DEVELOPMENT OF A HIGH RELIABILITY COMPACT AIR INDEPENDENT PEMFC POWER SYSTEM

Authors: B. Wynne, C. Diffenderfer, S. Ferguson, J. Keyser, M. Miller, B. Sievers, Y. Song (TESI) K. Araghi, A. Vasquez (NASA JSC) Fuel Cell Seminar, October 22, 2013

OVERVIEW

Autonomous Underwater Vehicles (AUV's) have received increased attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Teledyne Energy Systems, Inc. (TESI) is committed to meeting the energy needs for these missions

BACKGROUND

TESI has been developing EDR (Ejector Driven Reactants) systems for air independent applications

What's Important?

- Space reliability, efficiency, and mass are priority
 - Power levels from 0.5 kW 15 kW
 - Work closely with NASA
 - EDR systems have highest demonstrated TRL
- AUVs reliability, efficiency, and volume are critical
 - Power levels from 0.5 kW to 70+ kW
 - Working with NASA JSC under SAA

AUV REQUIREMENTS

Extended Mission Duration

- Mission lengths from 1 70 days needed depending on platform
- Battery systems cannot meet the requirement
- TESI LTPEM systems can meet these demands when paired with the appropriate reactant storage

Neutral Buoyancy/Closed Cycle

 TESI proprietary Integrated BOP system compactly captures and stores all byproducts onboard

High Reliability

- TESI long history of air independent LTPEM FC systems development
- Use of high TRL technologies

REACTANT (ENERGY) STORAGE

TESI trade studies indicate LH2 and LOX provide exceptional reactant system storage density

- Relatively high TRL
- Provides high purity reactant to FC system
- Can be refueled using water and electricity

TELEDYNE

ENERGY SYSTEMS, INC. A Teledyne Technologies Company

TESI LTPEM FC SYSTEM ADVANTAGES

- Load following
 - Able to respond quickly to load changes
 - FC stack responds in µs
 - Custom BOP sized to meet load profile
- •High TRL
 - Demonstrated long life with H2/O2 reactants
 - •EDR systems have proven reliability, used extensively in automotive FC systems
- Compact
 - Highly integrated subsystems
 - Water separation/reactant conditioning performed in FC
 - Reactant pressure and flow control integrated into the BOP endplate

Working with NASA JSC on advanced ejector technology

TELEDYNE ENERGY SYSTEMS, INC. A Teledyne Technologies Company

NASA – TESI DEVELOPMENT UNDER SAA

NASA JSC

- Ejector Regulator performance test data
- Design assistance during incorporation of pressure regulation/ejector into FC endplate

TESI

- BOP endplate design
- Design of planar reactant conditioning assemblies
- BOP endplate fabrication

Fuel Cell Seminar October 22, 2013

NASA JSC DEVELOPED PASSIVE EJECTOR Regulator Dome Control Sense Line Diaphragm Ejector Poppet-To Fuel Cell From Mixer Diffuser Section Section Reactant[®] Supply Spring delta-P **Circulation Flow** From Fuel Cell

Fuel Cell Seminar October 22, 2013

8

BOP/STACK INTEGRATION

EJECTOR VERIFICATION TESTING AT TELEDYNE

In-house test results of the stand alone hardware were similar to NASA's test measurements

TELEDYNE ENERGY SYSTEMS, INC. A Teledyne Technologies Company Fuel Cell Seminar October 22, 2013

٠

EJECTOR OPTIMIZATION AT TELEDYNE

Stand alone ejector-regulator was limited to a constant volume mixer section

- A diverging taper angle was added, the taper is a little greater than ideal, but reduces manufacturing costs
- Features needed to be added to facilitate mixer installation, removal, and depth adjustment

EJECTOR TESTING AT TELEDYNE

Comparison of losses developed by new and old mixers

Old Mixer

A Teledyne Technologies Company

New Mixer

3.5

PASSIVE PLANAR WATER SEPARATION THEORY

TESI planar separators completely remove liquid water from the reactants exiting the FC stack by incorporating a hydrophilic water separation membrane.

PASSIVE PLANAR WATER SEPARATION

Advantages of planar water separation

- Less volume incorporated into the FC stack
- Thermal advantage controlled temperature to maintain desired dew point
- Gravity independent can be configured for zero G or changing orientations in 1G (pitch and roll)
- Testing has confirmed complete separation up to 10 kWe

ΓΕΙ ΕDYNE

ENERGY SYSTEMS, INC.

A Teledyne Technologies Company

14

COMPACT FUEL CELL BALANCE OF PLANT

- Integrated BOP provides a compact package for the ejectors, instrumentation, controls, and flow paths.
- Internal manifold design provides a much more compact BOP compared to traditional BOP layout

INTEGRATED EJECTOR-REGULATOR AND WATER MANAGEMENT SYSTEM

CONCLUSIONS, FUTURE WORK

- Compact Ejector based systems have been demonstrated by TESI and NASA in a number of system configurations
- Planar water separation and conditioning has been tested in ex-situ test beds and breadboard demonstrations with equivalent H2O production rates up to 10 kWe
- Fully integrated systems will be demonstrated early in 2014
- Additional IR&D spending on advanced variable orifice ejectors is planned for 2014

