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In this paper we present a novel space radiation shielding approach using various 
material lay-ups, called “Graded-Z” shielding, which could optimize cost, weight, and safety 
while mitigating the radiation exposures from the trapped radiation and solar proton 
environments, as well as the galactic cosmic radiation (GCR) environment, to humans and 
electronics. In addition, a validation and verification (V&V) was performed using two 
different high energy particle transport/dose codes (MCNPX & HZETRN). Inherently, we 
know that materials having high-hydrogen content are very good space radiation shielding 
materials. Graded-Z material lay-ups are very good trapped electron mitigators for medium 
earth orbit (MEO) and geostationary earth orbit (GEO). In addition, secondary particles, 
namely neutrons, are produced as the primary particles penetrate a spacecraft, which can 
have deleterious effects to both humans and electronics. The use of “dopants,” such as 
beryllium, boron, and lithium, impregnated in other shielding materials provides a means of 
absorbing the secondary neutrons. Several examples of optimized Graded-Z shielding lay-
ups that include the use of composite materials are presented and discussed in detail. This 
parametric shielding study is an extension of some earlier pioneering work we (William 
Atwell and Kristina Rojdev) performed in 20041 and 20092. 

Nomenclature 
GCR = galactic cosmic radiation 
GEO = geostationary earth orbit 
HZETRN = High Z and Energy Transport code 
MCNPX = Monte Carlo Nuclear Particle transport computer code 
MEO = medium earth orbit 
V & V = validation & verification 

I. Introduction 
 

RADED-Z shielding is a laminate of several materials with different Z values (atomic numbers) designed to 
protect against ionizing radiation. Compared to single-material shielding, the same mass of Graded-Z shielding 
has been shown to reduce electron penetration over 60%.3 Graded-Z shielding is commonly used in satellite-

based particle detectors and offers several benefits: protection from radiation damage, reduction of background noise 
for detectors, and lower mass compared to single-material shielding. Designs vary, but typically involve a gradient 
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from high-Z (usually tantalum [Ta]) through successively lower-Z elements such as tin, steel, and copper, usually 
ending with aluminum. Sometimes even lighter materials such as polypropylene and boron carbide are used.4,5  In a 
typical Graded-Z shield, the high-Z layer effectively scatters protons and electrons. It also absorbs gamma rays, 
which produces x-ray fluorescence. Each subsequent layer absorbs the X-ray fluorescence of the previous material, 
eventually reducing the energy to a suitable level. Each decrease in energy produces bremsstrahlung and Auger 
electrons, which are below the detector's energy threshold. Some designs also include an outer layer of aluminum, 
which may simply be the outer structure of a spacecraft or satellite. Fan, et al.6 reports “Shielding for space 
microelectronics needs to provide an acceptable dose rate with minimum shield mass. The analysis presented here 
shows that the best approach is, in general, to use a graded-Z shield, with a high-Z layer sandwiched between two 
low-Z materials. A Graded-Z shield is shown to reduce the electron dose rate by more than sixty percent over a 
single-material shield of the same areal density. For protons, the optimal shield would consist of a single, low-Z 
material layer. However, it is shown that a Graded-Z shield is nearly as effective as a single-material shield, as long 
as a low-Z layer is located adjacent to the microelectronics. A specific shield design depends upon the details of the 
radiation environment, system model, design margins/levels, compatibility of shield materials, etc.” 
 In this paper we investigate several novel Graded-Z materials that are compared with baseline materials: 
aluminum (Al), high density polyethylene (HDPE), and water (H2O). In addition, we compare the results using two 
different computational computer codes, NASA HZETRN7 and MCNPX8 to validate and verify our results. 
 

II. Study Assumptions 

A. Graded-Z configurations 
The shielding configurations considered in this paper were two-layer shields with typical shielding thicknesses 

and very large thickness configurations. The two layer shielding configurations were Al-HDPE, Ta-HDPE, and W-
HDPE. The thicknesses of Al, Ta, and W were 150 mils, which correspond to 1.0287, 6.3237, and 7.3343 g/cm2, 
respectively, and the HDPE thicknesses were 5 and 10 g/cm2. The very large thickness configurations consisted of 
single layer H2O and two-layer H2O-SWX. SWX, specifically SWX-210, is a boron-doped hydrocarbon having a 
density of 1.19 g/cm3. The water thicknesses ranged from 100-300 g/cm2, and the SWX thicknesses were 10 and 20 
g/cm2. 
 

B. Environments 
For deep-space exploratory missions, the radiation sources are due to the naturally-occurring galactic cosmic 

radiation (GCR) and from solar particle events (SPEs). The radiation exposure analyses discussed later is based on 
the GCR environment during solar minimum (epoch 1977), solar maximum (epoch 1982), and the classic series of 
solar proton events that occurred 19-24 October 1989. The October 1989 SPEs were four events that were combined 
using the Band fit.9,10 For all three environment cases, the energy spectrum was restricted to 2 GeV due to 
limitations in the MCNPX software, as shown in the differential energy spectrum below (Figure 1). 
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Figure 1. The Band fit differential energy spectrum for the 19-24 October 1989 SPEs. 
 

C. High Energy Particle Transport/Dose Codes 
Two high energy particle transport/dose codes were used in the computations, HZETRN7 and MCNPX8, and the 

results were compared as a check on the verification and validation of the absorbed doses. 
The HZETRN code was develop at NASA Langley Research Center in 1995. The high-charge-and energy (HZE) 
transport computer program HZETRN was developed to address the problems of free-space radiation transport and 
shielding. The HZETRN program is intended specifically for the design engineer who is interested in obtaining fast 
and accurate dosimetric information for the design and construction of space modules and devices. The program is 
based on a one-dimensional space-marching formulation of the Boltzmann transport equation with a straight-ahead 
approximation. The effect of the long-range Coulomb force and electron interaction is treated as a continuous 
slowing-down process. Atomic (electronic) stopping power coefficients with energies above a few MeV are 
calculated by using Bethe`s theory including Bragg`s rule, Ziegler`s shell corrections, and effective charge. Nuclear 
absorption cross sections are obtained from fits to quantum calculations and total cross sections are obtained with a 
Ramsauer formalism. Nuclear fragmentation cross sections are calculated with a semi-empirical abrasion-ablation 
fragmentation model. The relation of the final computer code to the Boltzmann equation is discussed in the context 
of simplifying assumptions. 

The MCNPX code was developed at Los Alamos National Laboratory (LANL) and is described at their 
website11 as “MCNP is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, 
electron, or coupled neutron/photon/electron transport. Specific areas of application include, but are not limited to, 
radiation protection and dosimetry, radiation shielding, radiography, medical physics, nuclear criticality safety, 
detector design and analysis, nuclear oil well logging, accelerator target design, fission and fusion reactor design, 
decontamination and decommissioning. The code treats an arbitrary three-dimensional configuration of materials in 
geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori. Point-wise cross-
section data typically are used, although group-wise data also are available. For neutrons, all reactions given in a 
particular cross-section evaluation (such as ENDF/B-VI) are accounted for. Thermal neutrons are described by both 
the free gas and S(alpha,beta) models. For photons, the code accounts for incoherent and coherent scattering, the 
possibility of fluorescent emission after photoelectric absorption, absorption in pair production with local emission 
of annihilation radiation, and bremsstrahlung. A continuous-slowing-down model is used for electron transport that 
includes positrons, x-rays, and bremsstrahlung but does not include external or self-induced fields. Important 
standard features that make MCNP very versatile and easy to use include a powerful general source, criticality 
source, and surface source; both geometry and output tally plotters; a rich collection of variance reduction 
techniques; a flexible tally structure; and an extensive collection of cross-section data. MCNP contains numerous 
flexible tallies: surface current & flux, volume flux (track length), point or ring detectors, particle heating, fission 
heating, pulse height tally for energy or charge deposition, mesh tallies, and radiography tallies.” 
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