
Ninth USA/Europe Air Traffic Management Research and Development Seminar (ATM2011)

Comparing Methods for Dynamic Airspace
Configuration

Shannon Zelinski
System Modeling and Optimization Branch, NASA Ames Research Center, Moffett Field, California, USA

Shannon.J.Zelinski@nasa.gov

Chok Fung Lai
University of California at Santa Cruz, NASA Ames Research Center, Moffett Field, California, USA

Chok.F.Lai@nasa.gov

Abstract— This paper compares airspace design solutions for
dynamically reconfiguring airspace in response to nominal daily
traffic volume fluctuation. Airspace designs from seven algorith-
mic methods and a representation of current day operations in
Kansas City Center were simulated with two times today’s de-
mand traffic. A three-configuration scenario was used to represent
current day operations. Algorithms used projected unimpeded
flight tracks to design initial 24-hour plans to switch between three
configurations at predetermined reconfiguration times. At each
reconfiguration time, algorithms used updated projected flight
tracks to update the subsequent planned configurations. Com-
pared to the baseline, most airspace design methods reduced delay
and increased reconfiguration complexity, with similar traffic pat-
tern complexity results. Design updates enabled several methods
to as much as half the delay from their original designs. Freeform
design methods reduced delay and increased reconfiguration com-
plexity the most.

Keywords-airspace design; airspace management; dynamic
airspace configuration

NOMENCLATURE

ci = configuration index
d = average total flight delay
n+ = aircraft gained
n− = aircraft lost
N = combined aircraft transfer complexity
si = simulation iteration index
α = % flight tracks within 2 miles of a boundary
β = avg dist between flow intersections and boundaries
γ = number of flights with less than 2 min dwell time
ν+ = % volume gained
ν− = % volume lost
V = combined volume transfer complexity

I. INTRODUCTION

Airspace management concepts attempt to mitigate required
traffic flow management and allow more user preference and
traffic flexibility. One form of airspace management is Dy-

namic Airspace Configuration, that is reconfiguring airspace
boundaries to correspond with the prevailing demand traffic
and allow more throughput. Today’s traffic flexibility is lim-
ited in part due to largely static airspace design. New algo-
rithmic methods of airspace design are being developed to al-
low airspace to change more dynamically and conform to more
flexible traffic. A prior comparison of algorithm generated
airspace configurations identified strengths and weaknesses of
three airspace partitioning algorithms [1, 2]. The different al-
gorithms each had different strengths including reduced flight
delay, reduced airspace complexity, and more balanced work-
load among airspace sectors.

However, there were some technical limitations in the pre-
vious comparison. Currently, airspace is reconfigured to ac-
commodate traffic demand, and in the future, it will reconfigure
more dynamically. However, as a first step, this previous anal-
ysis only compared static configurations. Due to airspace de-
sign algorithm limitations, the number of sectors was not fixed
between compared configurations, making it difficult to assess
their relative benefits. These algorithms have since evolved to
address identified weaknesses from the comparison as well as
address other considerations such as complexity due to recon-
figuration and traffic pattern interactions with airspace bound-
aries. In addition, several other algorithms have since matured
to a level sufficient to participate in a comparison study.

This paper presents a next round comparison of newly im-
proved airspace design solutions for dynamically reconfiguring
airspace in response to nominal daily traffic volume fluctua-
tion. Improved versions of the three algorithmic airspace de-
sign methods from the previous study and five additional meth-
ods were compared. Each method designed three-configuration
airspace solutions with projected simulated flight tracks in
Kansas City Center at two times todays traffic levels. In ad-
dition, each method used updated traffic projections at each re-
configuration time to update subsequent planned reconfigura-
tions. Data analysis compared not only airspace design benefits
between different algorithmic methods, but between design up-

dates from a single method to assess the benefit of dynamically
updating planned configurations. Additional compared met-
rics included traffic pattern complexity with respect to airspace
boundaries and reconfiguration complexity.

This paper is organized as follows. Section II. provides
background on airspace design research and specific design
methods compared in this paper. Section III. describes the
methods, including experiment setup, scenarios, and metrics.
Detailed and summary results are described in section IV. Fi-
nally, conclusions are in section V.

II. BACKGROUND

Currently, airspace in both the United States and Europe
is partitioned into functional blocks that may be combined into
fewer large sectors when traffic volume is low or split into more
small sectors when traffic volume is high. This is actually a
simple and flexible method of adapting to traffic volume fluctu-
ation. However, configuration schedules are generated days in
advance based on estimated traffic demand and tactical changes
to the configuration schedules are based on managers’ personal
experience and judgement. Staffing constraints limit the num-
ber of sectors that may be open within a particular group of sec-
tors for which each controller is trained. In the United States,
these groups of sectors are called areas of specialization (AOS).
This also limits feasible combinations of functional airspace
blocks within a single area. In addition, overloads may occur in
sectors that cannot be further split.

One body of research is developing algorithms to build good
realistic functional block-based configuration schedules rather
than relying on human judgement [3, 4, 5, 6]. Other research
focuses on redesigning the airspace boundaries themselves [7,
8, 9, 10, 11, 12, 13, 14]. Many of these methods have performed
self assessments and a few have been compared to each other
[1, 2], but the assessments focused on the designs themselves
and not the cost of reconfiguration.

A human-in-the-loop study conducted at NASA Ames
tested the feasibility of reconfiguring by moving an airspace
boundary on-demand rather than combining and splitting func-
tional airspace blocks [15]. The study found that the reconfigu-
ration operation itself was feasible. However, certain character-
istics of boundary designs with respect to traffic pattern geome-
try and of reconfiguration from one design to the next tended to
increase controller workload and decrease acceptability. Many
airspace design algorithms have since incorporated these traffic
pattern and reconfiguration complexity considerations into their
methods.

This paper compares delay reduction benefits, traffic pattern
complexity, and reconfiguration complexity of seven airspace
design algorithms that use different approaches. Three of these
airspace design methods attempt to address the reconfigura-
tion complexity considerations by using elements of the cur-
rently used functional airspace blocks in their design. DAU
Slices modifies a given configuration by defining five nmi slices
of airspace along the shared edge of a sector pair as Dy-
namic Airspace Units (DAUs) [16] to effectively move airspace

boundaries in five nautical mile increments between sector
pairs. CombineSplit uses a set of given functional airspace
blocks and desired number of sectors as inputs to group the
sectors into configurations [17]. FlightLevel [18] starts with the
AOS boundaries, and partitions the AOS’s vertically by flight
level (1,000 ft increments) to achieve the desired number of
sectors for a configuration. By contrast, CombineSplit has the
option of recombining the base sector units irrespective of AOS
boundaries. Inter-AOS reconfiguration is assumed possible in
the future with the development of generic airspace tools and
procedures that make it easier for individual controllers to work
a larger variety of airspace and remain current [19].

Four other airspace design methods compared were more
freeform and did not use any elements of the current functional
airspace block design. A new Graph-based method [14] parti-
tions a graph representation of the filed flight plan structure and
assigns airspace to each graph partition trying to keep intersec-
tions and major flow paths away from sector boundaries. The
final three methods compared are improved versions of those
compared in previous work [1, 2]. These are SectorFlow, Cell-
GeoSect, and Voronoi described below.

SectorFlow [10] clusters flight track points attempting to
minimize airspace complexity parameters. Airspace is then
assigned to each flight track cluster. An improved version of
SectorFlow [20] compared in this paper addresses flow pattern
complexity by including several parameters that helped the al-
gorithm keep flow intersections away from sector boundaries
and using a gradient search to refine the boundaries after the
initial partition.

CellGeoSect is a hybrid of an airspace cell clustering
method compared in previous work [11] and an airspace split-
ting method called GeoSect [21] used to address traffic pattern
complexity. The cell clustering method represents the airspace
as a tessellation of hexagonal cells and clusters these cells to
maximize flow connectivity within and balance flight count be-
tween clusters. GeoSect modifies the resulting design by se-
quentially removing and redefining the boundary between each
pair of sectors to avoid geometric constraints such as the length
and boundary crossing angles of major flows.

Voronoi [12] represents the airspace using a Voronoi Dia-
gram. A Genetic Algorithm then optimizes the Voronoi Dia-
gram representation to minimize sector overloading. An im-
proved version of this method, used in this comparison, uses a
multi-stage process to incorporate different kinds of constraints
into the overall optimization [22]. Some constraints added to
address traffic pattern complexity include trying to keep inter-
sections and major flow paths away from sector boundaries and
minimizing the number of low dwell time flights.

III. METHOD

The following subsections describe the experiment setup
and metrics used to compare the seven airspace design methods
described above.

A. Experiment Setup

1) Airspace: The experiment focused on airspace above
24,000 ft within Kansas City Center (ZKC) in the United States.
ZKC presented a good focus center because its airspace design
is moderately complex. The entire center shares a common split
between low and high altitude airspace of 24,000 ft. In cur-
rent operations, the airspace above 24,000 ft is routinely recon-
figured between combinations of 27 functional airspace blocks
(base sectors) within six areas of specialization (AOS). Figure
1 shows the current ZKC sector design, where color indicates
AOS and the altitude split between high and super-high sectors
is shown with the super-high altitude sector labels. The altitude

ZKC24
ZKC26

ZKC32
ZKC84

ZKC12

ZKC14

ZKC30

ZKC02

ZKC27

ZKC28 ZKC29

ZKC20

ZKC22

ZKC23 ZKC06

ZKC41
>37,000

ZKC47
>37,000

ZKC92
>33,000 ZKC94

>35,000 ZKC98
>35,000

ZKC90
>35,000ZKC31

>37,000

ZKC33
>37,000

ZKC03
>36,000

ZKC97
>36,000

ZKC07
>38,000

ZKC21
>38,000

Rivers
Ozark
Gateway

Trails
Prairie
Flint

High altitude
>24,000 ft

Super-high altitude

AOS

AOS

Figure 1: Current ZKC sector design.

split between high and super-high altitude sectors ranges be-
tween 35,000 and 38,000 ft. Higher altitude over-flights (above
33,000 ft), passing through the center, dominate ZKC’s traffic
patterns.

2) Reconfiguration Scenarios: To reduce experiment com-
plexity, all algorithm generated reconfiguration scenarios de-
rived from a three-configuration simplification of historic ZKC
airspace operations on 2/8/2007, a nominal day with little
weather impact. Lai and Zelinski [23] describes the procedure
for processing operational sector combination data and identi-
fied three configurations as a reasonable baseline representation
for 2/8/2007. All reconfiguration scenarios had the same recon-
figuration times and numbers of sectors in each configuration
as the Baseline. Given the number of sectors and projected
track data for each configuration time period, each algorithm
was free to partition the ZKC airspace above 24,000 ft both
laterally and vertically. This was a design improvement over
the previous study where algorithms partitioned only laterally
within two predefined altitude layers.

Figure 2 diagrams the reconfiguration scenario design. Each
box represents a configuration designed for the correspond-
ing time periods. Orange boxes identify active configurations.
Black boxes identify planned configurations that were updated

1:45
AM

8:15
AM

9:00
PM

1:45
AM

Config 2 Config 3

Pr
oj

ec
te

d
fli

gh
t t

ra
ck

s

Updated
projected

flight tracks Config 3'

Config 3''

Config 1

Config 2'

Updated
projected

flight tracks

6 sectors 19 sectors24 sectors

Figure 2: Reconfiguration scenario design.

before they could be implemented. The reconfiguration times,
shown in Central Standard Time, are identical to the Baseline.
First, airspace design algorithms use projected flight tracks for
the entire day to design an initial three-configuration scenario,
labeled as Config 1, 2, and 3, with 6, 24, and 19 sectors above
24,000 ft, respectively. Flight traffic is simulated through Con-
fig 1 from 1:45 AM to 8:15 AM, at which point the airspace de-
sign algorithm may use updated projected flight tracks to mod-
ify the remaining two configurations. These modified config-
urations are labeled Config 2′ and 3′. The flight traffic simu-
lation continues through Config 2′ from 8:15AM to 9:00PM,
at which point the airspace design algorithm may used updated
projected flight tracks to modify the last configuration, Config
3′′. The simulation completes through Config 3′′ from 9:00PM
to 1:45AM.

Sector capacities for each configuration were assigned using
the method presented in Welch et al [24]. This capacity estima-
tion method validated well with respect to historical data using a
simple quadratic model based on sector volume and the average
flight transit time through the sector during the peak traffic pe-
riod. The Welch capacity estimation method provided an easily
implementable improvement over the previously used method
based purely on average flight transit time, which tended to un-
derestimate capacity for large sectors and overestimate capacity
for small sectors. The Welch model was used to assign Baseline
sector capacities as well. Even though Baseline configurations
were not modified at each reconfiguration, updated projected
flight tracks required that the sector capacities be updated at
each reconfiguration.

3) Simulation: Simulations were completed using the
Airspace Concept Evaluation System (ACES) [25]. ACES has
been validated to be a good modeler of en-route trajectories
producing similar delay results to real-world operational statis-
tics for good-weather days [26, 27]. ACES modeled gate-to-
gate flight operations on airport surfaces and in terminal and
en-route airspace. Air traffic control and traffic flow manage-
ment models controlled flights during these operations to ensure
that airspace capacity constraints were not violated. Lower fi-
delity models were used for ground and airport modeling and
higher fidelity models were used for en-route trajectory model-
ing, which extended from departure meter fixes to arrival meter
fixes.

The only constraints imposed in simulation were sector ca-
pacities for ZKC airspace above 24,000 ft. Airport and airspace
outside of the design scope were unconstrained. It is very dif-
ficult to decompose the cause of delays simulated in ACES.
Therefore, unconstraining the airports and airspace outside of
the design scope ensured that all simulated delay was caused
by the ZKC reconfiguration scenario being tested.

ACES simulated flight tracks from the 2/8/2007 flight
schedule. Without capacity constraints from airports or neigh-
boring centers or weather impacts, the simulated 2007 traffic
produced negligible flight delays. To stress the simulation into
producing more delay for analysis, a demand generation tool,
AvDemand [28], was used to create a two-times traffic sched-
ule by cloning flights from the 2/8/2007 schedule. AvDemand
also time-shifted flights within an hour of the original schedule
to reduce unnatural demand peaks.

At the time of this experiment, airspace design algorithms
had not been fully integrated into ACES. Therefore, the iterative
simulation process in Figure 3 was used to mimic a closed loop
simulation of the Figure 2 reconfiguration scenarios. Each row

Config 2 Config 3

Unconstrained flight tracks

Updated flight tracks

Config 3'

Config 3''

Config 1

Config 2'Config 1

Config 2'Config 1

Unconstrained simulation

Algorithm

Algorithm

Algorithm

Config 1, 2, 3 designs

Config 2', 3' designs

Updated flight tracks

Config 3'' design

Figure 3: Iterative simulation process.

of green boxes represents a separate ACES simulation. First,
ACES generated unconstrained flight tracks by simulating the
2X 2/8/2007 flight schedule without any capacity constraints.
Airspace design algorithms used the unconstrained flight tracks
to design three initial configurations. ACES simulated flight
traffic subject to Config 1, 2, and 3 constraints through the end
of Config 1. Projected flight tracks from this point in the simula-
tion included all traffic modification incurred within the Config
1 time period. Airspace design algorithms used these updated
projected flight tracks to design Config 2′ and 3′. ACES sim-
ulated flight traffic subject to Config 1, 2′, and 3′ constraints
through the end of Config 2′. Airspace design algorithms used
updated projected flight tracks to design Config 3′′. Finally,
ACES simulated flight traffic subject to Config 1, 2′, and 3′′ all
the way to the and of Config 3′′. Even though only the final
iteration from Figure 3 represents the full closed loop scenario
from Figure 2, all simulations were allowed to complete to ana-
lyze the effect each update had on airspace design performance.

B. Metrics

Metrics were designed to assess the performance of individ-
ual configuration designs and reconfigurations between them.
Three categories of metrics include, delay, traffic pattern com-
plexity, and reconfiguration complexity. Delay is a user benefit
metric. Traffic pattern complexity metrics assess properties of
the traffic patterns with respect to airspace boundaries that may
affect controller workload. Reconfiguration complexity metrics
assess the transition cost from one configuration to the next.
Metric details are described below.

1) Delay: Delay is not only costly to airlines and passen-
gers, but it increases uncertainty by altering flight plans. Re-
duced delay relative to the current-day baseline simulated with
2x traffic quantifies a user benefit for a set of airspace configu-
rations.

ACES traffic flow management (TFM) monitors sector ca-
pacity and projected sector demand with a 6-hour lookahead
time window. TFM issues an entry time restriction to the first
flight projected to exceed a particular sector’s capacity. Time
restrictions may propagate and accumulate as the flight passes
through many sectors. Delay may be absorbed en-route with
path stretching maneuvers or at the gate as departure delay. At
the end of each simulation, the total delay for a flight is the
difference between its scheduled and actual gate arrival times.

Because airports and airspace outside ZKC and below
24,000 ft were unconstrained, all flight delay was due to high
altitude ZKC airspace capacity constraints. However, it is diffi-
cult to quantify the individual delay caused by a particular ZKC
configuration. Therefore, average total delays were computed
for each three-configuration simulation. Let d(si) be the aver-
age total delay for ith iteration simulation si. There are three
simulation iterations, s1, s2, and s3, shown as [Config 1, Con-
fig 2, Config 3], [Config 1, Config 2′, Config 3′], and [Config
1, Config 2′, Config 3′′] in Figure 3.

2) Traffic Pattern Complexity Metrics: Original airspace
design algorithms were mostly concerned with minimizing and
balancing sector traffic load. However, airspace design must
also accommodate traffic pattern geometry to minimize con-
troller cognitive complexity. Most algorithms compared in this
study have incorporated some method of aligning the airspace
design with traffic patterns to minimize this complexity. The
following metrics measure traffic pattern complexities with re-
spect to sector boundaries.

Controllers prefer major flows and their intersections to be
well within sector boundaries. To guarantee separation, con-
trollers must be aware of flights not only within a sector, but
also just outside the sector. Brinton and Cook [29] show how
as-flown flight paths have a statistically significant lower per-
centage of flight time within two miles of current sector bound-
aries (designed to accommodate these paths) than great-circle
or wind-optimal paths. The number of aircraft within a thresh-
old distance of a sector boundary was also included in 17 out of
52 original dynamic density metrics found to be significant for
measuring airspace complexity [30]. Ideally, flows should stay
at least three to five nmi inside the sector boundary to avoid

magnifying flight awareness workload of neighboring sectors
and to leave room for maneuvering but using a two nmi thresh-
old captures flights that clearly require extra controller atten-
tion. Let α(sicj) be the percentage of flight tracks within two
miles of a sector boundary for the jth configuration in the ith
simulation iteration. Let α for a particular method be the aver-
age α(sicj) of all configurations for all iterations weighted by
configuration duration.

Controllers require some time to become familiar with a
flight entering the sector before it approaches a major inter-
section. The more time they have, the more efficiently they
may control the flow safely through the intersection. Therefore,
intersections should be away from sector boundaries. Brinton
and Cook [29] show how there are statistically significantly
fewer as-flown flight intersections less than ten miles from a
sector boundary than great-circle or wind-optimal path inter-
sections. Jung et al [31] found that increased workload during
stable configuration periods correlated to a lower average dis-
tance between traffic flow intersections and sector boundaries.
Let β(sicj) be the average distance between traffic flow inter-
sections and sector boundaries for the jth configuration in the
ith simulation iteration. Let β for a particular method be the
average β(sicj) of all configurations for all iterations weighted
by configuration duration.

Jung et al [31] also found that increased workload during
stable configuration periods correlated to the number of flights
with short dwell time within a sector. When a flight spends
very a small amount time within a sector, controllers often co-
ordinate to directly handoff the flight to the next sector without
taking ownership. This causes increased controller workload
with no additional service provided to the flight. Let γ(sicj) be
the average number of short dwell flights (spending less than
two minutes within the a sector) per quarter hour per sector for
the jth configuration in the ith simulation iteration.

3) Reconfiguration Complexity Metrics: It is assumed that
reconfiguration incurs an operational cost related to transition-
ing from one configuration to another. Homola et al [32]
showed how new on-demand reconfigurations could be im-
plemented to balance sector traffic load and minimize over-
capacity time periods without compromising safety, but at the
cost of increasing controller task-load and workload ratings.
Lee et al [15] and Jung et al [31] identified percent airspace
volume and number of aircraft transferred as the primary con-
tributers to reconfiguration workload for the same study. Per-
cent airspace volume transferred impacts controller situational
awareness and number of aircraft transfered impacts controller
task-load of handing off aircraft to their new sectors.

The first step for computing reconfiguration metrics be-
tween two configurations is to map their sectors to each other.
First, sector pairs are mapped in order of decreasing intersection
volume. Then, sectors with no intersecting volume are mapping
in order of increasing Housdorff distance. Housdorff distance
measures how far one sector is spatially shifted from another
[33]. Consecutive configurations with different numbers of sec-
tors will have some unmapped sectors assumed to appear or
disappear as the sector number increases or decreases, respec-

tively. Let v+(k1, k2) and v−(k1, k2) be the volume gained and
lost for sector pair (k1, k2) given as

v+(k1, k2) = v(k1)− v∩(k1, k2) (1)
v−(k1, k2) = v(k2)− v∩(k1, k2) (2)

where k1 is the old sector, k2 is the new sector, and v∩(k1, k2)
is the shared volume between k1 and k2 seen in figure 4.

v(k1) v(k2)

v+(k1,k2)v∩(k1,k2)v-(k1,k2)

Figure 4: Volume gained (v+(k1, k2)) and lost (v−(k1, k2)) between mapped
sectors k1 and k2.

Let ν+(k1, k2) and ν−(k1, k2) be the percent volume gained
and lost with respect to the old sector volume.

ν+(k1, k2) =
v+(k1, k2)

v(k1)
(3)

ν−(k1, k2) =
v−(k1, k2)

v(k1)
. (4)

For unmapped appearing sectors, v+(−, k2) = v(k2) and
ν+(−, k2) = 100%. For unmapped disappearing sectors,
v−(k1,N/A) = v(k1) and ν−(k1,N/A) = 100%.

Let V (k1, k2) be a weighted combined volume transfer
complexity given by

V (k1, k2) = wν+ν+(k1, k2) + wν−ν−(k1, k2) (5)

where wν+ and wν− are weighting factors.

Operational reconfigurations can be completed in roughly
five minutes [15]. Therefore, the numbers of aircraft gained
(n+(k1, k2, t)) and lost (n−(k1, k2, t)) between k1 and k2
are the numbers of unique aircraft flying in v+(k1, k2) and
v−(k1, k2), respectively, during the five minutes preceding re-
configuration time t. Let N(k1, k2, t) be a weighted combined
aircraft transfer complexity given by

N(k1, k2, t) = wn+n+(k1, k2, t) + wn−n−(k1, k2, t) (6)

where wn+ and wn− are weighting factors.

Lai and Zelinski [23] found that in current reconfigura-
tion operations, there is an average of two aircraft gained and
two aircraft lost. Clustering operational reconfigurations into
the simplified three-configuration set used in this study altered
these values because the clustered reconfiguration times were
no longer coordinated with the traffic. The aircraft gained and
lost metrics are very sensitive to reconfiguration time due to
traffic fluctuation. In operation, managers would be free to
implement a reconfiguration any time within a range to mini-
mize the aircraft transfer complexity. Therefore, N(k1, k2, t)
was calculated for t ranging from thirty minutes before to thirty

minutes after the reconfiguration design time in five-minutes in-
crements. It was assumed that the reconfiguration could occur
within any of these five-minute intervals, but the entire recon-
figuration must be completed within the same interval. This
assumption made component-based airspace design methods
such as Baseline, CombineSplit, DAU Slices, and FlightLevel,
that could reconfigure incrementally, more comparable to the
freeform design methods that may require the reconfiguration
to occur all at once. It was also assumed that managers would
choose the time that minimized the maximum aircraft transition
workload.

IV. RESULTS

The following subsections present results for the Baseline
and designs from seven airspace design methods.

A. Delay (d)

Delay measured the benefits of each airspace design
method from the user prospective. Lower delay demonstrated
user benefits. Figure 5 shows the average total delay for each of
the three-configuration simulation iterations shown in Figure 3.
Five of the methods produced lower delay than Baseline with
their original designs in s1. After the first design update, all but
CombineSplit reduced delay below Baseline. The most signif-
icant delay reduction is due to the first design update, between
s1 and s2. Very little if any delay reduction is achieved with the
second design update, between s2 and s3. CellGeoSect showed
the most user benefit, reducing the Baseline delay by more than
two thirds. In general, freeform methods produced lower delays
than methods using Baseline components.

!"

#"

$!"

$#"

%!"

%#"

&
'
()
*+
,
)
"

-
.
/
"0
*+
1)
("

2
3
4
5
+,
)
0
6
*+
7"

8
*+
9
:
7;
)
<
)
*"

=
>'
6
:
?5
'
()
@
"

0
)
17
3
>8
*3
A
"

2
)
**
=
)
3
0
)
17
"

B
3
>3
,
3
+"

av
er

ag
e

to
ta

l d
el

ay
 (m

in
ut

es
)

d(s1)
d(s2)
d(s3)

Figure 5: Average total delay for each simulation iteration for each airspace
design method.

B. Traffic Pattern Complexity

1) Flight track percentage close to boundary (α): The per-
centage of flights tracks within two nmi of a sector boundary
(α) was computed for each configuration and iteration. Figure
6 shows average α results. Briton and Cook [29] calculated dis-

!"#

$"#

%"#

&"#

'"#

("#

)"#

*"#

+"#

,"#

$!"#

-
.
/0
12
3
0
#

4
5
6
#7
12
80
/#

9
:
;
<
23
0
7
=
12
>#

?
12
@
A
>B
0
C
0
1#

D
E.
=
A
F<
.
/0
G
#

7
0
8>
:
E?
1:
H
#

9
0
11
D
0
:
7
0
8>
#

I
:
E:
3
:
2#

-
.
/0
12
3
0
J!
+
#

7
0
8>
:
E?
1:
H
J!
+
#

pe
rc

en
t t

ra
ck

 p
oi

nt
s

w
ith

in

2

nm
i o

f s
ec

to
r b

ou
nd

ar
y

(α
)

Figure 6: Average α values for each airspace design method.

tributions of percent flight time within two nmi of nation-wide
sector boundaries for as-flown tracks with respect to the cur-
rent airspace design and with respect to their 2008 version of
SectorFlow airspace design method. The Baseline’08 and Sec-
torFlow’08 values in Figure 6 were calculated by combining
the current airspace design and 2008 SectorFlow design distri-
butions from Figure 6 in [29]. Even though the ZKC Baseline
has lower α than the nation-wide Baseline’08, the improvement
from SectorFlow’08 to SectorFlow is clear. All other meth-
ods besides FlightLevel are between Baseline and Baseline’08.
The improvement of FlightLevel over Baseline is because the
method uses existing AOS footprints, which have larger lateral
area than most individual Baseline sectors. The overall results
indicate that all methods compared in this study do a sufficient
job of keeping major flows away from sector boundaries.

2) Average flow intersection boundary proximity (β): Fig-
ure 7 shows β for each airspace design method. The β values
for Baseline’08 and SectorFlow’08 were calculated from Fig-
ure 8 in [29] by multiplying the x and y axis for each column
and summing. Baseline and Baseline’08 are very similar and all
methods except SectorFlow’08 have higher β than both Base-
lines. The SectorFlow improvement over SectorFlow’08 moved
flow intersections 2.4 miles farther from sector boundaries on
average, which is approximately 20 seconds of flight time. Just
as with α, FlightLevel has the best β values due to it’s use of
AOS footprints.

3) Number of short dwell flights (γ): All of the design
methods indirectly try to maximize average flight dwell time
through each sector because it is directly related to maximiz-
ing sector capacity. However, only Voronoi explicitly tried to
minimize the number of short dwell flights. Figure 8 shows γ

!"

#"

$!"

$#"

%!"

%#"

&
'
()
*+
,
)
"

-
.
/
"0
*+
1)
("

2
3
4
5
+,
)
0
6
*+
7"

8
*+
9
:
7;
)
<
)
*"

=
>'
6
:
?5
'
()
@
"

0
)
17
3
>8
*3
A
"

2
)
**
=
)
3
0
)
17
"

B
3
>3
,
3
+"

&
'
()
*+
,
)
C!
D
"

0
)
17
3
>8
*3
A
C!
D
"av

er
ag

e
flo

w
cr

os
sin

g
di

st
an

ce

fro
m

 s
ec

to
r b

ou
nd

ar
y

(β
) i

n
nm

i

Figure 7: β values for each airspace design method.

averages and quartiles for each airspace design method.

!"

#"

$"

%"

&"

'"

("

)
*
+,
-.
/
,
"

0
1
2
"3
-.
4,
+"

5
6
7
8
./
,
3
9
-.
:"

;
-.
<
=
:>
,
?
,
-"

@
A*
9
=
B8
*
+,
C
"

3
,
4:
6
A;
-6
D
"

5
,
--
@
,
6
3
,
4:
"

E
6
A6
/
6
."

nu
m

be
r o

f s
ho

rt
dw

el
l fl

ig
ht

s
(γ

)

m
in

 2

5t
h

50

th

 a
vg

75

th

 m
ax

Figure 8: γ averages and quartiles for each airspace design method.

Voronoi and CombineSplit are the methods with the most
similar or lower γ values than Baseline. CombineSplit is very
similar to Baseline because it uses the same base airspace vol-
umes. Voronoi is similar or better than Baseline because it is
the only method that explicitly tried to minimize the number of
short dwell flights.

FlightLevel sticks out with γ values that are consistently
more than twice that of Baseline. Due to FlightLevel vertical
partitioning, as the number of sectors increases, sector verti-
cal range decreases. The difference in γ between FlightLevel
and Baseline is entirely due to climbing or descending flights
passing through sectors spanning only two or three flight levels.

This did not negatively affect FlightLevel’s α or β because dis-
tances for these metrics are measured relative to lateral bound-
aries only.

DAU Slices also had a high maximum γ, which is surprising
because the method made minimal modifications to Baseline
designs. However, these modifications did not explicitly con-
sider traffic pattern complexity and sometimes resulted in sharp
boundary angles or panhandles. DAU Slices results demon-
strate how small changes can have a large impact.

C. Reconfiguration Complexity

1) Volume transition complexity (V): Figures 9 and 10
show averages and quartiles of all V between pairs of mapped
sectors for the first and second reconfiguration, respectively. V

!"#

!$#

%"#

%$#

&"#

&$#

$"#

$$#

'
(
)*
+,
-
*
#

.
/
0
#1
+,
2*
)#

3
4
5
6
,-
*
1
7
+,
8#

9
+,
:
;
8<
*
=
*
+#

>
?(
7
;
@6
(
)*
A
#

1
*
28
4
?9
+4
B
#

3
*
++
>
*
4
1
*
28
#

C
4
?4
-
4
,#

pe
rc

en
t v

ol
um

e
tra

ns
fe

r c
om

pl
ex

ity
 (V

)

m
in

 2

5t
h

50

th

 a
vg

75

th

 m
ax

Figure 9: V averages and quartiles for all mapped sectors across the first recon-
figuration (c1 to c2) for each airspace design method.

was calculated using wν+ = wν− = 0.5 from Equation 5.

As seen in Figure 9, only FlightLevel has lower V than
Baseline. All other methods have slightly higher V than Base-
line and freeform methods have higher V than those using Base-
line components. This trend is exaggerated in the second re-
configuration seen in Figure 10. Most methods produce more
varied results than Baseline. High maximums were caused by
mapped sector pairs with little or no overlapping volume. V
tended to be larger in the second reconfiguration than the first
for two reasons. V is a weighted percentage of the sector size
prior to reconfiguration and c2 sector sizes were the smallest.
Also, the second configuration reduced the number of sectors
causing volume gained to dominate V , whereas volume lost
dominated V in the first reconfiguration. There was no limit
on how much volume a sector could gain but the most volume
a sector could lose was 100%.

2) Aircraft transition complexity (N): For each simulation
iteration and reconfiguration, the reconfiguration time t used

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

(
)
*+
,-
.
+
"

/
0
1
"2
,-
3+
*"

4
5
6
7
-.
+
2
8
,-
9"

:
,-
;
<
9=
+
>
+
,"

?
@)
8
<
A7
)
*+
B
"

2
+
39
5
@:
,5
C
"

4
+
,,
?
+
5
2
+
39
"

D
5
@5
.
5
-"

m
in

 2

5t
h

50

th

 a
vg

75

th

 m
ax

pe
rc

en
t v

ol
um

e
tra

ns
fe

r c
om

pl
ex

ity
 (V

)

Figure 10: V averages and quartiles for all mapped sectors across the second
reconfiguration (c2 to c3) for each airspace design method.

for N calculation was the time that minimized the maximum
N value. The N calculations used wn+ = 1 and wn− = 0.2
from Equation 6 assuming that accepting and becoming famil-
iar with new aircraft requires much more workload than simply
handing-off aircraft to another sector. Figures 11 and 12 display
N averages and quartiles for the first and second reconfigura-
tion, respectively.

!"

#"

$"

%"

&"

'"

("

)"

*
+
,-
./
0
-
"

1
2
3
"4
./
5-
,"

6
7
8
9
/0
-
4
:
./
;"

<
./
=
>
;?
-
@
-
."

A
B+
:
>
C9
+
,-
D
"

4
-
5;
7
B<
.7
E
"

6
-
..
A
-
7
4
-
5;
"

F
7
B7
0
7
/"

ai
rc

ra
ft

tra
ns

fe
r c

om
pl

ex
ity

 (N
)

m
in

 2

5t
h

50

th

 a
vg

75

th

 m
ax

Figure 11: N averages and quartiles across the first reconfiguration (c1 to c2)
for each airspace design method.

All methods have very similarN values in the first reconfig-
uration seen in Figure 11. All averages are very close to two and
only Voronoi has a maximum greater than the rest, by just one
aircraft transfer. The second reconfiguration has much more
variation between methods. Figure 12 shows generally higher
N values for freeform methods than those using Baseline com-

!"

#"

$!"

$#"

%!"

%#"

&
'
()
*+
,
)
"

-
.
/
"0
*+
1)
("

2
3
4
5
+,
)
0
6
*+
7"

8
*+
9
:
7;
)
<
)
*"

=
>'
6
:
?5
'
()
@
"

0
)
17
3
>8
*3
A
"

2
)
**
=
)
3
0
)
17
"

B
3
>3
,
3
+"

m
in

 2

5t
h

50

th

 a
vg

75

th

 m
ax

ai
rc

ra
ft

tra
ns

fe
r c

om
pl

ex
ity

 (N
)

Figure 12: N averages and quartiles across the second reconfiguration (c2 to
c3) for each airspace design method.

ponents. Only CombineSplit has consistently lower second re-
configuration N than Baseline. By contrast, SectorFlow and
Voronoi produce two to three times higher N than Baseline.

D. Results Summary and Discussion

Average airspace design performance is summarized as a
percent increase or decrease from Baseline in Table I. Yellow
cells with values close to zero are similar to Baseline. Red cells
with negative values are worse and green cells with positive val-
ues are better than Baseline. Darker shaded red and green cells
have increasingly worse or better results, respectively. Delay
performance, d, is based on d(s3) from Figure 5. Traffic pat-
tern complexity performances are based on values from Figure
6 for α, Figure 7 for β, and averages from Figure 8 for γ. Re-
configuration complexity performances are based on averages
of the averages from Figures 9 and 10 for V and from Figures
11 and 12 for N .

TABLE I.: AIRSPACE DESIGN PERFORMANCE RELATIVE TO BASELINE.

D
A

U
Sl

ic
es

C
om

bi
ne

Sp
lit

Fl
ig

ht
L

ev
el

G
ra

ph
-b

as
ed

Se
ct

or
Fl

ow

C
el

lG
eo

Se
ct

Vo
ro

no
i

d 23 -57 25 18 30 68 58

α -13 -4 30 -16 -15 -17 -8
β 0 6 35 12 6 9 2
γ -22 2 -88 -22 -29 -25 16

V -18 -11 12 -29 -56 -55 -100
N -56 11 -2 -85 -112 -90 -176

Worse Similar Better

The ultimate goal of each algorithm was to provide user
benefits by reconfiguring airspace. The results show positive
delay reduction benefits (d) in all but one algorithm, achiev-
ing the algorithms’ goal. A few algorithms do better than oth-
ers at minimizing traffic pattern complexity (α, β, γ), but all
do a fairly decent job. In general, algorithms that aggressively
change the airspace show more delay reduction benefits but at
higher reconfiguration costs (V , N). The reconfiguration costs
are expected and are acceptable as long as they are manageable.

The three methods using Baseline elements performed very
differently. DAU Slices achieved modest benefits with modest
negative effects to traffic pattern and reconfiguration cost. This
was expected as DAU Slices is the most conservative method,
designed to allow small changes to existing airspace design at
high reconfiguration frequency.

CombineSplit was the only method to worsen d. All other
CombineSplit metrics are similar to Baseline. This method was
designed for a more tactical application, suggesting configura-
tions every 15 minutes over a 2 hour horizon. CombineSplit ac-
tually decreased delay in a study comparing DAC benefits when
applied to a more tactical two-hour weather rerouting scenario
when number of sectors remained the same [34].

FlightLevel is the most unique case with widely varying re-
sults. It achieved modest d improvement without negatively
affecting reconfiguration complexity. However, the traffic pat-
tern results suggest that more research is needed to determine
if FlightLevel configurations are feasible. FlightLevel signifi-
cantly improved α and β metrics because these metrics did not
consider vertical boundaries. The significantly worsened γ due
to flights climbing or descending through sectors only a few
flight levels thick may not be acceptable.

Most recent freeform algorithm development has focused
on improving traffic pattern complexity. The improvement
of SectorFlow from SectorFlow’08 in traffic pattern complex-
ity was demonstrated in subsection B. The most aggressive
freeform methods (Voronoi, SectorFlow, and CellGeoSect) pro-
duced the greatest delay reduction benefit, but they also signif-
icantly increased reconfiguration complexity. Voronoi was the
only method to reduce delay relative to Baseline without nega-
tively affecting traffic pattern complexity, making this the most
attractive method if the reconfiguration complexity increase is
manageable. Reconfiguration complexity thresholds when us-
ing DataComm-based controller tools such as those used in [15]
have yet to be determined. With the right controller tools and
further algorithm refinement to reduce reconfiguration com-
plexity, achieving the higher benefits of these more aggressive
methods may be feasible.

V. CONCLUSIONS

A fast-time simulation study compared the performance of
solutions from new airspace design methods to a representa-
tion of current day dynamic airspace operations. Three cate-
gories of metrics compared delay reduction benefits, traffic pat-
tern complexity, and reconfiguration complexity. Most methods
achieved benefits by decreasing delay which was augmented by

allowing strategic airspace design updates. Most methods also
did a reasonable job of keeping traffic pattern complexity low.
Methods using design elements from Baseline had more mod-
est benefits and reconfiguration complexity. Freeform airspace
design methods achieved the highest benefits and highest in-
crease in reconfiguration complexity. Future research is needed
to determine if high reconfiguration complexity is acceptable
given the right controller tools. Airspace design methods may
also further refine their algorithms to minimize reconfiguration
complexity.

ACKNOWLEDGMENT

The authors thank all algorithm developers who submitted
reconfiguration scenarios for this study.

REFERENCES

[1] Zelinski, S. 2009. A Comparison of Algorithm Generated Sectorizations.
In 8th USA/Europe ATM R&D Seminar, Napa Valley, California.

[2] Zelinski, S. 2010. A Comparison of Algorithm Generated Sectorizations.
In Air traffic Control Quarterly, Vol. 18, No. 3, pp. 279-301.

[3] Verlhac, C. and S. Manchon, S. 2001. Optimization of opening schemes.
In 4th USA/Europe ATM R&D Seminar, Santa Fe, New Mexico.

[4] Bichot, C.E. and Durand, N. 2007. A tool to design functional airspace
blocks. In 7th USA/Europe ATM R&D Seminar, Barcelona, Spain.

[5] Gianazza, D., Allignol, C., and Saporito, N. 2009. An Efficient Airspace
Configuration Forecast. In 8th USA/Europe ATM R&D Seminar, Napa
Valley, California.

[6] Bloem, M., Gupta, P., and Kopardekar, P. 2009. Algorithms for Combin-
ing Airspace Sectors. In Air traffic Control Quarterly, Vol. 17, No. 3, pp.
245-268.

[7] Trandac, H., Baptiste, P., and Duong, V. 2003. Airspace Sectorization
by Constraint Programming. In Proceedings de la 1re confrence en
Recherche Informatique Vietnam & Francophone (RIVF).

[8] Ehrmanntraut, R. and McMillan, S. Airspace Design Process for Dy-
namic Sectorisation. In 26th Digital Avionics System Conference, Dallas,
Texas.

[9] Conker, R.S., Moch-Mooney, D.A., Niedringhous, W.P., and Simmons,
B.T. 2007. New Process for ”Clean SHeet” Airspace Design and Evalu-
ation. In 7th USA/Europe ATM R&D Seminar, Barcelona, Spain.

[10] Brinton, C. and Pledgie, S. 2008. Airspace Partitioning Using Flight
Clustering and Computational Geometry, In 27th Digital Avionics Sys-
tem Conference, October 26-30, St. Paul, Minnesota.

[11] Drew, M. 2008. Analysis of an Optimal Sector Design Method. In 27th
Digital Avionics System Conference, St. Paul, Minnesota.

[12] Xue, M. 2008. Airspace Sector Redesign Based on Voronoi Diagrams.
In AIAA Guidance, Navigation and Control Conference and Exhibit, Au-
gust, Honolulu, Hawaii. AIAA-2008-7223.

[13] Tien, S. and Hoffman, R. 2009. Optimizing Airspace Sectors for Varying
Demand Patterns Using Multi-Controller Staffing. In 8th USA/Europe
ATM R&D Seminar, Napa Valley, California.

[14] Li, J., Wang, T., and Hwang, I. 2009. A Spectral Clustering Based
Algorithm for Dynamic Airspace Configuration, In 9th AIAA Aviation
Technology, Integration and Operations Conference, September 21-23,
Hilton Head, South Carolina, AIAA-2009-7056.

[15] Lee, P. U., Prevot, T., Homola, J., Lee, H., Kessell, A., Brasil, C.
and Smith, N. 2010. Impact of Airspace Reconfiguration on Controller
Workload and Task Performance, In 3rd Intl. Conference on Applied Hu-
man Factors and Ergonomics, Miami, Florida.

[16] Dynamic Airspace Configuration Benefits. Report submitted by M.
Rodgers et al, under NASA Contract NNA07BB31C, Washington, DC,
August 2008.

[17] Bloem, M. and Gupta, P. 2010. Configuring Airspace Sectors with Ap-
proximate Dynamic Programming, In 27th Congress of the International
Council of the Aeronautical Sciences, September 19-24, Nice, France.

[18] Leiden, K., Peters, S., and Quesada, S. 2009. Flight Level-based Dy-
namic Airspace Configuration, In 9th AIAA Aviation Technology, In-
tegration and Operations Conference, September 21-23, Hilton Head,
South Carolina, AIAA-2009-7104.

[19] Mogford, R. 2010. Generic Airspace Concepts and Research, In 10th
AIAA Aviation Technology, Integration and Operations Conference,
September 13-15, Fort Worth, Texas, AIAA-2010-9159.

[20] Brinton, C., Leiden, K., and Hinkey, J. 2009. Airspace Sectorization
by Dynamic Density, In 9th AIAA Aviation Technology, Integration and
Operations Conference, September 21-23, Hilton Head, South Carolina,
AIAA-2009-7102.

[21] Sabhnani, G., Yousefi, A., and Mitchell, J. 2010. Flow Conforming Op-
erational Airspace Sector Design, In 10th AIAA Aviation Technology,
Integration and Operations Conference, September 13-15, Fort Worth,
Texas, AIAA-2010-9377.

[22] Xue, M. 2010. Three Dimensional Sector Design with Optimal Number
of Sectors, In AIAA Guidance, Navigation, and Control Conference and
Exhibit, August 2-5, Toronto, Ontario Canada.

[23] Lai, C.F. and Zelinski, S. 2010. Operational Dynamic Configuration
Analysis. In 29th Digital Avionics System Conference, October 3-7, Salt
Lake City, Utah.

[24] Welch, J. 2007. Macroscopic Workload Model for Estimating En Route
Sector Capacity. In 7th USA/Europe ATM R&D Seminar, Barcelona,
Spain.

[25] Meyn, L., Windhorst, R., Roth, K., Van Drei, D., Kubat, G., Manikonda,
V., Roney, S., Hunter, G., Huang, A., and Couluris, G. 2006. Build 4 of
the Airspace Concept Evaluation System. In AIAA Modeling and Simu-
lation Technologies Conference an Exhibit, Keystone, Colorado. AIAA-
2006-6110.

[26] Zelinski, S. 2005. Validation of the Airspace Concept Evaluation System
Using Real World Data. In AIAA Modeling and Simulation Technolo-
gies Conference and Exhibit, San Francisco, California.

[27] Zelinski, S. and Meyn, L. 2006. Validation of the Airspace Concept Eval-
uation System for Multiple Weather Days. In AIAA Modeling and Simu-
lation Technologies Conference an Exhibit, Keystone, Colorado.

[28] Huang, A. and Schleicher, D. 2008. Futuristic US Flight Demand Gener-
ation Approach Incorporating Fleet Mix Assumptions. In AIAA Model-
ing and Simulation Technologies Conference an Exhibit, 18 - 21 August
2008, Honolulu, Hawaii. AIAA 2008-6678.

[29] Brinton, C. and Cook, L. 2008. Analysis of Current Airspace Operations
and Implications for Dynamic Airspace Configuration. In AIAA Model-
ing and Simulation Technologies Conference and Exhibit, August 18-21,
Honolulu, Hawaii, AIAA-2008-7224.

[30] Kopardekar, P. 2007. Airspace Complexity Measurement: An Air traffic
Control Simulation Analysis. In 7th USA/Europe ATM R&D Seminar,
Barcelona, Spain.

[31] Jung, J., Lee, P., Kessell, A., Homola, J., and Zelinski, S. 2010. Effect of
Dynamic Sector Boundary Changes on Air Traffic Controllers. In AIAA
Guidance, Navigation, and Control Conference and Exhibit, August 2-5,
Toronto, Ontario Canada, AIAA-2010-8289.

[32] Homola, J., Lee, P., Prevot, T., Lee, H., Kessell, A., Brasil, C., and Smith,
N. 2010. A Human-in-the-Loop Exploration of the Dynamic Airspace
Configuration Concept. In AIAA Guidance, Navigation and Control Con-
ference and Exhibit,

[33] Yousefi, A., Hoffman, R., Lowther, M., Khorrami, B., and Hackney, H.
2009. Trigger Metrics for Dynamic Airspace Configuration, In 9th AIAA
Aviation Technology, Integration and Operations Conference, September
21-23, Hilton Head, South Carolina, AIAA-2009-7103.

[34] Jung, J., Lai, C.F., and Zelinski, S. 2010. Analysis of Regional Airspace
Reconfigurations in Presence of Convective Weather, NASA Milestone
report for AS.2.3.05.

AUTHOR BIOGRAPHY

Shannon J. Zelinski received a M.S. degree in Electrical Engineering Robotics
and Controls from the University of California at Berkeley in 2003. She then
joined the Aviation Systems Division at NASA Ames Research Center, where
she gained expertise in air traffic management, simulation validation, and future
demand generation, working with the Airspace Concept Evaluation System.
For the past three years, Ms. Zelinski has served as the Dynamic Airspace Con-
figuration research Technical Lead at NASA for the NextGen-Airspace Systems
Program.

Chok Fung Lai is a Senior Software Engineer at the University Affiliated Re-
search Center of the University of California, Santa Cruz at NASA Ames Re-
search Center since 2008. He works in the Systems Modeling and Optimization
Branch in the Aviation Systems Division where he assists researchers in model-
ing and simulating Dynamic Airspace Configuration concepts. Before joining
U.C. Santa Cruz, Chok Fung worked in distributed search engines for online
publishing materials in Atypon Systems for 8 years. He earned a Bachelors
Degree in Computer Engineering from the Hong Kong University of Science
and Technology.

