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[1] Dynamical downscaling is being increasingly used for climate change studies, wherein
the climates simulated by a coupled atmosphere-ocean general circulation model (AOGCM)
for a historical and a future (projected) decade are used to drive a regional climate model
(RCM) over a specific area. While previous studies have demonstrated that RCMs can
add value to AOGCM-simulated climatologies over different world regions, it is unclear as
to whether or not this translates to a better reproduction of the observed climate change
therein. We address this issue over the continental U.S. using the GISS-ModelE2 and WRF
models, a state-of-the-science AOGCM and RCM, respectively. As configured here, the
RCM does not effect holistic improvement in the seasonally and regionally averaged surface
air temperature or precipitation for the individual historical decades. Insofar as the climate
change between the two decades is concerned, the RCM does improve upon the AOGCM
when nudged in the domain proper, but only modestly so. Further, the analysis indicates
that there is not a strong relationship between skill in capturing climatological means
and skill in capturing climate change. Though additional research would be needed to
demonstrate the robustness of this finding in AOGCM/RCMmodels generally, the evidence
indicates that, for climate change studies, the most important factor is the skill of the
driving global model itself, suggesting that highest priority should be given to improving the
long-range climate skill of AOGCMs.
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1. Background and Objectives

[2] Although atmosphere-ocean general circulation mod-
els (AOGCMs) continue to be the primary source of infor-
mation on future climate change, many end-users from the
public- and private-sectors do not use such information as is,
but prefer, instead, a transformed version at higher horizontal
resolutions. The primary motivation for effecting such a
transformation — generally referred to as downscaling — is
to extract information in areas characterized by features such
as complex topography, urban centers, differing vegetation/
soil types, and land-sea contrasts that the AOGCM does not
resolve.

[3] The two most widely used downscaling methods tra-
ditionally have been statistical and dynamical [Wilby and
Wigley, 1997]. In statistical downscaling, a model is devel-
oped for the region of interest, which (statistically) relates
large-scale climate variables to regional and local variables
under historical conditions; then, the output of a global cli-
mate model is input to this statistical model to approximate
the corresponding regional and local climate. For example,
the downscaled CMIP3 (Coupled Model Inter-comparison
Project [Meehl et al., 2007], phase 3) projections available
at http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/
were developed using this method.
[4] In dynamical downscaling, a regional climate model

(RCM) is integrated over the region of interest, constrained
by a global climate model at the lateral boundaries. The
North American Regional Climate Change Assessment Pro-
gram (NARCCAP — http://www.narccap.ucar.edu/) is one
such project that uses dynamical downscaling. When con-
strained by a global reanalysis at the lateral boundaries,
RCMs have been shown to simulate more realistically near-
surface winds and temperatures over complex terrain and
coastlines, as well as mesoscale processes and variability,
particularly when the RCM’s large-scale variability is con-
strained in the domain proper [e.g., see Feser et al., 2011].
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[5] In addition to the dynamical downscaling method
described above, there exists the global-through-local nested,
online-coupled meteorology and chemistry model that down-
scales not just dynamics, but also gases, aerosols, and other
parameters, while treating physical processes in a largely
consistent manner on all scales [e.g., see Jacobson, 2001a,
2001b]. In contrast, most RCMs used in dynamical down-
scaling have offline aerosol profiles that may or may not
be consistent with the upscale (AOGCM) information, and,
often, treat gas-phase chemistry, aerosol microphysics, and
aerosol-cloud interactions in a highly simplified manner
[Zhang, 2008]. Consequently, while the global-through-
local nested model treats climate-chemistry-aerosol-cloud-
radiation feedbacks in a consistent manner, dynamical
downscaling does not, and this has important implications for
regional climate change projections [Brasseur and Roeckner,
2005; Jacobson, 2008]. The object of scrutiny hereafter is
the dynamical downscaling method.
[6] Based on the degree of influence of real-world

observations, Castro et al. [2005] classified dynamical
downscaling applications into 4 types: numerical weather
prediction (1); regional climate simulations driven by global
reanalyses (2), atmosphere-only general circulation models
(3), and AOGCMs (4). In type 1 the memory of the all-
important initial conditions containing atmospheric obser-
vations is not lost due to the short-term nature of the model
integration. In type 2 that memory is lost, but the periodically
enforced lateral boundary conditions do contain atmospheric
observations. In type 3 the real-world influence comes indi-
rectly via the observed ocean boundary conditions driving
the atmosphere-only general circulation model (e.g., monthly
mean sea surface temperatures). It is only in type 4, i.e., the
kind used in projects like NARCCAP, that such real-world
constraints are completely absent.
[7] Consequently, one cannot make a generalized argu-

ment for the value added by dynamical downscaling across
application types. This subtle, but important, point is not
stated clearly in many studies on the subject, including the
one cited earlier by Feser et al. [2011]. In this context, it is
worth mentioning that all the RCMs involved in NARCCAP
were evaluated under type 2 configuration (see http://
www.narccap.ucar.edu/about/index.html), despite the fact
that they are used eventually to perform type 4 dynamical
downscaling.
[8] The proliferating use of type 4 dynamical downscaling

for climate impact applications hinges on the expectation that
a RCM shall improve upon the quality of the AOGCM’s
future climate projection over the region of interest, just as it
did in the historical case [e.g., see Liang et al., 2006].
Needless to say, this presupposes that the future (projected)
climate driving the RCM is credible. That is, it is assumed
that AOGCMs have the ability to predict a climatic sequence
from the past or present to a future-day, simulating not only
the overall response to postulated anthropogenic forcings,
but also natural variations — of the kind that have been
observed — on inter-annual to multidecadal timescales. In
short, this is a presupposition about the climate-sensitivity
and -variability skills of AOGCMs, an evaluation of which is
not the focus of the current study.
[9] Another presupposition is that historical climate

biases transfer linearly into the future, and, therefore, can
be accounted for straightforwardly when examining, for

example, differences between the future and historical cli-
mates. Although Liang et al. [2008] demonstrated, contrary
to this popular notion, that future climate projections by an
AOGCM or RCM are very sensitive to the existence of his-
torical climate biases, they nevertheless concluded that “if the
driving GCM reasonably simulates the circulation governing
the regional present climate, the nested RCM that offers skill
enhancement also implies higher credibility in downscaling
the future climate projection.” Thus, it is being implied that
the higher the quality of the historical AOGCM climate, the
higher the credibility of the future climate projection, which,
in turn, increases the likelihood of the RCM adding value to
it. We take the liberty of rephrasing this chain of reasoning
as: there is a (strong) relationship between the quality of the
historical (e.g., the 1970s) climate and climate change (e.g.,
the 2000s minus the 1970s) in an AOGCM or RCM.
[10] While the above reasoning is intuitively appealing,

it is possible that there is no correlation between the quality
of the historical climate and climate change in either the
AOGCM or the RCM. That is to say, a region with small
historical climate biases might nonetheless display a con-
trarian climate change signal vis-a-vis that observed, and vice
versa. However, because the cited study and indeed virtually
all previous studies focused on future, not historical, climate
change, it is hard to discern whether or not this is true.
[11] With these issues in the background, the objectives of

this case study are to explore whether: (1) dynamical down-
scaling adds value to AOGCM simulations of historical cli-
mate change; and, (2) a correlation exists between the quality
of the downscaled historical climate and climate change. The
rest of the article is organized as follows: section 2 has the
methods; section 3, the results; and section 4, a discussion
and the conclusions.

2. Methods

[12] We used the Goddard Institute for Space Studies
(GISS) model for physical understanding of composition-
climate interactions and impacts [Shindell et al., 2006] to
simulate the global climates representative of the time slices
December 1967 through December 1978 and December
1994 through December 2005. The model incorporates gas-
phase, sulfate, black carbon, nitrate, and secondary organic
aerosol chemistry within the GISS-ModelE2 GCM [Schmidt
et al., 2006]. Model updates are described in Shindell et al.
[2012] and references therein. Hereafter, we shall simply
refer to this model as ModelE2. It has a horizontal grid
increment of 2� latitude by 2.5� longitude and 40 vertical
hybrid sigma layers from the surface to 0.1 hPa. The
dynamical time step is fixed at 30 min. Using the anthropo-
genic and natural forcings described in Schmidt et al. [2011],
transient climate simulations were performed and 3-hourly
surface/atmospheric fields archived for the aforementioned
time slices. These fields were then modified suitably for the
input-preprocessing system of the of theWeather Research &
Forecasting (WRF) model (“advanced research” version 3.3,
released in April 2011) [Skamarock et al., 2008].
[13] Figure 1 shows the WRF domain, which covers the

entire continental U.S. andMexico as well as much of Canada,
including the Hudson Bay; there is substantial oceanic cov-
erage east and west of these land regions. There are 216 cells
in the west-east direction and 126 in the south-north spaced
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45 km apart (≈0.41� in the midlatitudes), with the true scale at
30�N and 60�N. Consequently, the grid spacing ratio
between ModelE2 and WRF (at the true scale) is ≈6 and 5 in
the west-east and south-north directions, respectively. In the
vertical, there are 45 terrain-following levels from the surface
to 10 hPa; they are spaced closer together within the planetary
boundary layer and again near the model top. These levels are
not consistent with ModelE2’s; therefore, ModelE2’s vertical
fields are mapped to them using the procedure described in
Chuang et al. [2001].
[14] We utilized an adaptive dynamical time step in the

WRF domain, anchored around an initial value (Dti) of
4.5 min. The target maximum Courant number (ct) was set to
be 1.2. At any given time, WRF incorporates the adaptive
time step by computing the maximum domain-wide Courant
number for all the velocity components (i.e., u, v, and w): if
this is less than ct, then the time step is increased by 5%; else,
it is reduced by 25% to insure numerical stability. The lower-
and upper-bound on the adaptive time step are 0.5Dti and
3Dti, respectively.
[15] At each of the 4 boundaries of the WRF domain there

is a buffer zone 9 cells wide with the outermost row/column
completely specified by ModelE2 and the inner 8 relaxed
exponentially toward WRF. The exponential relaxation —
which results in a smoother behavior in the buffer zone— is
achieved by multiplying the linear relaxation functions in the
original scheme of Davies and Turner [1977] by an expo-
nential function. Specifically, we used an inverse length
scale [Skamarock et al., 2008] (in grid lengths) of 1

3. There
is scope for further optimization with regards these settings
[e.g., see Liang et al., 2001].
[16] Toward selecting a suite of physical parameteriza-

tions in the WRF model that work best with the ModelE2
inputs, we began with those used by the National Center for

Atmospheric Research (NCAR) for their (10–30 km grid
increment) regional climate runs over North America [see
Wang et al., 2010].We then performed several test runs using
the ModelE2 inputs (corresponding to one historical summer
and winter), incorporating other parameterizations appropri-
ate to a 45 km grid increment. Finally, the simulated sur-
face air temperature and precipitation (PRCP) were assessed
for their realism by comparing them against the CRU data
(described shortly below). Based on these tests, the following
selections were made: Kain-Fritsch (cumulus) [Kain, 2004];
WRF single-moment 5-class (microphysics) [Hong et al.,
2004; Hong and Lim, 2006]; CAM (shortwave and long-
wave radiation) [Collins et al., 2004]; Noah (land/surface)
[Chen and Dudhia, 2001]; Yonsei University (planetary
boundary layer) [Hong et al., 2006]; and MM5 similarity
theory (surface layer) [Skamarock et al., 2008]. Sea surface
temperatures and sea-ice were updated at the same 3-hourly
frequency as the lateral boundary conditions using the
ModelE2 data.
[17] Four WRF simulations were performed using the

above configuration (Table 1). Note the use of analysis-
nudging in simulations 2 and 4. In these, the free-atmospheric
zonal and meridional-wind, temperature, and humidity are
nudged in the domain proper by ModelE2 using a moderate
nudging coefficient of 3 � 10�4. Our objective here was not
so much to determine an optimal nudging configuration.
Rather, it was to develop a general understanding on the pros
and cons of suppressing large-scale RCM variability in the
context of type 4 dynamical downscaling. Note that the case
of spectral-nudging [von Storch et al., 2000], wherein only
the largest wavelengths are nudged, lies somewhere between
the un-nudged and analysis-nudging (the entire wavelength
spectrum is nudged) ones.
[18] The simulated climate (D1 and D2 decades) and cli-

mate change (D2 minus D1 decades) over the continental
U.S. were evaluated using the 0.5� resolution monthly anal-
ysis (version 3.1; 1901–2009) of daily mean surface air
temperature (TAVE hereafter) and PRCP published by the
Climate Research Unit (CRU) of the University of East
Anglia [New et al., 1999, 2000]. Note that TAVE is defined
simply as the arithmetic mean of the observed daily mini-
mum and -maximum surface air temperature. We did not use
the minimum (maximum) values by themselves because their
trends are overestimated (underestimated) depending on the
siting quality (station exposure conditions), whereas the
TAVE trends are relatively insensitive to the same [Fall
et al., 2011]. Also, because of the greater station density

Table 1. The Four WRF Simulations Performed Using the
ModelE2 Dataa

Simulation Timeframe Analysis-Nudging?

1 December, 1967 - December, 1978 no
2 December, 1994 - December, 2005 yes
3 December, 1967 - December, 1978 no
4 December, 1994 - December, 2005 yes

aThe last column indicates whether analysis-nudging (by ModelE2 in the
domain proper) is used (yes) or not (no) in that simulation. The default suite
of diagnostics inWRF were saved monthly, whereas, surface air temperature
and precipitation were saved every hour. Following standard protocol, the
first year of each simulation was dropped from the analysis, which left
10 years of data: Dec/1968 - Dec/1978 (D1 decade) and Dec/1995 - Dec/
2005 (D2 decade).

Figure 1. TheWRFmodel domain and underlying topogra-
phy (m); the map projection is Lambert conical conformal.
Shown also are 11 (R1, R2, ⋯ R11) continental U.S. regions
over which the evaluation is focused.
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and flatter terrain over the eastern U.S. vis-a-vis the west, the
CRU analysis is of a higher quality therein — a point worth
emphasizing.

3. Results

[19] We begin by examining the downscaled TAVE
and PRCP biases for the D1/D2 decades (Figures 2 and 3),
focussing primarily on features common to both decades.

Note that the horizontal grid increment of WRF used here is
slightly finer than CRU’s, whereas ModelE2’s is 4–5 times
coarser. The rationale behind reducing ModelE2’s output
onto the CRU grid, prior to computing regional-mean biases,
is to evaluate whether WRF, as configured, adds value above
and beyond mere interpolation of the input — this is akin
to the AV1 (added value, component 1) concept defined in
di Luca et al. [2011]. However, it should be made clear
that this is by no means an evaluation of ModelE2 itself.

Figure 2. Seasonal-mean (D1/D2 decades) daily average surface air temperature biases (degC; ModelE2/
WRF minus CRU) averaged over the 11 regions shown in Figure 1. Superimposed are the regional-mean
absolute biases (m). The biases were computed after interpolating the ModelE2 andWRF data on to the 0.5�
resolution CRU grid.

Figure 3. As in Figure 2 except for precipitation (mm d�1).
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To avoid confusion, we distinguish such interpolated
ModelE2 data by using the suffix i (i.e., ModelE2i).
[20] The regional-mean absolute bias (m) values for TAVE

in ModelE2i are generally within �3 degC, with the mean
bias being negative more often than not for most regions and
seasons (Figure 2). Seasonally, the m values are largest dur-
ing summer, wherein there is a cold bias over almost all
regions, especially over the western regions (R1–R4). The
only systematic warm bias occurs over the central-eastern
regions (R5–R11) during spring. It is evident that, overall,
there is not much value added by WRF, whether nudged in
the domain proper by ModelE2 or not. All the same, the
biases are generally smaller when WRF is nudged than when
it is not. The exception to this is during spring and summer,
when the nudged WRF simulations have a noticeably larger
cold bias (up to�7 degC) over the north west-central regions
(R3/R5).
[21] For PRCP, there is a wet bias in ModelE2i (Figure 3).

As with TAVE, the m values are regionally larger over the
west; seasonally, during spring and summer. The biases over
the west are reduced in WRF (except during summer) when
not nudged in the domain proper by ModelE2; this is also
true over the central regions (R5/R6). At the same time, the
biases increase noticeably over the east (R7–R11). It can be
seen that nudging is consistently beneficial only during
summer, when precipitation is mostly convective; during
winter, when precipitation is mostly stratiform, nudging
seems to amplify the upscale biases.
[22] We turn our attention now to the downscaled changes

in TAVE and PRCP between the D1 and D2 decades
(Figures 4 and 5). The most visible CRU-analyzed (“observed”
hereafter) TAVE changes are the wintertime increases

(0.4–2.5 degC) throughout the continental U.S., particularly
over the north central-east regions (R5, R7, and R10) where
they exceed 1 degC. More intriguing, however, are the muted
increases (<0.4 degC) over the central-eastern regions during
spring and summer. Some explanations for these changes
have been offered, for example, in Portmann et al. [2009].
[23] The close resemblance between the spatiotemporal

pattern of TAVE change in ModelE2i and WRF, especially
when nudged in the domain proper by ModelE2, is quite
striking. The one notable exception to this is the cooling over
the southeast and mid-Atlantic regions (R8, R9, and R11)
when WRF is not nudged. And because ModelE2i itself does
not capture the spatiotemporal pattern of observed change
that well — as indicated by the low overall correlation
coefficient (R) of 0.12 — it is not surprising that WRF does
not either. Nevertheless, when WRF is nudged, the R value
is slightly improved (0.26) with respect to ModelE2i. The
R value is actually degraded (�0.09) by WRF when not
nudged.
[24] The most visible observed PRCP changes (>0.5 mm d�1

in absolute terms) have occurred over the Southeast U.S.
(R9), wherein there are decreases in spring/winter and
increases in summer/fall; the remaining changes are generally
within �0.1 mm d�1. Evidently, the observed changes over
the Southeast are not reproduced well in either ModelE2i or
WRF. As with TAVE, when WRF is nudged, there is an
improvement in the R value with respect to ModelE2i (from
�0.10 to 0.12); and, when not nudged, a marked degradation
(�0.42).
[25] Earlier, we put forth the hypothesis that a strong

association may not exist between the quality of the simu-
lated (upscale or downscaled) historical climates for two

Figure 4. Seasonal-mean daily average surface air temperature changes (degC; D2 minus D1 decades)
averaged over the 11 regions shown in Figure 1. The changes were computed after interpolating the
ModelE2 and WRF data on to the 0.5� resolution CRU grid. For the ModelE2/WRF panels, superimposed
are the regional Pearson’s correlation coefficients (r), computed with respect to the CRU-analyzed change
at a 0.5� resolution; also included in parentheses in the panel titles are the overall Pearson’s correlation
coefficients (R), computed with respect to the CRU changes as shown in the top row.
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individual decades and the climate change between the two
decades. Toward verifying that hypothesis, we determined
the Spearman rank-correlation coefficient (� 1 ≤ r ≤ 1)
between the regional-mean absolute biases (m) shown in
Figure 2 (3) and the regional Pearson correlations (r) shown
in Figure 4 (5). For this exercise, however, we replaced mean
absolute biases with mean normalized absolute biases (mn),
and Pearson correlations (� 1 ≤ r ≤ 1) with distance corre-
lations (0 ≤ rd ≤ 1) [Székely et al., 2007]. Here, mn is a mea-
sure of the quality of the simulated climate over a region
(mn ! + ∞ being poor quality; mn = 0, the highest), whereas
rd is a measure of the quality of the simulated climate change
(rd = 0 being the lowest quality; rd = 1, the highest).
[26] Because rank-correlation measures quantify the direc-

tion of association between two variables, we shall see a
r value closer to �1 if mn decreases as rd increases, and a
r value closer to +1 if mn increases as rd increases. If there
is no such tendency — which is our expectation — r shall
be closer to zero.
[27] The results of the above exercise are summarized in

Table 2. It shows that the r values are within�0.25— that is
closer to zero than �1 — for both WRF (whether nudged or
not) and ModelE2i. This indeed confirms that there is very
little association between the quality of the historical climate
and climate change in AOGCMs or RCMs. Although it is
difficult to make a definitive comment with just the existing
simulations, we conclude that the changes are driven by
processes other than those that dominate the creation of cli-
matological means.

4. Discussion and Conclusions

[28] With respect to the ModelE2-simulated climates
for the time slices Dec/1968 - Dec/1978 and Dec/1995 -
Dec/2005, it is indeed hard to discern holistic improvement
after dynamical downscaling using WRF, whether nudged in
the domain proper by ModelE2 or not. A similarly poor

performance over the North American region was docu-
mented recently by Xu and Yang [2012], who used the same
WRF version employed in the current study (with a different
physical configuration) to downscale a 30-year (historical)
climatology simulated by the NCAR Community Atmosphere
Model. Our conclusion above is of course subject to revision
depending on the exact configuration of WRF, particularly
the suite of physical parameterizations chosen. Also, we
examined only seasonally and regionally averaged surface air
temperatures and precipitation, and it is possible that one
might see noteworthy improvements in the 95th-percentiles
etc., as shown by di Luca et al. [2011] for RCM simulations
driven by global reanalyses.
[29] More germane to the objectives of the current case

study, however, is the finding that the seasonally and
regionally averaged surface air temperature and precipitation
changes (between the Dec/1995 - Dec/2005 and Dec/1968 -
Dec/1978 time slices) correlated better with that observed
after downscaling, only when WRF was nudged in the
domain proper by ModelE2. It is not surprising, then, that the
gain overall is somewhat modest (R increased from 0.12 to
0.26 and �0.10 to 0.12, corresponding to surface air tem-
perature and precipitation, respectively — see Figures 4 and
5), because the RCM is constrained to stay within specified

Table 2. The Spearman Rank-Correlation Coefficient (r) Between
the Regional-Mean Normalized Absolute Biases From Figures 2
and 3 for the D1 and D2 Decades, Respectively and the Regional
“Distance” Correlations From Figures 4 and 5a

r (TAVE) r (PRCP)

D1 D2 D1 D2

WRF, un-nudged �0.10 �0.14 �0.20 �0.18
WRF, nudged 0.11 0.16 0.21 0.22
ModelE2i 0.22 0.19 �0.15 �0.15

aPlease see the final 3 paragraphs of section 3 for an explanation.

Figure 5. As in Figure 4 except for precipitation (mm d�1).
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bounds of the AOGCM when nudged at each grid point.
Clearly, for regional climate change studies to truly benefit
from dynamical downscaling, sound upscale information is a
must — a point also well made in Pielke and Wilby [2012].
[30] Are AOGCMs currently able, then, to provide such

information? This has in fact been examined in several recent
studies (e.g., see Wilby [2010] and Kundzewicz and Stakhiv
[2010] for an overview), and there is a general agreement
that, while multiseasonal and decadal hindcasts are much
improved now on the large-scale, the reproduction of longer-
term (multidecadal) regional trends and variations remains a
significant challenge. As argued byWilby and Dessai [2010],
however, whether or not this has an important bearing for an
application, depends ultimately on whether one approaches
climate change from a mitigation (scenario-driven, top-down)
or adaptation (scenario-neutral, bottom-up) perspective.
[31] Returning to the findings of the current case study, we

were surprised to see the extent to which the correlation
deteriorated between the simulated and observed changes
after downscaling, whenWRF was not nudged in the domain
proper by ModelE2 (R decreased from 0.12 to �0.09 and
�0.10 to �0.42, corresponding to surface air temperature
and precipitation, respectively). This is likely related to
the internal variability in RCMs when they are integrated
over large (continental-sized) domains [Laprise et al., 2008;
Lucas-Picher et al., 2008], which makes it hard to distinguish
between the effects of decadal variability and decadal forc-
ing when differences between two 10-year time slices are
examined.
[32] Longer (multidecadal) simulations might help isolate

the “signal” (climate change) from the “noise” (internal var-
iability). That being said, it is worth noting that, notwith-
standing today’s super-computing resources, multidecadal
RCM simulations are quite expensive to perform. Perhaps,
this is one reason why virtually almost all AOGCM-RCM
climate change studies continue with the experimental setup
of downscaling one historical decade and one future decade,
and then differencing the two to obtain high-resolution
information. It is indeed such a setup that we have evaluated
here.
[33] Regarding the upscale climate information, is an

ensemble of AOGCMs always preferable to a single
AOGCM, however skillful? That would appear to be the case
for historical climates at least, as individual models may have
been fine-tuned to perform well over different world regions,
besides each one having different process-level strengths and
weaknesses. Indeed, in a regional climate detection and
attribution study over the western U.S., Pierce et al. [2009]
demonstrated that the multimodel average (of at least 5 dif-
ferent global models) outperformed that of any single model
on 42 different metrics, and that this is not simply due to the
greater number of realizations involved, but the different
modeling approaches taken.
[34] It is questionable though whether the same rationale

holds when it comes to future climate projections. Especially
for the 3-dimensional, time-varying fields of parameters such
as winds and relative humidity, wherein the average is likely
just as uncertain as the individual members.
[35] In conclusion, as the resolution (grid increment) gap

between AOGCMs and RCMs continues to narrow, the
matter in question of added value to climate change projec-
tions by dynamical downscaling has become more pertinent

than ever. The current case study has demonstrated that the
RCM skill is strongly limited by the skill of the AOGCM
itself, and that skill in reproducing climatological mean
conditions is not closely associated with skill in capturing
climate change. Therefore, the highest priority should be
given to improving the long-range climate skill of AOGCMs,
and evaluations should focus on changes rather than solely
on climatologies.
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