vehicle as is done 
with rigid reentry bodies.  All vehicle systems worked 
extremely well, and the authors would like to thank all 
of those involved in IRVE-3 for their long hours and 
dedication. 

Development work conducted under Langley’s HIAD 
project has advanced the capabilities of flexible TPS; 
current materials can tolerate more than three times the 
heat flux seen by IRVE-3 [6], and progress continues 
to increase that level.  Several proposals are underway 
for future HIAD demonstration missions involving 
reentry from Earth orbit. 
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