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High-Order Space-Time Methods for Conservation Laws  
 

H.T. Huynh 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

 
Abstract.  Current high-order methods such as discontinuous Galerkin and/or flux reconstruction can 

provide effective discretization for the spatial derivatives. Together with a time discretization, such 
methods result in either too small a time step size in the case of an explicit scheme or a very large system 
in the case of an implicit one. To tackle these problems, two new high-order space-time schemes for 
conservation laws are introduced: the first is explicit and the second, implicit. The explicit method here, 
also called the moment scheme, achieves a CFL (Courant-Friedrichs-Lewy) condition of 1 for the case of 
one-spatial dimension regardless of the degree of the polynomial approximation. (For standard explicit 
methods, if the spatial approximation is of degree , then the time step sizes are typically proportional to 
1/ .) Fourier analyses for the one and two-dimensional cases are carried out. The property of super 
accuracy (or super convergence) is discussed. The implicit method is a simplified but optimal version of 
the discontinuous Galerkin scheme applied to time. It reduces to a collocation implicit Runge-Kutta (RK) 
method for ordinary differential equations (ODE) called Radau IIA. The explicit and implicit schemes are 
closely related since they employ the same intermediate time levels, and the former can serve as a key 
building block in an iterative procedure for the latter. A limiting technique for the piecewise linear 
scheme is also discussed. The technique can suppress oscillations near a discontinuity while preserving 
accuracy near extrema. Preliminary numerical results are shown. 

1.  Introduction 

The discontinuous Galerkin (DG) method is currently among the most widely used high-order 
numerical methods for solving the compressible Navier-Stokes equations on unstructured meshes. It was 
introduced for the neutron transport equation by Reed and Hill (1973), analyzed by LaSaint and Raviart 
(1974) and developed and made popular for fluid dynamics equations by Cockburn, Shu, Bassi, Rebay, 
and others (see e.g., Bassi and Rebay 1997a,b, Cockburn, Karniadakis, and Shu 2000, Cockburn and Shu 
2005, 2009, Shu 2012, and the references therein). Efficient DG schemes using the Lagrange polynomials 
for nodal points as basis functions known as nodal DG methods can be found in (Hesthaven and 
Warburton 2008). Alternative methods employing the differential form (as opposed to DG, which uses the 
integral form) have been proposed. Kopriva and Kolias (1996) pioneered this approach with the 
staggered-grid method on quadrilateral meshes. The method was extended to triangular meshes by Liu, 
Vinokur, and Wang (2006) and named spectral difference (SD). Another class of schemes called spectral 
volume (SV) was presented by Wang, Zhang, and Liu (2004).  

Recently, an approach to high-order accuracy with the advantage of simplicity and economy called 
flux reconstruction (FR) was introduced in (Huynh 2007, 2009a). The approach employs the differential 
form and results in several new schemes with favorable properties. In addition, by recovering DG, SD, 
and SV, it unifies existing methods. Extensions of the FR method to 2D unstructured meshes were 
presented in (Wang and Gao 2009) and (Gao and Wang 2009) and was named lifting collocation penalty 
or LCP schemes. The involved authors later combined FR and LCP and called them correction procedure 
via reconstruction or CPR methods. Extension to 3D was presented in (Haga, Gao, and Wang 2010, 2011) 
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 and (Wang, Gao, and Haga 2011). A mathematical foundation for FR was provided via energy 
stability proofs: for an SD scheme identified via FR by Jameson (2010), for a one-parameter class of FR 
schemes in 1D by Vincent, Castonguay, and Jameson (2011), for 2D triangular grids by Castonguay, 
Vincent and Jameson (2012), for linear-advection-diffusion problem in 1D by Castonguay et al. (2013) 
and for advection-diffusion in 2D, by Williams et al. (2011). Extension for a particularly simple FR 
scheme called  to the Navier-Stokes equations was presented in (Liang, Miyaji, and Zhang 2013). 
Applications of FR/CPR methods to turbulent internal flows for turbomachinaries were elaborated in (Lu, 
Yuan, and Dawes 2012 and Lu, Liu, and Dawes 2013). Interface elements dealing with non-conforming 
polynomials together with p-adaptation for viscous flow simulations were presented in (Cagnone and 
Nadarajah 2012, Cagnone, Vermeire, and Nadarajah 2013), and an implicit large eddy simulation (ILES) 
solver was developed for FR/CPR schemes by Vermeire, Cagnone, and Nadarajah (2013).  

The high-order methods discussed can provide effective discretization for the spatial derivatives. 
Together with a time discretization, however, such methods result in either too small a time step size in 
the case of an explicit scheme or a very large system in the case of an implicit one. Efforts to improve 
time stepping have been proposed by several authors. 

Concerning explicit schemes, a space-time DG method with a favorable CFL (Courant-Friedrichs-
Lewy) condition employing a staggered mesh was introduced in Lowrie et. al (1995). For the case of a 
semi-discrete formulation, Warburton and Hagstrom (2008) presented a staggered-mesh scheme where 
the solution is projected onto a mesh staggered from the original one and then projected back onto the 
original mesh resulting in a solution ‘smoother’ than the original. They obtain a CFL condition 
proportional to 1/  as opposed to 1/  where  is the degree of the approximating polynomials. 
However, multi-dimensional extensions of these staggered-mesh approaches are both complex and costly. 
Additional efforts can be found under the heading “Taming the CFL number” of (Hesthaven and 
Warburton 2008) and the references therein. In addition to these efforts, Dumbser and Munz (2005) 
developed ADER-DG using the ADER finite-volume scheme (Arbitrary order using derivatives). Space-
time expansion DG (or STE-DG) as a modification of ADER-DG was introduced in (Lörcher, Gassner, 
and Munz 2007 and Gassner, Lörcher, and Munz 2008), but these methods have highly restricted CFL 
limits. 

Researchers in the finite-volume community have devised several explicit methods with a CFL 
condition of 1 for the case of one spatial dimension. In fact, in 1977, Van Leer presented a series of five 
schemes for convection with this property. Among the five, scheme I is the least accurate but becomes the 
most popular and, in the literature, is generally the scheme implied when the MUSCL approach is 
referred. Concerning the more accurate schemes such as III and V, the problem is, as stated in (Van Leer 
and Nomura 2005), “When trying to extend these schemes beyond advection, viz., to a nonlinear 
hyperbolic system like the Euler equations, the first author ran into insuperable difficulties because the 
exact shift operator no longer applies, and he abandoned the idea”.  

For scheme III, which can be considered as a piecewise-linear space-time DG method for convection, 
this difficulty was overcome in (Huynh 2006) where the exact shift operator was replaced by (a) an 
integration by parts (Gauss theorem), (b) the observation that the space-time fluxes contain the 
information provided by the shift operator, and (c) a successive procedure of updating the moments. The 
resulting method is called the upwind moment scheme. The approach was further analyzed and applied to 
nonlinear hyperbolic equations by Suzuki and Van Leer (2007). As briefly discussed in (Huynh 2007), the 
moment scheme can be extended to arbitrary order. Such an extension was independently obtained by Lo 
and was studied in combination with Van Leer’s recovery scheme for diffusion (2011). The description of 
the extension here and that of Lo thus have considerable similarities (the differences will also be 
discussed). Extensions for scheme V can be found in (Eymann and Roe 2013). 

Concerning implicit schemes, it was shown by LaSaint and Raviart (1974) via a quadrature of left 
Radau type (Hildebrand 1987) that discretizing an ODE via discontinuous Galerkin results in an implicit 
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Runge-Kutta (RK) method. In addition, the scheme is accurate to order 2 1 if the solution is 
approximated by a polynomial of degree  in time. Implicit space-time DG schemes for conservation 
laws have been studied by several authors (e.g., Bar-Yoseph and Elata 1990, Van der Vegt and Van der 
Ven 2002, Pesch and Van der Vegt 2008). The common difficulty is that the implicit system is large. 
Recent effort includes the large eddy simulation solver by Vermeire, Cagnone, and Nadarajah (2013). 

Another aspect of time stepping methods concerns their performance for large scale calculations using 
massively parallel supercomputers or graphics processing units (GPU). Here, the DG or FR/CPR spatial 
discretization is highly parallelizable. It is well known that this ease of parallelization is retained with an 
explicit time stepping, e.g., RK, but not an implicit one. 

In this paper, to tackle the time stepping problem, two new high-order space-time schemes for 
conservation laws are introduced: the first is explicit and the second, implicit. The explicit method, called 
the moment scheme, achieves a CFL condition of 1 for the case of one-spatial dimension regardless of the 
degree of approximation. Compared with standard approaches, the key difference is the built-in physics of 
advection. Such a CFL condition is a significant gain compared with a typical time step size proportional 
to 1/ . For the case of multiple-dimensions, however, there is a reduction in the CFL limits. The current 
extension differs from that of Lo in (a) the case of two-spatial dimensions and its Fourier analysis are 
presented and (b) additional details, observations, and the relation with the implicit time stepping are 
discussed. It will be shown via Fourier analysis that for both one and two-dimensional cases, the moment 
schemes are accurate to order 2 1 if the solution is approximated by polynomials of degree . 

The implicit method here is a simplified but optimal DG scheme applied to time. It employs the FR 
approach and simplification is made possible by the fact that time always moves forward (as opposed to 
space where waves can travel in all directions).  The method reduces to an implicit RK scheme using the 
right Radau points as collocation points called the Radau IIA (Lambert 1991, Hairer, Norsett, and Wanner 
1991, Hairer and Wanner 1993). It is also accurate to order 2 1 if polynomial of degree  is employed 
to approximate the solution. A key advantage of using the right Radau points (as opposed to the left 
Radau points employed by LaSaint and Raviart 1974) is that the method is simpler and involves fewer 
interpolations in the solution procedure. More importantly, the explicit and implicit schemes here are 
closely related since they use the same intermediate time levels, and the former can serve as a key 
building block in an iterative procedure for the latter.  

The DG derivation here also differs from those in the literature: the standard DG formulation is highly 
algebraic, and the behavior of the solution is hidden in a system of equations; the current formulation is 
geometric, and the behavior of the solution can be observed. 

In addition to the time stepping methods, since the numerical tests have discontinuities, a limiting 
technique that can suppress oscillations near discontinuities while preserving accuracy near extrema is 
discussed. Finally, preliminary numerical results are shown. 

This paper is essentially self-contained and organized as follows. In Section 2, we review Van Leer’s 
scheme III except that our derivation is for arbitrary order. The moment schemes, which have a CFL 
condition of 1 and can be considered as explicit space-time DG methods, are presented in Section 3. 
Extension to the case of two spatial dimensions is discussed in Section 4. Fourier analyses are carried out 
in Section 5 for the one- as well as two-dimensional cases. DG time discretization in the FR/CPR 
framework is presented in Section 6. Section 7 deals with limiting. Preliminary numerical solutions are 
shown in Section 8. Finally, conclusions and discussions can be found in Section 9. 

2.  Exact Time Evolution and Projection 

In the fourth installment of a celebrated series of five papers entitled “Towards the ultimate 
conservative difference scheme”, Van Leer (1977) introduced five schemes for advection; among them, 
the first three are piecewise linear and, the last two, piecewise parabolic. Concerning the piecewise linear 
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methods, scheme I is the least accurate but, due to its ease of extension to systems, becomes the most 
popular and is typically known as the MUSCL scheme (monotone upstream-centered schemes for 
conservation laws). As shown in (Huynh 2003), scheme II formulated for a staggered mesh results in the 
CE/SE scheme with 1/2 (conservation element/solution element, Chang 1995). Scheme III is 
remarkable since it is third-order accurate in spite of being piecewise linear. The property of having 
higher than expected order of accuracy is called super accuracy or super convergence. The last two 
schemes are piecewise parabolic. Here, scheme IV leads to the standard PPM (piecewise parabolic 
method). Scheme V stores and updates both the cell averages and interface values. Schemes III and V 
have the same error, which is only 1/9 that of scheme IV. As mentioned above, when trying to extend the 
more accurate schemes to the Euler equations, Van Leer “ran into insuperable difficulties”. However, 
scheme III plays a critical role in serving as a guide for the moment scheme (Huynh 2006), which can be 
extended to systems with relative ease. Below, we review Van Leer’s approach for scheme III, which 
amounts to a projection after an exact shift to account for time evolution. Our presentation of the scheme 
is for arbitrary order, not just piecewise linear. 

Consider the scalar advection equation 

 0 (2.1)

with initial condition 

 , 0  (2.2)

where  is time,  space, and  the advection speed, a positive constant. By assuming that  is periodic 
or of compact support, boundary conditions are trivial and are omitted. The exact solution at time  is 
obtained by shifting the data curve to the right a distance , 

 , . (2.3)

 

Legendre Polynomials. To approximate the solution, we need some preparations. Let  be a 
nonnegative integer. Denote by  the space of polynomials of degree . As is standard in the finite-
volume community, for the reference interval, we use 1/2, 1/2 . Let the inner product of any two 
functions  and  on  be defined by 

 ,
/

/
, (2.4)

and the  norm of a function  by 

 ‖ ‖
/

/

/

. (2.5)

Let  be the Legendre polynomial of degree  defined by applying the Gram-Schmidt process to 
orthogonalize the monomials 1, , , , … together with the condition that 1/2 1. The first few 
Legendre polynomials on 1/2, 1/2  are  

1, 				 2 , 6 1/2,  

20 3 , 70 15 3/8. 
(2.6)
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Their plots are shown in Fig. 2.1. Note that compared with the standard Legendre polynomials  defined 
on 1, 1 , for  in 1/2, 1/2 , 2 . 

 

 

Fig. 2.1 Legendre Polynomials 

 

Discretization. Let the domain of calculation be divided into non-overlapping cells or elements 
denoted by / , /  of centers  and widths . For each , let the local coordinate  on 

1/2, 1/2  be  

 / . (2.7)

Next, let 0 be an integer. On each cell , we wish to approximate the solution by a polynomial of 
degree  denoted by . To this end, we need to define the projection operator. Consider the 1 
Legendre polynomials , 0,… , . With  fixed, the solution ,  can be approximated on  by its 
projection onto :  

 ,  (2.8)

where the coefficients are given by  

 ,  		 ,
/

/
‖ ‖ . (2.9)

Thus, on ,  is the least square fit of degree  for , and since the projection does not increase the 
norm, we have ‖ ‖. The collection of all   as  varies forms a piecewise polynomial function 
denoted by, in the physical coordinate, , .  The function ,  is generally discontinuous at the 
cell interfaces (see Fig. 2.2(a)). 

Note that ,   is the cell average value on , and ,   represents half of the normalized slope so that 
for 1,  the value at the right interface is ,  ,  . In fact, for all , the value at the right interface is 

,  ,  ⋯ ,  , i.e., each ,   results in a -th degree approximation to the right interface value. 
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For simplicity but not necessity, assume that the mesh is uniform: . Denote the time step by Δ  
and the CFL number  Δ /  by . Then, since 0, the CFL condition takes the form  

 0 1. (2.10)

That is, in one time step, the wave advects a distance no more than one cell width. It is this property that 
we wish to preserve when extending the method to one-dimensional systems of equations. 

Let the projection of the initial data be carried out and denoted by, on , 

 , 0 , . 

 

Exact Time Evolution and Projection. Assume that at time , the projection ,  is known; 
i.e., ,  ,   are known for all  and all  (the superscript  is understood). We wish to calculate 

all ,   at time  (the superscript 1 is retained). 

Given the piecewise polynomial data , , the exact solution at time  for 
this data is obtained by shifting the curve 	  to the right a distance  Δ  as shown in Fig. 2.2(b): 

 Δ . 

That is, on , with the local coordinate  given by (2.7),  

 	
1 , if 1/2

, if 1/2
.  (2.11)

To evaluate the solution, we split the integral into two parts (again see Fig. 2.2(b)); with 0,… , , 

 ,  	 1 1
1/2

1/2

1/2

1/2
	 ‖ ‖2. (2.12)

Such a solution can easily be evaluated by a mathematical programming package such as Mathematica.  

For the case 0 or piecewise constant data, scheme III reduces to the first-order upwind scheme. 

For the case 1 or piecewise linear, the solution is  

 , 0 	 ,  , , , ,
2

,  ,  , (2.13)

 
, 1 	 ,  3 , 3 , 3 , 3 ,  

																															 3 1, 0 6 1, 1 3 , 0 2 1, 1 2 , 1  
(2.14)

In matrix form,  
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, 0

, 1
	

1
3 1 3 6 2 2 	

,

, 
	 		 

														
1 1

	3 1 1 1 2 2 2
,  	

,
 

(2.15)

 

 

(a) Data 

 

(b) Solution 

Fig. 2.2 Scheme III (a) Piecewise linear data; (b) Solution obtained by shifting the data a distance  
and calculating the moments of the discontinuous function. 

 

Note the term  above for the case 1. For a general , the function 	  is of degree 
2  in ; as a result, the term of highest degree in the solution is . It will be shown by Fourier 
analysis that the method is accurate to order 2 1 and is stable for 0 1. 

Also note that the method is clearly energy-stable: the -norm of the solution at time  is bounded 
by that of the data at time  since the solution is obtained by an orthogonal projection. 

As the final remark of this section, we discuss the extension of this approach. For the advection case, 
the discontinuity at an interface evolves via the exact shift operator. In the case of systems such as the 
Euler equations, in one spatial dimension, these discontinuities result in some combination of a shock, a 
contact, or a fan. Tracking these waves accurately is extremely difficult. Resolving these waves for the 
multi-dimensional cases appears to be an impossible task. 

3.  Moment Scheme for the Case of One Spatial Dimension 

Formulation. To avoid the exact shift operator—which makes extensions difficult or impossible—we 
take a different path by using a space-time domain and integration by parts together with the observation 
that the space-time fluxes contain the information provided by the shift operator. Consider the scalar 
conservation law 

 0 (3.1)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0.5

1.0

1.5

2.0

2.5

3.0
u

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0.5

1.0

1.5

2.0

2.5

3.0
uCell  j 

Δ  Cell j 1 
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where  is time,  spatial coordinate, and ,  the flux. With the wave speed / , 
(3.1) implies 

 0. (3.2)

On the cell , let  be a test function, i.e., a polynomial of degree . The conservation law in 
weak form is 

 	 	 , 0.  (3.3)

We will set , the Legrendre basis function, later. Thus, the weak form amounts to projecting onto 
. As in the DG formulation, by applying integration by parts to the second term,  

 
∂
∂

, 	
/

/ 0.		 (3.4)

The fluxes  for the boundary term 	
/

/  are chosen to be the upwind ones. At each interface, this 

flux is common for the two adjacent cells and allows the data in these cells to interact. Without this 
common flux, there is no interaction, and the resulting method is inconsistent with physics. 

Integrating in time from  to ∗ ( ∗ will be set to the intermediate time levels as well as the final time 
 later), we obtain 

 

, ∗ 	 	 	 	 ,
/

/

∗

	 		

		
∗

0.  
(3.5)

Denote the surface and volume integral by, respectively, 

 SI
/

/

∗

 (3.6)

and  

 VI
∗

. (3.7)

The problem reduces to the evaluation of SI and VI, 

 , ∗ 	 , SI VI. (3.8)

Here, for  and ∗ , the left hand side above in the local coordinate yields the solution  
‖ ‖ 	 , 

1 whereas the first term on right hand side, ‖ ‖ 	 ,  ‖ ‖ 	 ,  . 

Consider now the case of advection. So far, the current approach is equivalent to the exact evolution 
approach of the previous section. Indeed, with the piecewise polynomial data  at time , the exact 



NASA/TM—2013-218077 9 

space-time solution is , , which has discontinuities along the characteristic lines 
joining the points / ,  and / Δ ,  as shown in Fig. 3.1. The two formulations, one 
by projecting , , and the other by integrating on the space-time cell ,  yield 
identical solutions, which are exact for the data. At first glance, it appears that we have made the problem 
more difficult since the volume integral takes the form 

 VI
∗

. (3.9)

In the previous section, we only deal with a discontinuity at one point in space; here, we have to deal with 
a discontinuity along a line in a space-time domain. However, as will be shown, the term  comes to the 
rescue in a procedure which ignores the discontinuity. 

 

 

Fig. 3.1. Space-time cells ,  and the paths of discontinuities (dark line segments) for the 
case of advection  

 

Time Integration. We proceed by discussing time integration. Due to the term 	in the solution 
as noted in the previous section, we need a quadrature with a degree of precision of 2  in time, i.e., it is 
exact for polynomials of degree 2  or less (note that we only need a degree of precision of 2  since the 
vertical edge of ,  accounts for the additional power in ). Here, we use to the right 
Radau quadrature with 1 evaluation points—consistent with the spatial degree of freedom. Another 
reason for using this quadrature is that the DG method applied to time can be reduced to the Radau IIA 
method (Huynh 2009b), which is a collocation method corresponding to this quadrature. In other words, 
the moment scheme formulated here has the same intermediate time levels and is closely related to the 
implicit Runge-Kutta (RK) scheme resulting from a space-time DG discretization (see §6).  

A brief review of the right Radau quadrature and the associated Butcher matrix is in order (we can also 
employ the left Radau quadrature as in LaSaint and Raviart (1974); the resulting method is, however, 
more complex). Set 1 where  is the number of stages. Using notations from ODE, on the 
interval 0, 1 , let the  right Radau points be denoted by 	 , 1,… ,  where 1. Recall that these 
points result in a quadrature formula on 0,1  that is exact for polynomials of degree 2 1  or less. For 
each , let the corresponding Lagrange polynomials on 0, 1  be denoted by La  and defined by the 
condition that La 0 for all  and La 1: 
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 La . (3.10)

The plots of these functions for the case 2 and 3 ( where 1) are shown in Fig. 3.2. 

 

 

(a) 2 (correspoding	to		 1  

 

(b) 3 

Fig. 3.2 Lagrange polynomials for the right Radau points: (a) Two points 	 1/3, 1, (b) Three 
points 	0.155051, 0.644949	, and 1. 

 

Next, suppose the values of a function  are known at these Radau points: , 1,… , . 
We wish to obtain a quadrature formula for	 , 1, … , . To this end, the polynomial of degree 

1 interpolating , 1, … , , can be expressed as 

 La . (3.11)

Integrating from 0 to , we obtain  

 La . (3.12)

Denote the Butcher matrix of dimension  by . The entries  of  are given by 

 La . (3.13)

These  can easily be obtained by using a software package such as Mathematica. The above two 
equations imply, for each , 

 . (3.14)

Note that for each row , setting 1, we obtain ∑ . Also note that for 1,… , , the 
above quadrature has degree of precision of only . However, for 1, i.e., for the integral from 
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0 to 1, due to the definition of the Radau points, the corresponding quadrature has a degree of precision of 
2 . The column vector  and the matrix  for the case 1 and 2 are, respectively 

 1/3
1

	
5/12 1/12
3/4 1/4 			and					

0.155051
0.644949

1

0.196815 0.0655354 		0.023771
0.394424 0.292073 0.0415488
0.376403 0.512486 		0.111111

. (3.15)

Returning to the conservation law, for the space-time domain , , denote the time level for 
each stage  of the  stages of the above right Radau quadrature by 

 , Δ . (3.16)

These are the stages of a Runge-Kutta type scheme where  ,  . See Fig. 3.3(a) and (b). 

 

Space-Time Solution with No Interaction. Next, we discuss an approximation for the solution on the 
space-time cell ,  with no interaction (NI) i.e., no upwinding. This approximation denoted 
by ,  is a polynomial of degree , which can be a Taylor series around , 	 . The case of 

1 is trivial:  provides  and (3.2), . For a general , in each cell , at time , the solution 
is known and is a polynomial of degree  in , 

 , . (3.17)

From (3.2), we can calculate all the time as well as mixed space-time derivatives up to degree , i.e., , 
, 	 , … at , 	  via the Cauchy-Kovalevsky procedure (Harten, Osher, Engquist, and 

Chakravarthy 1987). The space-time Taylor series expansion around , 	  up to degree  then yields 
,  on , 	 .  

As an alternative to the above Taylor series expansion, we can use the nodal Lobatto points together 
with a RK time stepping with no interaction. For example, consider the case 3. See Fig. 3.3(b). On 

, at time , since the cubic  is known, we can obtain the values at the four Lobatto points via a 
4 4  matrix multiplication. Next, applying the standard 4-stage RK scheme to (3.2) with no 

interaction, we can evaluate the nodal values at time . From the known nodal values for  at  and 
, we can calculate the corresponding  again with no interaction by (3.2). Then, using a Hermite 

cubic interpolation with the two ends at  and , we can evaluate the nodal values accurate to degree 
3 for all intermediate time levels , 

	Δ , 1, 2, 3. Note that this step is inexpensive and 
the equations for either primitive or conservative variables can be employed with the former more 
economical than the latter. 

An observation concerning the case of advection with 0 is in order. We focus, for the moment, on 
only one cell, say,  with the polynomial data . For the space-time domain , , along the 
two interfaces / ,  and / , , the fluxes are identical to those by method of characteristics 
applied to  assuming the domain for  is ∞,∞ . Indeed, both the method of characteristics and 
space-time Taylor series produce the exact solution for the polynomial data. However, when interaction 
comes into play, whereas along the right interface, the upwind fluxes reduces to the result by method of 
characteristics for cell , along the left interface, the values by  at / 	 	Δ , namely, 

/ , , 
/ 	 	Δ , are from outside the cell  and will be discarded by the 
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upwind step. In other words, along / , , the upwind procedure sorts out and employs the values by 
. 

Thus, for general conservation laws, via one of the above two procedures (Cauchy-Kovalevsky or 
explicit RK), for all intermediate time levels ,   of the right Radau type, at each cell interface / , we 
have two values  and  (no interaction). See Fig. 3.3.  These values in turn yield the upwind flux 

/ , ,  . 

 

(a) 1    

 

(b) 3 

Fig. 3.3 Space-time nodal points with space via Lobatto and time via right Radau: (a) 1, and (b) 
3. The number of spatial points, 1, is the same as the number of Legendre basis functions. Along 

each interface, at each Radau intermediate time level, we can obtain the values  and , which in turn 
yield the upwind flux. 

 

Moment Solution. We can now discuss the moment solution. On the space-time domain 
, , with ∗ ,  , switching to the local coordinate  on 1/2, 1/2 , since , (3.8) 

yields 

 

	 ‖ ‖ 	 , 
,  	 ‖ ‖ 	 ,  

																				 			 /
/

, 

	 	
, 

.	 
(3.18)

For the above last two terms, integrate in (normalized) time from 0 to  via the right Radau quadrature 
(3.14), we obtain the following surface and volume integrals: with Legendre index  and time index , 

 SI 	Δ / , ,
/ / , , 	 /  (3.19)

and 

 VI Δ 	 , , .  (3.20)

That is,  

 ‖ ‖ 	 ,
, ‖ ‖ , SI VI . (3.21)

t

x

t

x
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The solution we are seeking corresponds to time level  and Legendre indices 0,… , . 

The surface integral is straightforward. The volume integral is where the difficulty lies. This integral 
must be carried out in a manner that two contrasting requirements hold: (a) the procedure can be extended 
with relative ease to the case of systems but (b) the space-time discontinuity in Fig. 3.1 is somehow 
accounted for. 

What comes to the rescue here is the fact that the degree of  is one lower than that of ; as a 

result, we can successively calculate 	 , 
,  , 	 , 

,  , 	 , 
,  , …, and 	 , 

,   as follows. 

First, for 0, the volume integral vanishes since 0. This fact and (3.21) yield 	 , 
,   for all .  

With 	 , 
,   known, we can calculate 	 , 

,   where 1 as follows. Since (2.6) implies 2, the 

volume integral VI  of (3.20) involves only the projection of  onto 2 . Thus, we need to approximate  
up to  but no higher, which is given by 	 , 

,  . The solution 	 , 
,   can therefore be obtained for all .  

Next, with 	 , 
,   and 	 , 

,   known, we can calculate 	 , 
,   where 2 as follows. Since (2.6) implies 

12 6 , the volume integral VI  of (3.20) involves the projection of  onto 6 . Thus, we 

only need to approximate  up to .  With 	 , 
,   and 	 , 

,   known, we can approximate  by 

	 , 
,  	 	 , 

,  	 , and  by 	 , 
,  	 	 , 

,  	  (by whatever procedure that provides  to 

the same degree as ). The solution 	 , 
,   can then be obtained for all .  

Assuming that 	 , 
,  , …, 	 , 

,   are known, we now calculate 	 , 
,  . Since  is of degree 1, it 

can be expressed as a linear combination of , …, . In fact, in general, 

 2 and 2 , (3.22)

i.e., 

 2 2 ⋯   and   2 2 ⋯ 

Thus, the volume integral VI  by (3.20) involves projecting  onto , and we only need to 
approximate  up to .  Since the solution can be approximated by 	 , 

,  	 ⋯

	 , 
,  	 , the flux  can be approximated by 	 , 

,  	 ⋯ 	 , 
,  	  (again, by 

whatever procedure that provides  to the same degree as ) and the solution 	 , 
,   follows for all . This 

completes the algorithm. 

Note that in the calculation for 	 , 
,  , namely , the last Legendre component  for the above 

successive calculation, we only need to evaluate 	 , 
,  ; the quantities 	 , 

,   where 1,… ,  are not 
needed (we would need them if we use the left Radau or Gauss quadrature or if we use the current 
procedure as a building block in an iterative procedure for the implicit right Radau method). 

Also note that if  is approximated by 	 ,  	 ⋯ 	 ,  	 , there are several ways 
to approximate  up to 	 . One way is by evaluating  where  are the  Gauss 
points and then projecting the polynomial interpolating  onto . 

For the case of advection, the current moment approach is equivalent to the exact evolution approach 
of the previous section. This fact has also been verified by the author via a Mathematica program. 
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For the piecewise linear case, the moment scheme is simple: ,  is a linear function where, with 
 on 1/2, 1/2   and  on 0, 1 , 

 , , 2 , 2 , . 

The extension of the piecewise linear case to the Euler equations is also simple (Huynh 2006). 

 

Algorithm. The moment scheme is summarized below. Assume that the data ,   at time  are given 
for all  and 0,… , .  

(1) In each space-time cell , , obtain  with no interaction by a Cauchy-Kovalevsky 
procedure or an explicit RK with no interaction.  

(2) At each interface / , for each right Radau intermediate time level, calculate the left and right 
values using  and . Obtain upwind fluxes from these two values.  

(3) Successively evaluate , 
,  , , 

,  , , 
,  , …, and , 

,   via (3.21) by calculating the surface integral 
via (3.19) and volume integral via (3.20). This completes the algorithm. 

 

We conclude this section by the following remarks. 

If the upwind fluxes at the interfaces are given (e.g., in an iterative procedure for the implicit right 
Radau time stepping), the above algorithm provides the solution for the space-time cell , . 
This observation shows that the moment scheme can serve as a key building block in an iterative 
procedure for the implicit time-stepping method. 

One way to apply the moment approach to the nodal type of schemes is to transform the nodal values 
into the modal (Legendre) components, carry out the moment calculations, and then transfer back. The 
various transferring, however, involve some costs. The question is whether it is possible to use an 
iteration procedure in the nodal framework with no transferring. 

4   Moment Scheme for the Case of Two Spatial Dimensions 

For the case of two spatial dimensions, the approach of exact time evolution and projection of Section 
2  can be extended in a manner that if the flow is along the diagonal direction, say, from southwest to 
northeast, then the solution recovers the exact data of the southwest cell for the CFL number ,
1,1 . Such an approach must allow for interaction among cells that share a common edge as well as cells 

that share a common corner. Its key drawback is that extension to systems is extremely difficult. 
Therefore, the extension of the moment scheme here allows interaction only among immediate neighbors, 
i.e., cells that share a common edge. The price to pay for this simplification is a reduction in CFL 
condition when the flow is not along the edge direction. 

To proceed, with , , , the 2D conservation law takes the form 

 0. 

Let initial condition be , , 0 , 	. For the Euler equations, , , and  are vectors of four 
entries. With no loss of generality, we consider only the scalar case. Assume that the solution  is 
periodic or of compact support so that boundary conditions are trivial.  
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Denote ,    and   ,  	 . Then 	 ∙  , and the above can be written as 

 ∙ 0. (4.1)

Let the domain of calculation be divided into a non-overlapping unstructured mesh of cells  which 
are quadrilaterals or triangles. On each cell , let the solution 	be approximated by  of degree . If the 
cell is a quadrilateral, we can use either a polynomial in  and  of degree  or less, or we can use tensor 
products of degree . For example, if 1, we can use either a linear polynomial , or 
for the case of tensor products, a bilinear polynomial . 

Using , the fluxes  and  can be approximated by   and  of the same degree and type as . The 
piecewise polynomial functions , , and  can be and usually are discontinuous across cell 
interfaces. 

From here on, unless otherwise stated, we focus only on the approximate polynomials. For simplicity 
of notation, the subscript  is understood: ,  , and  are abbreviated to , , and  when there is no 
ambiguity.  

Let  be a test function on , i.e., a polynomial of the same type as . We require the solution to 
satisfy, for the moment, formally, 

 	 ∙ 0. 

As in the 1D case, integrating by parts and applying the upwind flux for the boundary term to account for 
data interaction, the solution is required to satisfy 

 	   	 ∙ ∙ 0. (4.2)

Integrating in time from  to ∗ , , 

 , , ∗ 	 	 , , SI VI 0	 (4.3)

where the surface and volume integral are, respectively, 

 SI	 ∙
∗

 (4.4)

and  

 VI ∙
∗

. (4.5)

The problem reduces to the evaluation of SI and VI.  

To this end, as in the 1D case, we first obtain  with no interaction by a Cauchy-Kovalevsky 
procedure or an explicit RK with no interaction up to appropriate order. For the case of tensor products, 
we would need to derive time derivatives of degree up to 2  if the Cauchy-Kovalevsky procedure is 
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employed. Next, along each edge, for each right Radau intermediate time level, calculate the left and right 
values using appropriate . Obtain normal upwind fluxes from these two values. 

The surface integral again poses no difficulty. As for the volume integral, we make use the fact that 
both components of , namely,  and  are of at least one degree lower than . As in the 1D case, 

we can evaluate the volume integral and successively calculate the Legendre components ,  ,
,  , ,  ,

,  , 

,  ,
,  , ,  ,

,  , ,  ,
,  , ,  ,

,  , … This completes the algorithm. 

5   Fourier Analyses  

One-Dimensional Case. For the 1D case, consider the advection equation with positive speed , 

 0. 

The cells are 1/2, 1/2 . Denote by  the column vector of 1 components, 

 , , , , … , ,  

where  represents the transpose. Let Δ  be the time step and set Δ . Assume that the data  

are known. The solution  can be expressed as 

  (5.1)

where  and  are  matrices. As examples, for 1, i.e., the linear case, 

	
1

3 1 3 6 2
,

1 1
3 1 1 1 2 2

. 

and, for 2 or the parabolic case, 

	 	
1 1 1 2

3 1 3 6 2 3 1 1 3
5 1 1 2 5 1 1 3 5 30 50 30 6

,		 

and 

1 1 1 1 2
3 1 1 1 2 2 3 1 1

5 1 1 2 5 1 1 1 1 4 4 6 6
. 

Note the highest degree term for 1 is  and, that for 2, . 

 

Stability. Let the wave number be denoted by , – , and the imaginary number, by I 
instead of the standard notation  to avoid confusion with the cell index  later. Assuming the solution is a 
harmonic such that , we obtain the amplification matrix  

  (5.2)

which satisfies, by (5.1), 
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 . (5.3)

With each value of  and , the corresponding matrix  has 1  complex eigenvalues. For 
stability, these eigenvalues must have magnitude no larger than 1. Numerical calculations for these 
eigenvalues for all  tested by this author result in stable schemes provided that 0 1. 

Figures 5.1 show the magnitude of the amplification factors (or eigenvalues) for the case 1 and 
Figs 5.2, the case 2. 

 

 

(a) Principal 
 

(b) Spurious 

Figs. 5.1 Magnitude of the two amplification factors (or eigenvalues) for the case 1. 

 

 

 

(a) Principal (b) Spurious (c) Spurious 

Figs. 5.2 Magnitude of the three amplification factors for the case 2. 

 

 

Accuracy. To calculate the order of accuracy, denote the principal eigenvalue of  by , . 
This value approximates . A scheme is accurate to order  if, for a fixed ,  approximates  
to  for small ,  

 . (5.4)
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In practice, it is difficult if not impossible to derive a Taylor series expression for  when 1. 
Therefore, we obtain the order of accuracy of a scheme by a numerical calculation. First, set 
0.8, say, and  /4. We can calculate the coarse mesh error  

 er , . (5.5)

By halving the wave number, /2 /8 (equivalent to doubling the number of mesh points), the 
corresponding fine mesh error is  

 er , . (5.6)

For a scheme to be m-th order accurate, after one time step, 

 
er
er

2 . (5.7)

That is, 

 
Log

er
er

Log 2
1. (5.8)

Thus, for a scheme to be of order , when we march to a certain final time, doubling the mesh results in 
an error smaller by a factor of 2 . 

It can be verified, as will be shown in the more involved 2D cases, that a moment scheme using 
polynomials of degree  is accurate to order 2 1.  

 

Two-Dimensional Case. We next briefly describe Fourier (Von Neumann) analysis for the 2D case. 
On the domain ),(),(  , consider the advection equation 

 0. 

The cells are the squares , 1/2, 1/2 1/2, 1/2  centered at , . For the case of 
polynomials of degree , the number of Legendre basis functions is 1 2 /2. For the case 
of tensor products, the number of Legendre basis functions again denoted by , is 1 . In 
addition, denote by ,  the column vector of  components, 

 , , , , , , , , , , , , , …  (5.9)

As an example, for 1,  

 , , , , , , , , , , , , . 

Or, for the case of tensor products, 

 , , , , , , , , , , , , , , , , . 
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Set Δ  and Δ . The 2D moment solution can be written as  

 , , , , , , , . (5.10)

Here, , , 	 , , and ,  are  matrices whose entries involve  and . As an example, for 
the linear case (5.9),  

 ,

1

3 1 3 6 2 3 2

3 3 2 1 2
	, 

 

 ,

1

3 1 2 3 2

3 1 3 2 3 6 2

	,			 

and 

,

1 1 1

3 1 1 3 2 2 2

3 1 2 1 3 2 2
. 

 

Stability. Let the wave number in the -direction be denoted by  and in the -direction,  
(involving no partial derivative), and let the imaginary number be denoted by I. Similar to the 1D case, 
replacing ,  and ,  respectively by ,  and , , we obtain the amplification matrix 

 , , , . (5.11)

Consider a fixed value , . For each wave number ,  where –  and – , 
the corresponding matrix  has  eigenvalues. For stability, these eigenvalues must have magnitude no 
larger than 1 for all wave numbers. The domain of all values ,  satisfying this stability condition is 
called the stability region of the scheme. 

Figure 5.3 shows the stability region for a square mesh and polynomials of degree 1,… , 4. As is 
well-known, the CFL limits along the diagonal for the first-order upwind scheme ( 0) is √2/2
0.7071. In the case of the moment schemes, for 	1, … ,4, they are, respectively, 

  0.4714,   0.2859,   0.2190,  and   0.1654. 
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(a) 1 

 

(b) 2 

 

 

(c) 3 

 

(d) 4 

Figure 5.3.  Stability regions for schemes using polynomials of degree . Note that for 3 and 4, 
the stability conditions along the  and  directions are 1, but these conditions reduce very quickly when 
the flow slightly deviates from the axes directions. 

 

Figure 5.4 shows the stability region for a square mesh and polynomials via tensor products of degree 
 where 1,	 2, 3, and 4. The CFL limits along the diagonal for 1,… ,4 are respectively  

 0.4714,  0.2834,  0.2526, and  0.1702. 
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(a) 1 

 

 

 (b) 2 

 

 

(c) 3 

 

(d) 4 

Figure 5.4.  Stability regions for schemes using polynomials via tensor products of degree . 
Again, for 3 and 4, the stability conditions along the  and  directions are 1, but these conditions 
reduce very quickly when the flow slightly deviates from the axes directions. 

 

Thus, the reduction in the CFL condition for flows along the diagonal direction is significant. The 
main reason is that information does not directly communicate among cells that share only one corner. 
That is, for a flow from, say, southwest to northeast, information flows to the cells to the east and the 
north before it can reach the cell at the northeast corner. This difficulty concerning information flow can 
be remedied by using the moment scheme as a procedure to update the solution in an iterative process for 
an implicit space-time DG scheme as will be discussed in the next section. 
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Accuracy. To calculate the order of accuracy, using the notation of the 1D case, denote the principal 
eigenvalue of the amplification matrix  defined in (5.11) by , , , . This principal 

eigenvalue approximates . To find the order of accuracy of the scheme, first, fix , , 

say, , 0.2, 0.1 . For the coarse mesh, set , /4, /6 . We can calculate the coarse 
mesh error  

 er , , , . (5.12)

Next, halving the wave number, set , /8, /12 . A formula similar to the above yields the 
corresponding fine mesh error er . For a scheme to be m-th order accurate, (after one time step)  

 
Log

er
er

Log 2
1 . (5.8)

As can be seen in Tables 5.1 and 5.2, the 2D moment schemes using polynomials either of degree  or 
via tensor products of degree  are accurate to order 2 1.  

 

Polynomial Degree Coarse Mesh Error Fine Mesh Error Order of Accuracy 

1 1.88 10  1.28 10  2.87 

2 2.58 10  4.26 10  4.92 

3 1.83 10  7.47 10  6.94 

4 7.22 10  7.49 10  8.91 

Table 5.1. Errors and order of accuracy of 2D moment schemes using polynomials of degree ; 
, 0.2, 0.1 , coarse mesh , /4, /6 , and fine mesh , /8, /12 . 

 

 

Polynomial Degree Coarse Mesh Error Fine Mesh Error Order of Accuracy 

1 1 8.3 10  5.42 10  2.94 

2 2 3.09 10  4.83 10  5. 

3 3 9.47 10  3.81 10  6.96 

4 4 1.14 10  1.41 10  8.66 

Table 5.2. Errors and order of accuracy of 2D moment schemes using tensor products (degree ); 
, 0.2, 0.1 , coarse mesh , /4, /6 , and fine mesh , /8, /12 . 

Due to the larger degree of freedom, errors for schemes via tensor products are smaller than the 
corresponding errors for schemes via polynomials of degree . 
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6   Implicit Space-Time DG Schemes  

The moment scheme discussed in Section 3 is closely related to the implicit space-time DG method of 
this section. When applying the DG approach to discretize time, as shown by LaSaint and Raviart (1974) 
who employed a quadrature of left Radau type, the result is an implicit Runge-Kutta scheme. It was later 
shown in (Huynh 2009b) that using the FR framework, the right Radau points are a natural choice for 
quadrature points. The resulting DG method is simpler and is identical to a collocation method called 
Radau IIA (Lambert 1991, Hairer, Norsett, and Wanner 1991, Hairer and Wanner 1993). We review the 
DG method and apply the FR approach to time marching to show the close relation between the resulting 
implicit space-time method and the moment scheme. 

Consider the ODE  

 , , (6.1a)

with initial condition 

 . (6.1b)

Here, some of the notations are from ODE; as such, the above  is not related to the flux  of Section 4. 
Next, let Δ  be the time step size and set Δ , 0, 1, 2, ...; the assumption of constant step size is 
only for convenience; in practice, time step sizes can vary. When dealing with time, we use 0, 1  and 

Δ  where  varies on ; thus,  varies on , . 

Assume that the data  at time  is known, we wish to calculate the solution   at . For 
0,  is the initial condition  in (6.1b).  

The DG method seeks to approximate the solution for (6.1) by a function denoted by  which can be 
and usually is discontinuous across each . On , this function is a polynomial of degree 1, which 
is defined by its values at  points at locations corresponding to the stages. Note that when applying these 
time-stepping methods to conservation laws, if  is the degree of the spatial polynomial, the number of 
stages in time is 

 1.  

Due to the property of super accuracy in time discussed later, we could combine parabolic approximation 
in space or 2 with linear approximation in time or 2. Such combinations remain to be explored.  

Assume that the calculation for ,  is finished, and we have the solution  on that 

interval. Thus, the value just to the left of  is known, namely 	–  Recall that the solution can be 

and usually is discontinuous across each . We assume time marches forward, thus, the value at  is 
that from the left (small square of Fig. 6.1), 

 . (6.2)

We wish to calculate  on , , i.e., to obtain 

 . (6.3)
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Fig. 6.1. DG solution  can be and usually is discontinuous across each . The value at  is chosen 
to be that from the left (small squares): 	 . 

 

DG formulation. On , , let  be a set of basis functions for , 1, … , . The 
solution is approximated by  

 . 

Let  be a test function, which is in ; typically,  is one of the basis functions , 1,… , . 
Again on , the weak form for  is, formally (the correct equation is (6.6) or (6.7)), 

 , , . 

Let  be the projection of  onto . Since  varies on , we have , , , i.e., we can 
project first, then apply the inner product. The above implies 

 , , . 

We wish to find  in  such that for all  in , again formally,  

 , , . (6.4)

For the DG method, 	  is allowed to be and is generally different from 	 . By 
applying integration by parts to the left hand side above, 

 , , . 

Concerning the boundary term, there is no ambiguity with test function , but for , since it is 
discontinuous across  and , a more precise expression is  

 . 

To involve the initial condition, however, we replace  in the boundary term by 	  in 
(6.2). Thus, the DG solution  is required to satisfy, for all  in , 

 , , . (6.6)

t

u

uhuh

tn
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Applying integration by parts again to , , 

 	 , , . (6.7)

Note that this time we use 	  for the boundary term .  

Also note that the above, the result of integration by parts twice, is the ‘strong form’ whereas (6.6) is 
the ‘weak form’.  

 

Flux Reconstruction formulation. Our goal is to eliminate the test function in (6.7) so that the 
integral formulation results in a differential one. To this end, we raise the following question: can we find 
a polynomial  on  which possesses the property that, for any  of degree 1 or less,  

 , . (6.8)

If such a polynomial exists, we can combine ,  in (6.7) with ,  and eliminate the test function. 
From (6.7), since  is of degree 1, we require  to also be of degree 1; as a result,  is of 
degree . Applying integration by parts to the right hand side of (6.8), we have 

 , . (6.9)

The above holds if  satisfies,  

 1, 0, (6.10)

and, for all  in ,  

 , 0. (6.11)

Since  is of degree 1,  is of degree 2; moreover,  spans  as  spans . Eq. (6.11) 
implies that  is orthogonal to , i.e., for any polynomial  of degree 2, 

 , 0. (6.12)

Orthogonality to 2 provides 1 conditions; (6.10) provides the other two.  

Let the right Radau polynomial of degree  be denoted by ,   and defined by the conditions that 

,  1 and ,   vanishes at the  right Radau points on . See Fig. 6.2(a). We wish to show that 

 , . (6.13)

That is, (6.10) and (6.12) hold with  replaced by ,  . Indeed, (6.10) is immediate by the definition of 

,  . Next, since ,   is of degree , for any  of degree 2, ,   is of degree 2 1 , and 

,   vanishes at the  right Radau points. In addition, the right Radau quadrature is exact for ,  . 
Consequently, (6.12) holds, and (6.13) follows. 

The answer to the question posed for (6.8) is thus positive. Note that , which corrects for the 
jump at the left boundary, is the right Radau polynomial (vanishing at ). Loosely put, the condition 

1 deals with the jump at the left boundary whereas (6.12) together with 0 implies 
that away from the left boundary,  approximates the zero function. 
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We now return to our task of eliminating . With  defined above, ′, . Consequently, 
by (6.7), 

 	 ′, , , . (6.14)

What is crucial here is that  can be factored out and canceled and, since 	 ,  

 ′ . (6.15)

Therefore, 	  is a polynomial of degree  whose value at  is, by (6.10), 

 	 . (6.16)

Thus, to deal with the jump 	 	 	  at , we set 

 . (6.17)

See Fig. 6.2(b). Differentiating  and employing (6.15), we obtain 

 , . (6.18)

The function  is the key idea of FR. On , , assume that  which does not match the 
boundary condition  is given. We can add the correction term 	  to  as in (6.17) so 
that the resulting  takes on the left boundary value , does not alter the value , and 
retains the property of ‘best possible’ approximation to . The function  is continuous across cell 
boundaries (as opposed to  which is discontinuous). To put it differently,  is of degree ;  is of 
degree 1 determined by 2 conditions; two conditions are known, namely,  and 

	 ; the remaining 1 conditions are given by the requirement that the 
projection of  and  onto  are the same. This last requirement is the result of the fact that  is 
orthogonal to 1 by (6.12). 

Denoting the  right Radau points on  by , , 1,… ,  where , , . See also Fig. 
3.3. Since  vanishes at these points, (6.17) implies 

 , , . (6.19)

By employing these Radau points as collocation points (or quadrature points), (6.18) leads to 

 , , , , . (6.20)

Here, we approximate , which is of degree 1, by using the  values , , 	 , , 
1,… , .  

In summary, to calculate the DG solution, we first obtain the polynomial  by solving the implicit 
equations (6.20); here,  is of degree  interpolating the 1 values at  and at the  right Radau 
points:  and , , , 1,… , . The DG solution  of degree 1 is defined by 
the values  at these  right Radau points. 

The scheme defined by (6.20) is identical to an implicit collocation Runge-Kutta scheme using the 
right Radau points and accurate to order 2 1 2 1 called Radau IIA (Lambert 1991, Hairer, 
Norsett, and Wanner 1991). 



NASA/TM—2013-218077 27 

 

 

(a) Radau polynomial ,    

 

(b)  and  

Figure 6.2. (a) The correction function , i.e., the right Radau polynomial of degree 3 on 
0,1 ;  (b)  is of degree 1 2 and discontinuous across ;  is of degree 3, continuous 

across , and defined by: , 	 , and the projections of  and  onto 
 (providing 1 conditions) are the same.  

 

We now discuss the relation between the current implicit time stepping and the moment scheme 
(explicit time stepping) of Section 3. For the conservation law 0, with the same spatial 
discretization using the Legendre polynomial, the key difference between the two time stepping methods 
is the following. For the moment scheme, the Cauchy-Kovalevsky procedure, i.e., the space-time Taylor 
series expansion with no interaction denoted by  applies. For the implicit scheme, this expansion must 

be replaced by the solution , 
,   itself; recall that the Legendre components correspond to 0,… , , 

and the time stages, 1,… , . As such, the moment method of updating the solution can be employed in 
an iterative manner to calculate the implicit solution. This subject, however, is beyond the scope of the 
current paper. 

7.  A Limiting Technique  

As is well-known, high-order methods generate oscillations near a shock or a discontinuity. One way 
to avoid oscillations is to limit the data so that it is not ‘too steep’ before updating. The problem with 
limiting is that it can cause a loss of accuracy near extrema. We explore ideas that that can suppress 
oscillations near shocks while preserving accuracy near extrema here. The limiting procedure below is 
designed for the piecewise linear case with one spatial dimension.  The procedure employs the techniques 
introduced in (Huynh 1995) and (Suresh and Huynh 1997) but has a stencil of only three cells and is 
simplified by requiring that the magnitude of the slope lies in a certain range.  

To proceed, assume that ,   and ,   are given for all . We abbreviate the cell average values: 

 , . 

As discussed after (2.9), the first moment ,   represents half of the normalized slope so that the value at 
the right interface of cell  is ,  ,  . Next, set  

 	 , ,  (7.1)

and 
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 	 2min | |, | | .  (7.2)

The limit  for the normalized slope is similar to Van Leer's limit (1977) except that we use the 
magnitudes. It can suppress oscillations near a discontinuity, but has the drawback of causing a loss of 
accuracy near extrema.  With 2 ,   representing the normalized slope, if 

 2 , , (7.3)

limiting does not alter the slope, and we move on to the next  index. At most of the smooth regions of the 
flow, the above condition is satisfied; thus, limiting is typically needed only for a small number of cells. 

If (7.3) does not hold, the cell is near a discontinuity or an extremum, and the following calculations 
are carried out. Our goal is to enlarge the limit in a manner that near a shock, it reduces to (7.1), but near 
an extrema, it is larger and provides enough ‘room’ so that the original slope is not altered. To put it 
differently, at smooth regions, the results by the moment or DG schemes are highly accurate and should 
not be altered. 

As will be shown by numerical examples, the moment scheme produces, for each cell, a slope that is 
downwind biased if  is near 0, and upwind biased is  is near 1. Therefore, we take extra care to account 
for this slope variation. 

For any real numbers  and , let minmod ,  be the median of , , and 0, 

 minmod ,
1
2
sign sign min | |, | | .  

At interface 1/2, set  

 /2,							 , , ,  . (7.4)

Loosely put, we use  as a pivot;  is from the left, and , the right; typically, near a smooth 
extrema,  and  are of the same sign and relatively close to each other. Set 

 minmod , .  (7.5)

At interface 1/2, set  

 /2,							 , , ,  , 

and 

 minmod , .  (7.6)

Near a smooth extremum,  and  are typically of the same sign and relatively close to each other. 
For the cell , set 

 |minmod , |, max | |, | | . (7.7)

Thus,  and  are also relatively close to each other near a smooth extremum. Near a discontinuity, 
however, they are far apart. With ‘ra’ short for ratio and ‘ap’ for accuracy preserving, set 
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 10
, 6 .  (7.7)

Note that  is a non-dimensional quantity. Near a discontinuity, it is close to 0; near an extremum, it is 
relatively close to 1. Therefore,   provides ‘room’ for the interface value near a smooth extremum. 
Next, set 

 	 min | |, | | , 				 2 , max , 	 .	 (7.8)

Note the factor 2 accounts for transferring a quantity of type  to type . Finally, limit ,   by 

 ,  	← 	 sign , min | , |, /2 .  (7.9)

Note that if (7.3) holds and we still apply the above limiting procedure, the result recovers the original 
,  . Thus, (7.3) only serves the purpose of saving computing time; whether it is applied or not, the final 

solution is the same. 

8.  Numerical Results  

The following preliminary numerical tests show the results by the piecewise linear moment (or upwind 
moment) scheme. Recall that for 1D advection, the scheme is identical to Van Leer’s scheme 3. 

The first test is for an advection with constant speed 1. The initial condition is a sine wave on the 
domain 0, 1  with 6 cells and periodic boundary conditions. The continuous (red) curve represents the 
exact solution, the dots the cell average numerical solutions, and the line segments, the piecewise linear 
solutions. Figs. 8.1 and 8.2 show the following behavior of the scheme: for each CFL number, the scheme 
has a ‘preferred mode’ or eigenvector. This eigenvector corresponds to a piecewise linear function with 
slopes that are downwind biased if  is close to 0, and upwind biased if  is close to 1. 

Figs. 8.1 shows the results with 0.1. For small , the solution ‘likes’ downwind biased slopes in 
the sense that no matter what kind of slopes we start with, the solution will turn them into downwind 
biased slopes after a few time steps. In (a), for each cell , we start with slopes biased in the ‘wrong’ 
direction, i.e., upwind biased slopes defined by the exact interface value /  and exact cell average 
value . Fig. 8.1(c) shows the solution after 10 time steps; the wave travels a distance of one cell. At the 
maximum, the slope is now slanted downward, opposite to the initial slope in (a). In fact, in (b), after just 
4 time steps, the solution already exhibits this ‘preferred mode’ for the slopes: downwind biased for small 

. Fig. 8.1(d) shows the solution after 60 time steps; the wave advects 1 period. Comparing (a) and (d), 
again note the switch in bias of the slopes. 

Figs. 8.2 shows the results with a CFL number of 0.9677, which is the exact opposite compared with 
Figs. 8.1. For CFL number close to 1, the solution ‘likes’ upwind biased slopes. We again start with 
slopes biased in the ‘wrong’ direction, i.e., downwind biased slopes defined by the exact cell average 
value  and exact interface value /  as shown in Fig. 8.2(a). After 31 time steps, the wave travels a 
distance of 30 cells, i.e., the profile advects 5 periods. The solution is shown in Fig. 8.2(b), where the 
slopes are upwind biased.  

The above property of biasing toward the upwind or downwind sides holds true for higher-order as 
well ( 1). In that case, the 1 right Radau and left Radau points come into play in a manner similar 
to the linear case above. (The upwind biased linear functions in Fig.8.1(a) interpolate the values at the two 
left Radau points for each cell, and the downwind biased ones in Fig.8.2(a), the values at the two right 
Radau points.) 
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(a) Data (0 time steps) (b) Solution after 4 time steps 

(c) Solution after 10 time steps (d) Solution after 60 time steps 

Fig. 8.1. CFL number 0.1. The continuous (red) curve represents the exact solution. (a) Piecewise 
linear data with slopes biased in the ‘wrong’ direction, i.e., upwind biased (slanted upward near the 
maximum); (b) after just 4 time steps, solution exhibits a ‘preferred mode’ for the slopes, which is 
downwind biased since  is close to 0; (c) solution after 10 time steps; the wave travels a distance of one 
cell; and (d) solution after 60 time steps; the wave advects 1 period. 

 

 

(a) Data (b) Solution 

Fig. 8.2. CFL number 0.9677, number of time steps 31, distance of advection 5 periods. The 
continuous (red) curve represents the exact solution. (a) Piecewise linear data with slopes biased in the 
‘wrong’ direction, i.e., downwind biased, or slanted downward near the maximum; (b) the solution 
exhibits a ‘preferred mode’ for the slopes, which is upwind biased for   close to 1. 
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Note that the solution in Fig. 8.1(d) is damped more than that in Fig. 8.2(b) in spite of the fact that the 
wave travels much further in the latter. The reason is that for Fig. 8.2(b), the error associated with the 
CFL number of 0.9677 is small ( 1 has no error), and the number of time steps is only half that of 
Fig. 8.1(d). In other words, the errors accumulate more in Fig. 8.1(d) due to the larger number of time 
steps. Since 1 has no error, for the moment scheme (as opposed to the case of RK time stepping), to 
minimize error, we take time steps as large as possible.  

Note that if we use piecewise linear DG with RK time stepping, the solution behaves in a manner 
similar to that of Fig. 8.1, i.e., it ‘likes’ downwind biased slopes. The moment scheme, however, has this 
peculiar property of shifting the slopes it ‘likes’ to upwind biased when  is close to 1. It appears difficult 
to devise a semi-discrete formulation with this shifting ability. 

The second test is again advection. The initial condition consists of a Gaussian, a rectangular, and a 
semi-ellipse wave on the domain 0, 1  with 100 cells and periodic boundary conditions. The CFL 
number is .8, and the final time is 1, i.e., the profile advects 1 period after 125 time steps. The 
solutions by the standard upwind scheme using the Van Albada limiter and the upwind moment scheme 
using the limiting procedure in Section 7 are shown in Fig. 8.3. The dots represent the cell average values. 
Note that the standard upwind solution in (a) has a loss of accuracy (only first-order accurate) near 
extrema, and discontinuities are smeared. The upwind moment solution has no loss of accuracy near 
extrema, and discontinuities are resolved with four points. 

 

 

(a) Standard upwind scheme  

 

(b) Upwind moment scheme 

Fig. 8.3. Advection problem; 125 time steps with 0.8; distance travelled: 1 period; (a) solution by 
standard upwind scheme with Van Albada limiter; (b) solution by the moment scheme with the new 
limiter. 

 

The next test has both shocks and local extrema (Shu and Osher 1989). On 1, 1 , a moving Mach 3 
shock interacts with sine waves in density described by 

 , ,
3.857, 2.629, 10.333 , 1 0.8

	 1 0.2 sin 5 x , 0, 1 , 0.8 1
.	 (7.9)

The final time is 0.36. Fig. 8.4 shows the results with 300 cells by standard upwind (with Van 
Albada limiter) and the upwind moment scheme. Here, for upwind moment, limiting is applied to the 
characteristic variables. The solid lines represent the solution with 3600 cells by the standard upwind 
scheme. Again, the upwind moment solution is highly accurate, and accuracy is preserved near extrema. 
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Fig. 8.4. Shu and Osher’s problem. The upwind moment solution is highly accurate: the shock is well 
captured and there is no loss of accuracy near extrema. 

 

The last test is the (2D) oblique shock problem  (Yee, Warming, and Harten 1983). The domain is 
0, 4 0, 1 . The boundary conditions are: left, inflow with , , , 1. , 2.9, 0. , 1/1.4 ; top, 
1.7, 2. 6193, .5063, 1.5282 ; bottom, solid wall; right, outflow. The rectangular uniform mesh is 
80 20. Here, the limiter is applied in the  and  directions when needed (to the characteristic 
variables). Figure 8.5 shows (a) pressure distribution result by the upwind moment scheme and (b) 
pressures along 0.475 by the upwind moment and the standard upwind schemes. The solid line 
represents the exact solution. Again, the upwind moment solution is highly accurate. It appears that the 
slope update via moment calculation can ‘turn’ faster due to the compact stencil compared to the slope 
update via standard interpolation using neighboring data. For this case, compared with the standard 
(simplified) second-order upwind scheme with Van Albada’s limiter, computing cost increases by 
roughly a factor of five. 

 

 

 

Fig.8.5 (a) Oblique shock; pressure distribution by upwind moment scheme. 
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Fig.8.5 (b) Oblique shock solutions along 0.475 

 

4.  Conclusions and Discussion  

In conclusion, two new high-order space-time schemes for conservation laws were introduced: the first 
is explicit and the second, implicit. The explicit method called the moment scheme achieves a CFL 
condition of 1 for the case of one-spatial dimension regardless of the degree of approximation. Fourier 
analyses for the one and two-dimensional cases were carried out. The moment scheme is accurate to order 
2 1 if the solution is approximated by piecewise polynomials of degree . The implicit method is a 
simplified but optimal version of the discontinuous Galerkin scheme applied to time discretization. It 
reduces to a collocation implicit Runge-Kutta method using the right Radau points called Radau IIA. The 
explicit and implicit schemes are closely related since they employ the same intermediate time levels, and 
the former can serve as a key building block in an iterative procedure for the latter. A limiting technique 
for the piecewise linear scheme that can suppress oscillations near discontinuities while preserving 
accuracy near extrema was presented. Preliminary numerical results were shown. 

Whereas the current findings are encouraging, further research on both time-stepping and limiting is 
needed.   
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