
 

 
American Institute of Aeronautics and Astronautics 

 

 

1

Orion GN&C Mitigation Efforts for Van Allen Radiation 

Ellis T. King1 and Mark Jackson2 
Charles Stark Draper Laboratory, Houston, TX, 77058 

The Orion Crew Module (CM) is NASA’s next generation manned space vehicle, 
scheduled to return humans to lunar orbit in the coming decade.  The Orion avionics and 
GN&C architectures have progressed through a number of project phases and are nearing 
completion of a major milestone.  The first unmanned test mission, dubbed “Exploration 
Flight Test One” (EFT-1) is scheduled to launch from NASA Kennedy Space Center late 
next year and provides the first integrated test of all the vehicle systems, avionics and 
software.   

Nomenclature 
ARINC = Aeronautical Radio, Incorporated 
CCR = Cross Channel Restart 
CM = Crew Module 
EFT-1 = Exploration Flight Test One 
EI = Entry Interface 
EKF = Extended Kalman Filter 
ELV = Expendable Launch Vehicle 
FCM = Flight Control Module 
FDIR = Fault Detection, Isolation and Recovery 
FILTNAV = Filtered Navigator 
GCI = GN&C Command Interface 
GN&C = Guidance Navigation and Control 
GPS = Global Positioning System 
HWIL = Hardware in the Loop 
ICRF = International Celestial Reference Frame 
ITRF = International Terrestrial Reference Frame 
 

LEO = Low Earth Orbit 
PDU = Power and Data Unit 
OIMU = Orion Inertial Measurement Unit 
ODN = Orion Data Network 
RPM = Reset Protected Memory 
SECO = Secondary Engine Cuttoff 
SCR = Self Checking Pair 
SDR = Stored Data Restart 
SEU = Single Event Upset 
SLDB = Separately Loadable Database 
SM = Service Module 
TM = Timeline Manager 
VPU = Video Processing Unit 
UPP = User Parameter Processor 
VL = Virtual Link 
 

  
 

I. Introduction 
HE Orion Crew Module (CM) is NASA’s next generation manned space vehicle, scheduled to return humans to 
lunar orbit in the coming decade.  The Orion avionics and Guidance Navigation and Control (GN&C) 

architectures have progressed through a number of project phases and are nearing completion of a major milestone.  
The first unmanned test mission, dubbed “Exploration Flight Test One” (EFT-1) is scheduled to launch from NASA 
Kennedy Space Center late next year and provides the first integrated test of all the vehicle systems, avionics and 
software. 

The EFT-1 mission will be an unmanned test flight that includes a high speed re-entry from an elliptical orbit, 
which will be launched on an expendable launch vehicle (ELV).   Figure 1 shows the ground track and altitude 
profile of the 4 hour and 10 minute mission.  The ELV will place CM and the ELV upper stage into a low Earth 
orbit (LEO) for one revolution.  After the first LEO, the ELV upper stage will re-ignite and place the combined 
upper stage/CM into an elliptical orbit whose perigee results in a high energy entry to test CM response in a 
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and accept initialization data from its counterpart FCM.  The process of starting one FCM from the other is referred 
to as a “Cross Channel Restart” (CCR) and will be detailed in subsequent sections. 

Since the EFT-1 mission’s second pass through the Van Allen belts has significant duration,  Orion is also 
required to protect for dual FCM failures occurring simultaneously, or nearly simultaneously.  Automated protection 
for dual FCM failures is provided by storing attitude and translation navigation data and using the stored data to re-
initialize the GN&C applications.  The translation state data are time-tagged and kept static in non-volatile memory 
during the restart process.  However, because Orion has no external attitude sensor for EFT-1, attitude data must be 
propagated with IMU gyro inputs during the time that the FCMs are inoperative to maintain attitude knowledge.  For 
this reason, attitude propagation software is embedded on a processor in the VPU.  The attitude state is continuously 
updated by the FCMs until a dual FCM failure event.  At that point, the VPU continues to propagate attitude until 
the FCM’s are restarted from stored data.  This process of re-starting the both FCM’s from stored data is called a 
“Stored Data Restart” (SDR) and will also be described in subsequent sections.  
 
 

 
Figure 5.  Orion Dual Flight Control Module (FCM) Partition Architecture 

 

III. GN&C Software Architecture  
The Orion GN&C software is implemented in the FCMs as an Aeronautical Radio, Incorporated (ARINC) 653 

Time-space Partition [reference for ARINC OS].  The GN&C partition consists of and executive framework that 
houses algorithms which are autocoded from MATLAB/Simulink.  

The navigation portion of the software (Figure 4) includes two channels, each of which is associated with one of 
the OIMUs.  Each channel has an extended Kalman Filter (EKF) that executes at 1 Hz, and provides GPS 
measurement updates to the filtered navigation (FILTNAV) module, which propagates the state based on OIMU 
data between measurements.  Each channel also houses a pure inertial propagator (Inertial Nav) that provides an 
inertial-only backup solution to protect for corruption of the state by a faulty GPS.  Note that each channel has an 
independent IMU, but both channels receive measurements from the single GPS on the EFT-1 vehicle. 
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enacted within GCI by sequencing through data configurable activities loaded onto the vehicle via Separately 
Loadable Databases (SLDBs).  Each activity consists of the appropriate mode commands and configuration data 
needed to accomplish the activity objective.  GCI also contains software to perform automated transitions between 
activities based on data configurable transition criteria.  The vehicle “Timeline Manager (TM)” is responsible for 
coordinating event transitions across all vehicle subsystems including GN&C, and the interface for communicating 
changes across all subsystems is through “mission segments”.  Within the GN&C subsystem, GCI responds to a new 
mission segment by kicking off a new sequence of activities.  Transitions between mission segments within the TM 
software are often based on state data and flags provided by GN&C.  While all of the GN&C state data cannot be 
synchronized between the FCMs, transitions between the high level segments are synchronized to ensure that 
segment boundaries could never occur at slightly different times within each FCM.  This critical event 
synchronization is accomplished by including the transition status of the counterpart FCM in the segment transition 
criteria.  The paper describes the critical state data exchanged between TM and GCI counterpart instances in order to 
ensure that vehicle configuration parameters, sequencing information as well as command data are preserved during 
a restart.   

The navigation software is divided in to two “channels” associated with each of the redundant Orion IMUs.  
Each channel includes both filtered and inertial solutions.  The filtered solutions incorporate GPS measurements 
within a 1 Hz Extended Kalman Filter (EKF) that interacts with a 40 Hz inertial propagator.  In addition a separate, 
inertial solution is maintained on the vehicle for each navigation channel to provide a backup for the filtered 
navigation solution taking measurements from the Orion GPS receiver which has never been flown in an exo-
atmospheric environment.  The paper discusses the mechanisms for initializing both the filtered and inertial states 
during a restart as well as the navigation trades used to identify and prioritize the subset of navigation filter states 
that passed between FCMs.  Additionally other non-navigation algorithms also require cross channel initialization, 
including fault detection, isolation and recovery (FDIR) and entry guidance algorithms.  Finally, after describing the 
software architecture and necessary navigation features required to support single and dual FCM restarts, the effect 
on the navigation system performance is quantified. 

IV. Restart Solutions GN&C Flight Software 
 
AUTHOR’S NOTE (TO BE REMOVED): In the previous sections we establish the Avionics architecture and 

FCM partition architecture, as well as the GN&C FSW Architecture and the concept of Inflight CCR and SDR 
restarts.  We also want to establish enough background in the Navigation architecture to discuss multiple 
Navigation channels, filtered vs. Inertial solutions, etc.  Here we elaborate into the specific implementation for the 
GN&C partition and show performance plots for the navigation filters.   

 
The EFT-1 Orion mission is largely meant to be a test flight that will prove out many avionics and software 

designs such that much of the vehicle design can be considered validated for subsequent lunar missions and beyond.  
However, certain aspects of the EFT-1 design will not be carried forward into later missions due to the nature of the 
design.  It is important to recognize the restart architecture for EFT-1 is one of the areas that will very likely evolve 
into a very different scheme for later missions.  The trajectories and time spent lingering in high radiation 
environments will be drastically different for subsequent missions as most all trajectories departing from LEO punch 
through the Van Allen radiation belts comparatively quickly.  In addition, the planned addition of a third redundant 
FCM will add to the overall robustness of the avionics.  The Navigation system will be upgraded to include star 
trackers, sun sensors and optical navigation technologies that will aid in the acquisition of and maintenance of 
critical states during flight.  As such the design of the inflight CCR and SDR approaches will likely only be 
necessary for EFT-1, although certain components and methodologies may apply in the future.  However, it is 
nonetheless critical to the program that the vehicle is protected for radiation induced upset events as it was deemed 
to be a significant risk to the success of the mission.    

Figure 7 depicts the region of the EFT-1 trajectory over which the vehicle software is required to support 
automated inflight restarts.  Most notably,  this region encompasses the entire period over which the heaviest Van 
Allen radiation will be experienced, including the period in which the CM separates from the Service Module (SM) 
and translation maneuver sequences are initiated.  This event is referred to as CM/SM separation (the SM is inert for 
this mission and remains attached to the launch vehicle).  After Orion descends to an altitude of 500 nmi (five 
minutes prior to entry interface), inflight restarts are not supported and an FCM failure after that point would result 
in the vehicle returning on the secondary redundant FCM.   Ground operations also has a contingency command 
available to restart an FCM if needed outside these regions. 



 

 

 
 
The fol

partition, f
Monte Car

 

A. FCM P
 

The ov
Each FCM
with the re
in this des
given exec
all inter-pa
partition is
data during
time for th
each partit
the default

An imp
partition re
RPM data 
provide re
remain pow

                 
* Consider
using the s
testing requ

Fi

llowing section
followed by res
rlo results.   

Partition Cros

verall design ph
M partition, as d
equired data ne
ign, as there a

cution cycle.  F
artition cross c
ssues their cros
g a restart even
he core kernel 
tion first check
t case that initia
portant aspect 
eset protected m

area is used t
start data beca
wered over the

                       
rable effort wa
same methods t
uirements. 

Americ

igure 7.  Explo

ns detail the m
sults that demo

ss Channel Da

hilosophy for 
detailed in Fig
eeded to reinitia
are limitations 
Fortunately for
channel data w
ss channel data
nt.  Once an FC
software and d

ks to determine
alizes the softw
of the FCM 

memory (RPM
to support the

ause data writt
e commanded r

                   
s also expende
to restart one o

can Institute of

oration Flight T

most important a
onstrate the exp

ata 

restart of the G
ure 5, establish
alize the partiti
in the quantity
r the EFT-1 de

within these con
a messages ov

CM restart is in
data loads to b

e if counterpart
ware sitting on 
design is that 

M), which is dep
 Stored Data R
en to RPM pe
reset.  This is a

ed to ensure th
or more FCMs 

 
f Aeronautics a

 

 

8

Test-1 Inflight 

aspects of the i
pected perform

GN&C partitio
hes one or mor
ions at a restar
y of data that c
esign thus far t
nstraints.  Just

ver the ODN su
nitiated, it is ex
be instantiated 
t cross channel
the ground at t
the partition c
picted in Figur
Reset (SDR) c

ersists across re
a critical aspect

hat a simulation
at various poin

and Astronauti

Restart Protect

inflight restart 
mance for the E

on follows fro
re virtual link 

rt epoch.  Band
could be excha
there has been
t prior to the b
uch that their c
xpected to be co

and loaded in
l data message
the launch site
cross channel 
re 5 as a share
case when a c
eset events, pr
t of the SDR c

n environment 
nts along the m

ics 

tion Region 

t design as it pe
EFT-1 mission t

om the partition
(VL) cross ch

dwidth conside
anged over the
 enough bandw
beginning of e
counterpart cou
ompleted in 9-

nto memory.  T
es are available
.*   
data message

ed memory area
counterpart FC
rovided that th
case, as RPM c

could populat
mission profile

ertains to the G
through analys

n restart guide
hannel data me
erations were a 
e ODN network
width available
ach 1Hz cycle
uld make use 
-15 seconds all
Then upon rest
e prior to fallin

s are stored in
a on each FCM

CM is unavaila
he FCM contin
can be used in 

te cross channe
e in order to fac

GN&C 
sis and 

elines1.  
ssages 

a factor 
rk on a 
e to fit 
e, each 
of this 
lowing 
tarting 
ng into 

n inter 
M. The 
able to 
nues to 
lieu of 

el data 
cilitate 



 

 
American Institute of Aeronautics and Astronautics 

 

 

9

any other cross channel data message to restart an FCM.  More details on this restart method will be provided on 
SDR in subsection D. 

For the GN&C partition especially, some specialized considerations were also required for restart to function 
properly.  GN&C algorithms require additional inputs that are not captured in the GN&C cross channel data 
messages.  These data include 1) the Timeline Management phase, segment and mission sequencing information as 
well as 2) the Command and Data Handling Orion Time broadcast.  These items allow the GN&C partition to know 
what in part of the mission sequence a restart is taking place as well as the current Orion Time required to process 
IMU messages off of the ODN.  Both of these items are obtained by allowing the GN&C partition to subscribe to 
the TVM and  partition cross channel data (AKA “cross strapped” partitions), at some expense to the complexity of 
the restart process.  Some consideration was given to the option of including these data items within GN&C partition 
cross channel data, however this was ruled out for the EFT-1 design. 

 

B. GN&C Cross Channel Data 
 
The GN&C partition requires several areas of data exchange to support the inflight restart capabilities discussed 

in the subsequent sections.  This cross channel data represents all of the critical GN&C states that are required to 
initialize GN&C partition while in orbit in the EFT-1 mission in the regions depicted in Figure 7.  The state areas 
and examples of each are discussed in turn are broadly characterized into four areas as follows: 

1) Sequencing and command data 
2) Fault Detection, Isolation and Recovery (FDIR) 
3) Guidance and Control 
4) Navigation 
Sequencing cross channel data is comprised of all states that tell the GN&C partition where the vehicle is 

within the mission sequence such as the current GN&C Activity2  and the Activity elapsed time.  This critical state 
data informs the GN&C partition what parameter configurations to load for each operating CSU at that point in the 
mission.  All GN&C command data is exchanged as part of the cross channel data message to inform the restarting 
partition about any changes that may have been issued by the ground to override default states that exist in memory.  
For example, the ground could potentially issue a contingency command to override the default landing site target 
(latitude, longitude) and without passing this knowledge between FCMs this command would need to be reissued to 
the FCM after each restart event.  The EFT-1 mission has only a handful of commands that may be issued by the 
ground in a contingency scenario, as such this list of cross channel parameters is relatively small.  For subsequent 
missions with many more potential commands and crew interactions this approach will likely not be feasible, 
however there will also likely be a fail-safe and writable file system onboard which will mitigate much of the need 
for this capability. 

FDIR cross channel data includes all parameters that are necessary to those algorithms such as hardware failure 
states, persistence counters and other key parameters necessary to determine the health of GN&C related sensors 
during the mission.  This set of state data does not comprise a lot of bandwidth in bytes, but without this key 
knowledge the restarting application would not have critical knowledge about which sensors are failed or suspect.  
Exchanging this type of state information mitigates for the highly undesirable case that a navigation channel is 
selected differently on a restarting FCM than its counterpart.  

Guidance and Control algorithms actually do not require any cross channel data exchange for the EFT-1 
mission.  Control and pointing algorithms are mostly dependent on the Navigation states and inputs directly from the 
IMU and as a result do not require much in terms of restart states.  Initially there was some concern that a control 
algorithm could require knowledge of the thruster firing states in order to meet minimum jet on-time requirements, 
however this concern was abated through analysis3.  For EFT-1 all of the Guidance algorithms are not active during 
the period of restart susceptibility shown in Figure 7, although things such as the guided landing target are included 
for reasons described above.  

The Navigation state data comprises the bulk of the GN&C cross channel data required for EFT-1, as such this 
data will be described more comprehensively.  Applicable reference frames for navigation state information include 
the International Celestial Reference Frame (ICRF) – an Earth centered inertial frame, and the International 
Terrestrial Reference Frame (ITRF), an Earth centered, Earth fixed frame.  As described earlier in Section II and 
depicted in Figure 6, the Navigation system maintains four independent solutions for position, velocity and attitude 
quaternions all of which must be transferred to the restarting FCM to maintain the integrity of the system.  In 
addition, the two instantiations of the EKF maintain 2 x 26 = 52 filter states corresponding to the GPS clock bias 
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(bc) and drift (dc) states, accelerometer and gyro biases, scale factors, misalignments, etc. for each navigation 
channel.  The filter states, X, may be expressed as4   

 
⋯ 	  

 
where the components of X represent the inertial position (rICRF), inertial velocity (vICRF), attitude Euler axis rotation 
vector (), clock bias (bc) and clock drift (dc).  The remaining state parameters (p1-24) represent Markov states that 
corresponding to the estimated IMU error states which are optimized in the filter implementation to take advantage 
of matrix sparseness using an efficient UDU formulation5.  

Finally and very importantly, the EKF also requires knowledge of the uncertainty for each of the filter states, 
commonly expressed in the form of a state covariance matrix, (P35x35).  The elements of the covariance may be 
expressed as a function of Gaussian standard deviation values ( ) and correlation coefficients ( ) as 
  

,
∀	 																											
∀	 , 1

 

 
 Besides exceeding the cross channel bandwidth limitations, it is inefficient and unnecessary to transfer the entire 
P covariance matrix to the restarting FCM because P is symmetric.  To limit the amount of data required to restart 
the navigation filters, the covariance matrix data is down selected to include the entire diagonal of 35 state variance 
values ( ), as well as the 36 correlation coefficients ( ∗ ) corresponding to the upper 9x9 position, velocity and 
attitude state correlations, for each navigation channel.  All of the correlations between the clock bias, clock drift 
and IMU error states ( ) are dropped for the purposes of inflight restarts as this information is assumed to be 
negligible for the purposes of restarting the filters for the EFT-1 mission.  Of primary concern in this exchange are 
the cross correlation terms relating the attitude to position and velocity states, as there is no external source for 
attitude information for EFT-1 and those state correlations allow the coupled attitude-translation EKF to make 
corrections to the attitude state in a GPS measurement rich environment.6  It is worth noting that although the clock 
bias (bc) and drift (bd) states are available in cross channel data, these initial values are derived from the GPSR 
estimates as the GPSR hardware is not affected by a restarting FCM.  Bias and drift variances ( ,	 ) are obtained 
from either the GPSR hardware or parameter (SLDB) loads as opposed to cross channel data. 
  Considerable effort was expended in determining how to represent and make use of the cross channel 
covariance data in the restarting EKF.  In addition, the Navigation team debated the merits and pitfalls of inflating 
the values of P in the restarting filter to account for unmodeled disturbance forces to prevent a situation where the 
filter became too ‘smug’, thereby rejecting otherwise valid measurements and allowing position and velocity.  The 
counterpoint concern that was raised in inflating the values was related to difficulties in the case that multiple FCM 
restarts were encountered on the mission.  In fact, it is somewhat likely that multiple FCM resets will be encountered 
on EFT-1.  Ultimately it was decided that the best compromise was to leave the EKF covariance values unscaled 
during a restart event, but instead represent the cross channel covariance terms in the UVW coordinate frame where 
they would be less likely to change substantially over any reasonable restart interval.  These concerns are mostly 
related to the performance during a stored data reset where there will be some period of time in which neither FCM 
is computing a navigation solution.  These are assumptions which must be validated through analysis and test over 
the next year leading up to the EFT-1 mission.   
 The navigation solutions for any recursive filter are naturally sensitive to initial conditions during an inflight 
restart.  Although all the critical navigation states are passed between FCMs, there are enough parameters missing 
and differences with respect to measurement processing to guarantee that a restarting FCM and its counterpart will 
produce slightly different solutions after a cross channel or stored data restart occurs.  If no other failures are 
present, neither FCM will be any more correct than the other, however this feature of the design does lead to more 
complexity in the analysis of the system stability and failure modes, particularly during the entry phase of flight.   In 
scenarios where FCMs are not completely in sync numerically, the overall closed loop system response is chaotic in 
nature, much like the well-known ‘butterfly effect’. Slightly different navigation solutions between FCMs can easily 
lead to slightly different control thruster firing patterns, which in turn raises questions about how to deal with a 
flight control module that is attempting to control the vehicle, but in reality whose outputs are never reaching the 
effectors.  This is particularly true for onboard fault detection algorithms and pyro sequencing algorithms that may 
rely on the past thruster firing history to perform their functions.  These topics will not be addressed in much greater 
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detail for this paper in lieu of more details and results on the nuances of and approach for ensuring navigation 
robustness for EFT-1.   
 One of the key takeaways from the development of the EFT-1 cross channel restart and inflight restart capability 
is that GN&C algorithms must be designed at the onset with inflight restarts in mind.  Whenever persistent states are 
used in an algorithm developers must be trained to ask themselves whether those individual states are critical to the 
overall success of the mission and if so, how those states should be initialized in the event of an inflight restart.  It 
can be very costly and invasive to develop initialization and synching routines into the system as an afterthought to 
the GN&C algorithm design process.  Secondly, it is very helpful for developers to have design and implementation 
standards (AKA “design patterns”) in place to provide examples and to assist in the design of restart functionality, 
such that all GN&C algorithms cohere into an overall picture when restarts are taking place.  Otherwise many 
similar approaches for the same functionality are invented and communication of the design may become more 
complicated and error prone.   

 

C. Restart Capabilities and Testing 
 
Inflight restart performance for the GN&C subsystem is assessed with the aid of closed loop Monte Carlo 

simulations of the overall system performance with variations in all of the key system driving parameters such as 
GPS constellation and firmware errors, IMU error sources, RCS thruster performance and latencies, mass properties 
and atmospheric effects.  With current limitations of the simulation environment available only a single FCM may 
be simulated at a given time, however this limitation can be overcome to effectively analyze and bound restart 
performance through the following restart procedure: 

1) Identify key simulation restart epochs of interest where CCR and SDR are to be analyzed.  These points 
should initially be selected to bound some of the possible worst case scenarios in which restarts may occur. 

2) Run end-to-end Monte Carlo simulations of the entire mission profile, recording key restart data and error 
statistics at the key restart epochs. 

3) Restart the simulation and FSW using the CCR/SDR restart functionality at the epochs of interest, 
accounting for the appropriate navigation and truth state dispersions at that particular restart point.   

While not as elegant as fully simulating restarts with dual FCMs running, the above procedure does permit the 
overall restart performance and functionality to be assessed.  Future development of the simulation architecture may 
enable restarts to be fully dispersed as would be performed for any other Monte Carlo input parameter.  The goal for 
this type of analysis is to stress the system beyond what might be reasonably expected in even the worst case 
scenarios to see what type of system robustness can be achieved.  However it is acknowledged that this type of 
analysis would not capture the effects seen from multiple (repeated) resets in different configurations.  This type of 
analysis will be the subject of later technical studies.  For the EFT-1 trajectory several restart epochs were analyzed 
for CCR and SDR performance as depicted in red text in Figure 8:   

 The SECO2 Restart Epoch is setup to initialize the FSW just following the second large burn and shutdown 
of the main engines in LEO, roughly 121 minutes after launch.  At this point in the trajectory many GPS 
measurements are available allowing for rapid convergence of the Navigation solution, however inertial 
velocities and true anomaly rates are also at a maximum for the mission.  Restart conditions after the SECO2 
epoch were simulated to demonstrate resilience during the first spike in radiation susceptibility as well because 
it will be a driver for some of the worst case stored data restart cases.  The duration for these runs are 10 
minutes (600 seconds) to ensure adequate convergence of the GPS solution after a restart event.    
 The CM/SM Separation Restart Epoch initializes the FSW just after the CM/SM separation event roughly 
206 minutes after launch, which is a bounding case from a number of perspectives.  First, the number of GPS 
measurements at this altitude  tends to be very sparse at this point in the trajectory and a number of constellation 
geometries produce less than the minimum number of 5 SVs required to produce a valid and RAIM evaluated 
solution.  Secondly, while the inertial velocities and true anomaly rates are relatively low at this point in the 
trajectory, the CM/SM separation maneuver does impart delta-V and body rates onto the CM which can add to 
the restart effects.  The cases starting at CM/SM separation are run for roughly 42 minutes (2500 seconds) well 
past the 500 nautical mile threshold to ensure that GPS has reconverged prior to entry interface.  
 The Entry Interface Restart Epoch initializes the FSW just prior to the designated entry interface altitude 
of ~68 nautical mile (400,000 ft) threshold to examine the effect of performing inflight restarts at the latest 
possible seconds prior to losing GPS in measurement blackout.   Notice that this restart epoch is roughly 5 
minutes after the last Van Allen radiation effects are expected, and entry velocities are very high at this point.  
Indeed, this would be one of the worst possible moments to experience single or dual FCM resets.  So if some 
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F. Forward Work  
 
In the previous sections the expected Navigation performance was quantified for a variety of conditions and 

restart types during the EFT-1 trajectory.  While this analysis is far from complete and comprehensive it provides a 
starting point for future work to demonstrate Orion’s robustness to radiation induced upset events along the EFT-1 
trajectory.  The first item that will further increase confidence in these results will include simulating multiple 
consecutive inflight restarts of various types and durations along the EFT-1 trajectory.  In addition the cases shown 
need to be proven out with greater numbers of Monte Carlo runs to become more confident in their statistical 
significance.  500 run Monte Carlos are a good starting point but larger numbers of runs are likely needed to prove 
out the results.  This type of analysis will show more robustness for the effects of cascaded filter initializations in a 
variety of conditions.  In addition, these tests are already being performed in full hardware in the loop simulations 
with multiple FCMs, engineering equivalent avionics hardware.  Some level of inflight restart testing will be 
performed with actual flight hardware prior to launch. 

Secondly, if there are any cases in which SDR propagation errors tend to cause filter divergence it is possible to 
increase the fidelity of the propagation scheme used for EFT-1.  This propagation scheme was meant to be simple 
and lightweight so as not to needlessly overburden an initializing FCM, however if additional testing shows these 
assumptions to be in error additional steps to increase the fidelity of the propagator can be taken to mitigate this.  It 
should be noted that for the cases shown in this paper 30 seconds of propagation is larger than the maximum bounds 
expected 

Additional EKF filter tuning may be required to better characterize the measurement and process noise levels in 
a time-correlated and sparse measurement environment such as that which will be experienced on EFT1.  The EKF 
performance is predicated on the fact that measurement residuals will be well characterized by Gaussian random 
variables.  As shown in earlier performance plots, this assumption is not always valid and additional steps may be 
required to mitigate these effects.  A number of options including dynamic SV measurement masking as a function 
of elevation angle are being investigated.          

Finally, operational flight rules and procedures must be written for the EFT-1 mission that take into account 
contingency scenarios for inflight restart events.  The ground will be monitoring for all such restart events as well as 
the quality of the onboard navigation solution.  Ground rules will be written that allow for contingency operations to 
command updates to the onboard navigation state in the event the inflight restarts ultimately fail.  These scenarios 
although not desirable will be the last resort to save the vehicle in catastrophic loss of vehicle scenarios.  

 

V. Conclusion 
 

The Orion inflight restart architecture has been designed to accommodate multiple restarts of the primary flight 
computers to increase the probability of EFT-1 mission success.  The GN&C design for inflight restarts has been 
shown to be robust to a number of worst case bounding scenarios that can be envisioned for the EFT-1 mission.  The 
concept of Cross Channel and Stored Data restarts are proved out through analysis and Monte Carlo dispersed 
simulation runs.  Although these types of robustness runs are preliminary in nature, they provide initial confidence 
that inflight restarts will be successful if one or more are encountered on EFT-1. 
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