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Abstract. Popular high-order schemes with compact stencils for Computational Fluid Dynamics 

(CFD) include Discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV)  

methods. The recently proposed Flux Reconstruction (FR) approach or Correction Procedure using 

Reconstruction (CPR) is based on a differential formulation and provides a unifying framework for these 
high-order schemes. Here we present a brief review of recent developments for the FR/CPR schemes as 

well as some pacing items. 

1.  Introduction 

In the field of Computational Fluid Dynamics (CFD), low-order methods are generally robust and 
reliable; as a result, they are routinely employed in practical calculations. For the same computing cost, 

high-order methods can provide considerably more accurate solutions, but they are more complicated and 

less robust. The need to improve and develop new high-order methods with favorable properties has 

attracted the interest of many researchers as evidenced by the recently held First (2012) and Second 
(2013) International Workshops on High-Order CFD Methods. 

The Discontinuous Galerkin (DG) method is currently among the most widely used high-order 
numerical methods for solving the compressible Navier-Stokes equations on unstructured meshes. It was 

introduced for the neutron transport equation by Reed and Hill (1973), analyzed by LaSaint and Raviart 

(1974) and developed and made popular for fluid dynamics equations by Cockburn, Shu, Bassi, Rebay, 

and others (see e.g., Cockburn, Karniadakis, and Shu 2000, Bassi and Rebay 1997a,b, Cockburn and Shu 

2005, 2009, Shu 2012, and the references therein). Efficient DG schemes storing data at nodal points 

known as nodal DG methods can be found in (Hesthaven and Warburton 2008).  

Alternative approaches to high-order accuracy employing the differential form (as opposed to DG 

which employs the integral form) have been proposed. Kopriva and Kolias (1996) pioneered this 
approach with the staggered-grid method on quadrilateral meshes. It was extended to triangular meshes 

by Liu, Vinokur, and Wang (2006) and named spectral difference (SD). Solutions for a wide range of 

problems by these methods can be found in (Wang et al., 2007 and Liang et al. 2009a and 2009b). 

Another class of schemes called spectral volume (SV) presented by Wang, Zhang, and Liu (2004) is 
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based on the idea of subdividing each cell into subcells or control volumes in a structured manner. A 

review of these as well as other types of high-order schemes can be found in (Wang 2007).  

Recently, an approach to high-order accuracy with the advantage of simplicity and economy called 

flux reconstruction (FR) was introduced in (Huynh 2007, 2009a). The approach amounts to evaluating the 

derivative of a discontinuous piecewise polynomial function by employing its straightforward derivative 

estimate together with a correction, which accounts for the jumps at the interfaces. The FR framework 
unifies several existing schemes: with appropriate choices of correction terms, it recovers DG, SD, as well 

as SV, and the FR versions are generally simpler and more economical than the original versions. In 

addition, the approach results in numerous new methods that are stable and super accurate, i.e., more 

accurate than expected (also known as super convergent). It was applied to ordinary differential equations 

in (Huynh 2009b), and the result is the Radau IIA collocation method. 

Whereas extension to a quadrilateral mesh is straightforward via tensor product, that for unstructured 

triangular meshes is nontrivial since tensor product no longer applies. Here, Wang and Gao (2009) 

showed that the derivative correction can be extended without the reconstruction concept. The resulting 
method was applied to solve the 2D Euler equations and named LCP (lifting collocation penalty). 

Extension to the 2D Navier-Stokes equations on meshes of mixed elements was carried out in (Gao and 

Wang 2009) and (Gao, Wang, and Huynh 2013). Extension to the 3D Euler and Navier-Stokes equations 

on mixed meshes was presented in (Haga, Gao, and Wang 2010, 2011, and Wang, Gao and Haga 2011) 

and to dynamic meshes by Yu, Wang, and Hu (2012). It was shown in (Huynh 2011) that the 
reconstruction concept applies to triangles as well. Due to the tight connection between FR and LCP, the 

involved authors combined the names and call them the CPR method (Correction Procedure via 

Reconstruction). PnPm-CPR schemes for the Navier-Stokes equations were studied in (Shi et al. 2012). A 

modification to assure that the resulting method is conservative was presented by Gao and Wang (2013). 

Adjoint-based error estimation and hp-adaptation were carried out in (Shi and Wang 2013), and 
comparisons for various types of schemes versus CPR were discussed in (Yu and Wang 2013). 

A mathematical foundation for the FR approach was recently provided by Jameson (2010), who 

proved that a particular SD scheme (recovered via FR) is energy-stable for 1D linear advection. Vincent, 
Castonguay, and Jameson (2011a) subsequently extended this result, and proved that a one-parameter 

family of FR methods is energy-stable for linear advection. This family, referred to as Energy Stable Flux 

Reconstruction (ESFR) or Vincent-Castonguay-Jameson-Huynh (VCJH) schemes, includes a nodal DG 

method, the SD scheme previously identified by Jameson as being energy-stable, and the ‘  ’ FR scheme. 

In further theoretical studies, VCJH schemes were extended to linear advection problem on 2D triangular 

grids by Castonguay, Vincent and Jameson (2012), to linear-advection-diffusion problem in 1D by 

Castonguay et al. (2013), and to linear-advection-diffusion problem on 2D triangular grids by Williams et 
al. (2011) and Williams et al. (2013). Performance of VCJH schemes was also investigated using von 

Neumann analysis by Vincent, Castonguay and Jameson (2011b), and issues of nonlinear stability were 

discussed by Jameson, Vincent and Castonguay (2012). In the latter, it was shown that the location of the 

solution points is critical in terms of controlling aliasing driven instabilities .  

Next, we discuss some recent additional contributions to the development of FR/CPR. Suppressing 

oscillations near shocks via localized artificial diffusivity or LAD was carried out in (Miyaji 2011) and 

(Haga et al. 2013). In the latter, FR methods for body-fitted Cartesian unstructured grids were also 

developed. Extensions of a particularly simple FR/CPR scheme called    to the Navier-Stokes equations 

on moving and deforming domains were presented by (Liang, Miyaji, and Zhang 2013). A comparison of 
computational efficiencies of SD and CPR methods were carried out in (Liang, Cox, Plesniak 2013). 

Applications to turbulent internal flows for turbomachinaries and mitigation of aliasing errors were 

discussed in (Lu, Yuan, and Dawes 2012 and Lu, Liu, and Dawes 2013). An interface element approach 

dealing with non-conforming polynomials together with p-adaptation for viscous compressible flow 

simulations was elaborated in (Cagnone and Nadarajah 2012, Cagnone, Vermeire, and Nadarajah 2013). 

NASA/TM—2013-218078 2



 

In addition, an implicit large eddy simulation (ILES) solver was developed for CPR scheme using a third-

order singly diagonal implicit Runge-Kutta scheme by Vermeire, Cagnone, and Nadarajah (2013).  

In this paper, we present a brief review of recent developments for the FR/CPR schemes as well as 
some key pacing items. Basic concepts of the DG and FR methods and their relations for a simple 

integration problem are presented in Section 2. Section 3 deals with conservation laws including the 

diffusion equation. Section 4 discusses 2D and 3D extensions of FR methods. Stability proofs are 
sketched in Section 5. Section 6 contains representative numerical results. Additional recent and ongoing 

research is described in Section 7. Some pacing items and areas for future research are discussed in 

Section 8. Finally, conclusions and discussion are presented in Section 9.  

2.  A Simple Integration Problem  

We present the key ideas of both the integral and differential formulations and their relations using the 
following simple integration problem. On         , solve 

                         . (2.1) 

The exact solution is  

              ∫       
 

  
   

The standard DG formulation is concise and results in a matrix equation discussed later, but it does not 

convey some key properties of the solution. Here, we will show that the DG solution    of degree     
can be obtained as follows. First, project   onto the space of polynomials of degree     resulting in   ; 

next, set         ∫        
 

  
; thus,   is of degree  . The solution    is determined by the values of 

  at the   right Radau points (more on these points later).  

Examples. The proof for the above DG solution will be carried out after the following two examples, 

which convey the behavior of solutions. For the first example, find the linear DG solution of 

                      . (2.2) 

By the above solution procedure, the linear projection of   is        . Next,        

∫     
 

     . The two right Radau points are      and  . The linear DG solution is    
 

 
  

 

 
  

shown in Fig. 2.1(a). 

The second example is: find the cubic DG solution for 

                       . (2.3) 

Here, the cubic projection of   is         ; next,                  . The cubic DG solution is 

determined by the values of   at the four right Radau points shown in Fig. 2.1(b). 

In both examples,   provides an approximation one degree higher than   , and the values for both at 

the   right Radau points are the same. For this integration problem, since the ‘wind direction’ is unique, 

from left to right due to   , the polynomial   is well defined. For the case of the Euler equations, 

however, the ‘wind direction’ is not unique and the definition of   becomes unclear. As will be shown, 

the FR technique of constructing   can still be applied to the fluxes. Also note that the gain in accuracy at 
the Radau points for the DG method was studied in (Adjerid et al. 2002) in the context of error estimates. 
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(a) 

 

(b) 

Figs. 2.1 (a) Linear DG solution for problem (2.2) and (b) cubic DG solution for problem (2.3). 

 

Preparations. Projections and orthogonal polynomials play an important role. Therefore, they are 

briefly reviewed. With any nonnegative integer  , let    be the space of polynomials of degree   or 
less. For any two functions   and   on         , denote their inner product by 

       ∫            
 

  
   

The    norm of   is 

 ‖ ‖     (∫ (    )
 

 

  
  )

   

   

A polynomial v is orthogonal to    on   if, for each l,      , 

 (    )  ∫          
 

  
     

The criterion of orthogonality to    provides     conditions.  

Legendre Polynomials. For each integer    , the Legendre polynomial    on   is defined as the 

unique polynomial of degree   that is orthogonal to      and        . The Legendre polynomials 
are given by a recurrence formula (e.g., Hildebrand 1987): 

                         

and, for    , 

       
    

 
          

   

 
          

The first few Legendre polynomials are 
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They are plotted in Fig. 2.2(a).  

Useful properties of the Legendre polynomials are listed below. If     , then    is orthogonal to 

  . Next,    is an even function (involving only even powers of  ) for even  , and an odd function for 

odd  . For all  ,  

                                

In addition, 

 ‖  ‖          
 

    
    

For later use, the derivative values at the end points are 

   
      

             

 
           

     
      

 
  (2.4) 

The zeros of    are the k Gauss points on       .  

Denote the projection operator onto    by    . Then for any function  , 

        ∑
      

 ‖  ‖    

 

   

  (2.5) 

 

 

(a) 

 

(b) 

Figs. 2.2(a) Legendre polynomials and (b) right Radau polynomials . 

 

Radau polynomials. The right Radau polynomial of degree   (   ) is defined by 

       
     

 
           (2.6) 
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The zeros of       are the k right Radau points on       . The first few right Radau polynomials are 

plotted in Fig. 2.2(b). The above definition implies that       is orthogonal to      since both    and 

     have this property. In addition,  

                                       (2.7) 

Note that      , which is of degree  , is defined by the above two conditions together with the     

conditions that it is orthogonal to     . We can think of       as a polynomial approximating the step 

down function   defined by         and        for       . At     ,  

      
        

  

 
                    

     
       

 
  (2.8) 

The above expression for      
      is related to the time step size restriction (or CFL condition) 

proportional to     .  

Lobatto polynomials. The Lobatto polynomial of degree   (   ), is defined by 

              (2.9) 

The zeros of the Lobatto polynomial of degree k are the k Lobatto points; they include the two boundaries 
1 . The first few Lobatto polynomials are shown in Fig. 2.3(a).  

 

 

(a) 

 

(b) 

Figs. 2.3 (a) Lobatto polynomials and (b) Lagrange polynomials for the four Lobatto points.  

 

Lagrange polynomials. Let   be an integer   . For the nodal methods (e.g., Hesthaven and 

Warburton 2008), denote the nodes or solution points on   by   ,        , which are typically the 

Gauss or Lobatto points. Let    be the associated Lagrange polynomials, i.e., for each k,    is of degree 
    taking on value 1 at    and 0 at all other   , 

       ∏
    

      

 

   
   

    (2.10) 
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Lagrange basis functions for the case of four Lobatto points are shown in Fig. 2.3(b).  

DG formulation. Let the basis functions    for      be either the Lagrange polynomials    (nodal 
DG) or the Legendre polynomials (modal DG)     ,        . The solution is approximated by  

     ∑      

 

   

  (2.11) 

Let   be a test function, which is in     ; typically,   is one of the basis functions   ,        . 
Then the weak form for (2.1) or      is, formally (the correct equation is (2.16) or (2.17)), 

             . (2.12) 

Let    be the projection of   onto     :             via (2.5) with      . Since   varies on 
    , we have             , i.e., we can project first, then apply the inner product. The above implies 

              . (2.13) 

 Going back to (2.1), the solution of       and          is 

         ∫        
 

  
  (2.14) 

Clearly,   is of degree   since    is of degree    . But the solution we are seeking is    of degree 

   . The question is: how do we obtain    from  ? Or, to put it differently, how does the DG solution 
   relate to  ?  

To answer the above question, we first define the DG solution. For the DG method,        is allowed 
to be and is generally different from   . Applying integration by parts to the left hand side of (2.13),  

        
                  (2.15) 

To involve the initial condition, we replace        in the boundary term above by   . Thus, the DG 

solution    is required to satisfy, for all   in     , 

                                 . (2.16) 

Applying integration by parts again to        , 

                       
           . (2.17) 

This time, for the boundary term,        is employed. The above, the result of integrating by parts twice, 

is the ‘strong form’ whereas (2.16) is the ‘weak form’ (Hesthaven and Warburton 2008). The solution can 

be obtained by solving either (2.16) or (2.17) where    is of the form (2.11), and   is replaced by   , 
       ; the result is a matrix equation for the   unknowns   . 

Flux Reconstruction formulation. Our goal is to eliminate the test function in (2.17) so that the 

integral formulation results in a differential one. To this end, we raise the following question: can we find 
a polynomial       on   which possesses the property that for any   of degree     or less,  

                (2.18) 
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If such a polynomial exists, we can combine    
     in (2.17) with        and eliminate the test function. 

From (2.17), since    is of degree    , we require    to also be of degree    ; as a result,   is of 

degree  . Applying integration by parts to the right hand side of (2.18), we have 

                                    (2.19) 

The above holds if   satisfies,  

                           (2.20) 

and, for all   in     ,  

           (2.21) 

Since   is of degree    ,    is of degree    ; moreover,    spans      as   spans     . The above 
condition implies that   is orthogonal to     , i.e., for any polynomial   of degree    , 

          (2.22) 

Orthogonality to      provides     conditions; (2.20) provides the other two. Loosely put, the 

condition         deals with the jump at the left boundary whereas the above together with        

implies that away from the left boundary,   approximates the zero function. By the discussion after (2.7), 
  is the right Radau polynomial, 

          (2.23) 

Thus, the answer to the question posed for (2.18) is positive. Note that      , which corrects for the 

jump at the left boundary, is the right Radau polynomial (vanishing at    ).  

We now return to our task of eliminating  . With   as above,              . Thus, by (2.17)  

                       
           . (2.24) 

What is crucial here is that   can be factored out and canceled: 

                      . (2.25) 

Therefore,                 is a polynomial of degree   whose value at the left boundary is  

                           . (2.26) 

The above two conditions imply, with   defined by (2.14), 

                  . (2.27) 

Next, denoting the   right Radau points by   ,        . Since   vanishes at these points, 

             . (2.28) 

Thus, with   of degree   defined by (2.14), the DG solution    of degree     is defined by the values 

  at the   right Radau points. 
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The key idea of FR is the following. Given    which does not match the boundary condition   , we 
can add the correction term              to    so that the resulting   takes on the left boundary value 

  , does not alter the value      , and retains the property of ‘best possible’ approximation to   . The 

function   is called the ‘continuous flux function’ as opposed to   , which is discontinuous across the 
cell boundaries. It turns out that for conservation laws, there are numerous ways to define   so that the 

resulting scheme is stable.  

For the ordinary differential equation (ODE)                     , there is only one ‘wind 

direction’, i.e.,   moves forward. The above argument shows that for such a case, it is sensible to use the 

  right Radau points as collocation or quadrature points, which implies making use of  . The resulting 
scheme is identical to an implicit collocation Runge-Kutta scheme called Radau IIA (Huynh 2009b). 

3.  FR/CPR Methods for the One-Dimensional Case  

Conservation laws. Consider the conservation law  

         (3.1) 

with initial condition                 and the flux   depends on  . The solution   is assumed to be 

periodic or of compact support so that boundary conditions are trivial.  

Let the domain of calculation be divided into (possibly nonuniform) cells or elements    ,          

Denote the center of    by    and its width by   . With   varying on           and   on    , the linear 

function mapping   onto    and its inverse are 

                   and                    .  

In addition, denote the nodes or solution points on  , which are typically the Gauss or Lobatto points, by 
   ,        . They relate to the nodes on    by  

                       (3.2) 

The global derivative, e.g.,   , can be obtained from the local one via the chain rule  
 

  
 

 

  

 

  
 . 

Whereas the FR approach can be formulated in modal form, for simplicity, we discuss only the nodal 

form. On   , with the Lagrange basis functions                 ,        , let the solution be 

approximated by a polynomial of degree     denoted by   , 

     ∑            

 

   

  (3.3) 

Here,        depends on  , and       , on  .  

At time level   , suppose        are known for all    and   . We wish to calculate           

             at      , i.e., to calculate         . Then, we march in time by, say, a Runge-Kutta method. 

With               , let       be the polynomial of degree     interpolating      ,        , 
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     ∑            

 

   

  (3.4) 

The flux polynomials      form a function, which is generally discontinuous across cell interfaces and    

is called the discontinuous flux function. Note that (  )
 

 involves no interaction of data among cells. 

To account for interaction, we construct a continuous flux function, which approximates the 

discontinuous function in some sense, and then calculate its derivative. The continuous flux function will 

be obtained by adding a correction to the discontinuous one. As a result, we still need the derivative of the 
discontinuous function. At each   ,        , it is easy to derive the derivative matrix       where 

  (  )
    

 ((  )
 

)
 

 ∑           

 

   

  (3.5) 

Instead of differentiating    as above, we can use the chain rule 

 (  )
    

  (     )(  )
    

. (3.6) 

Wang and Gao (2009) found that for the Euler equations, the chain rule yields more accurate solutions.  

At each interface       , set 

                                                    (3.7) 

From these two values, we can obtain a common flux (shared by the two adjacent cells) denoted by 
           . For advection problems, the common flux is typically an upwind flux; for diffusion problems, 

however, it is usually a centered quantity. This flux is often called the ‘numerical flux’ by the DG 

community. 

Next, we reconstruct the flux by a continuous function   such that on each cell   ,   is a polynomial 

denoted by    approximating the discontinuous flux function   . To assure continuity across cells,    is 

required to take on the common flux values at the two interfaces: 

   (      )                             (      )               (3.8) 

In addition,    is required to be of degree   so that its derivative is of degree    , matching that of   . 

Switching to the local description,  

                                                                             (3.9) 

Therefore,       takes on the above prescribed left and right correction values, is of degree  , and 

approximates the zero function in some sense. 

We now separate the prescription of the correction at the left interface from that of the right. On  , let 
    be the correction function for the left boundary defined by  

                         (3.10) 
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and     is a polynomial of degree   approximating the zero function in some sense. Let     be the 

correction function for the right boundary defined by reflection 

                 (3.11) 

For the left interface       , the polynomial  

                                    (3.12) 

provides a correction to       by changing the flux value at this interface from        to             while 

leaving the value at the right interface unchanged, namely      . Next, the polynomial 

                                                                      (3.13) 

provides corrections to both interfaces:                    and                  . Thus,    is of 

degree  , takes on the two common flux values, and approximates    in the same sense that      and       

approximate the zero function. The derivative of    at the solution point    is  

 (  )
    

   (  )
    

 [                  ]    
      [                 ]    

      (3.14) 

The derivative          follows. The solution        can then be updated via, say, a Runge-Kutta method. 

What is crucial in (3.14) is that at each solution point, the derivative (  )
    

 of the continuous flux 

function is obtained by correcting the derivative (  )
    

 of the discontinuous flux function. The correction 

amount is straightforward once the values     
      and     

      are known. These derivative values, in 
turn, can easily be derived once     and     are defined on I.  

We summarize the FR/CPR algorithm below. 

Algorithm.  At time level n, suppose       are known for all   and  .  

(1)  At each interface      , if the left and right values of u are not available, calculate them; then 

estimate and store the common (upwind) fluxes at all interfaces. 

(2)  In the cell  , for        , evaluate               ; then obtain (  )
     

of the discontinuous 

flux function by (3.5). Alternatively, the chain rule (3.6) can be employed. 

(3)  At the two interfaces of   , get the corrections                    and                  . At the 

solution points, evaluate (  )
    

 by (3.14) and then         . 

(4)  March in time by, say, a Runge-Kutta method. This completes the algorithm. 

 

Correction functions. Next, we discuss various choices for the correction function      . Recall 

that   is determined by (3.10) together with the     conditions. These different choices for   result in 

the DG, SD, SV as well as new schemes. Thus, the FR approach provides a unifying framework for these 

methods. 

The first choice for   requires that it is orthogonal to     , which means it is the right Radau 

polynomial as in (2.23), and the resulting scheme is identical to DG, 
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              (3.15) 

The condition of orthogonality to      can be relaxed. It was verified via Fourier analysis (Huynh 

2007, 2009a) that if   is orthogonal to      the resulting scheme is stable (the converse is not true, 

however). Since both       and         are orthogonal to     , such a correction function can be written 

as,  

                       (3.16) 

where,       and   remains to be determined.  

The second choice for  , denoted by    or           (for ‘lumping for Lobatto points’), is defined as 

follows. Since a steeper correction function tends to result in a scheme with a smaller CFL limit, to make 

  less steep, the extra condition is obtained by pushing one of the zeros to the right boundary, i.e.,      

is a zero of multiplicity two. After some algebra, 

                
   

    
      

 

    
         (3.17) 

The function    has the following remarkable property. Among the   Lobatto points,   
  vanishes at 

    of them; the exception is the left boundary. 

The final choice here for   requires that g vanishes at the     Gauss points: 

      
 

    
      

   

    
         (3.18) 

Whereas the staggered-grid and SD schemes are mildly unstable, the above provides a modification using 
the     Gauss points as flux points. The resulting scheme is stable for all  . 

It can be shown by calculations using Fourier analysis that the scheme using     is stable and accurate 

to order     , and the schemes using    and     are stable and accurate to order     . In general, if 

  is orthogonal to   , the resulting scheme is accurate to order      . If   is orthogonal to     , 

i.e.,   is of the form (3.16), the resulting scheme is Fourier stable. Stability proofs for FR schemes will be 

discussed in Section 5. 

Also note that the steepest slope of  , which often takes place at the left boundary, relates to the time 

step size limit. For example, for DG, as in (2.8),         
           ; when an explicit Runge-Kutta 

method is employed, it is well known that the time step size limit for the DG scheme of degree     is 

roughly proportional to     .  

The Diffusion Equation. On       , consider the diffusion equation,  

        (3.19) 

with initial condition 

              (3.20) 

As in the case of (3.1), assume that the data        are known at time level n. We wish to evaluate the 

second derivative in a manner which takes into account the data interaction among cells.  For simplicity 
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and efficiency, the stencil of the scheme is required to remain compact in the sense that the second 

derivative evaluation in a cell involves the data of only that cell and the two immediate neighbors. 

Common values and corrected derivative estimates.  The first task is to estimate    at the solution 

points       . Since the function      is discontinuous across the interfaces, to estimate   , we first 

reconstruct   by a piecewise polynomial function    
  , which is continuous across the cell interfaces, and 

on each   , is of degree   and approximates    (the superscript ‘C’ stands for ‘continuous’ or 

‘corrected’). The derivative approximation (  
 )

 
         accounts for the data interaction.  

In order for    
   to be continuous at the interfaces,   

  and     
  must take on the same value at       . 

Thus, at each interface, we need to define a common interface value (or common value). Here, for a 

diffusion problem, we use a centered-type quantity: with    and    given by (3.7), 

                           . (3.21) 

The above formula was employed by Bassi and Rebay (1997a, 2000). A more general formula is the 
weighted average, with      ,  

                              . (3.22) 

For     or    , we have the one-sided formula used in the local DG or LDG (Cockburn and Shu 

1998) as well as the compact DG or CDG methods (Peraire and Persson 2008). 

Next, we require   
     to take on the common values              at        and             at       , 

to be of degree  , and to approximate      . That is, in the local coordinate,  

   
                                         [                 ]       . (3.23) 

The derivative is 

 (  
 )

 
     (  )

 
    [                  ]    

     [                 ]    
    . (3.24) 

And the derivative (  
 )

 
 follows. See Fig. 3.1(a). 

 

 

(a) 

 

(b) 

Figs. 3.1. Centered-type common derivative:  (a) using a four-cell stencil and (b) using a two-cell 
stencil via (3.27). Here, the solution polynomials are linear, and the correction function     is parabolic. 
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Common derivative and corrected second derivative estimates. At each interface, in formula 

(3.21) for the common value, with      , the weight for    is   and that for    is    . To define 
the common derivative value, we switch the two weights. Loosely put, this switch makes the method 

unbiased. If we apply the weighted average to (  
 )

 
, the resulting                has a stencil of four 

cells, from     to     (see Fig. 3.1(a)). Since the calculation of     in cell   employs                

and               , the corresponding scheme has a five-cell stencil.  

We now define a common derivative at       that involves only the data in the two adjacent cells. A 

scheme with such a compact stencil is desirable since it is easy to code, the boundary conditions involved are 

simple, and the resulting implicit version has a sparse and generally invertible matrix. To this end, correcting 

for the right boundary of cell  j, set  

   
                                         (3.25) 

i.e.,   
   corrects for the right boundary, namely   

                  , while leaving the value at the left 

boundary unchanged, namely,       . Next, correcting for the left boundary of cell    , set  

     
                [                    ]        (3.26) 

Then     
   corrects for the left boundary,     

                  , while leaving the value at the right 

boundary unchanged, namely      . 

Finally, for the common derivative at      , set  

 

                          
 

  
 {(  )

 
    [                 ]    

    } 

                                         
 

    
{(    )

 
     [                     ]    

     } . 

(3.27) 

See Fig. 3.1(b). Note the dependence only on              and the data on    and     . 

With the corrected derivative given by (3.24) and the common derivative above, we can obtain the 

corrected second derivative estimates.  

 The above procedure yields the CPR versions of the BR2 scheme if       (Bassi and Rebay, 

2000) and the LDG (Cockburn and Shu 1998) or CDG schemes (Peraire and Persson 2008) if      or 
   . Comparing the centered versus one-sided common values with     as correction function (i.e., 

BR2 versus CDG), the former is of order     ; the latter, order   ; the former, however, has the 
advantage that its CFL limit is more than two times larger than the latter. Since super-convergence (or 

super-accuracy) does not hold for the general case of nonlinear equations, the scheme using centered 

common values appear to have a slight edge. 

4   Two/ Three-Dimensional Extension  

The extension of the CPR formulation to quadrilateral and hexahedral elements is straightforward. The 

basic idea is to first transform the governing equations from a physical element to the reference or 

standard element. Then, the 1D CPR formulation is applied on the standard element in each coordinate 

direction.  

Consider the 2D conservation law  
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             (4.1) 

Denote  ⃗        the coordinates of the physical domain, and  ⃗        the coordinates of the standard 

element. Let the transformation be written as 

  ⃗  ∑   ( ⃗ )  ⃗ 

 

 (4.2) 

Where  ⃗  are the physical coordinates used to define an element, and   ( ⃗ ) is the shape function. The 

transformed equation takes the following form 

  ̃   ̃   ̃    (4.3) 

where  ̃  | |  ,  ̃  | |           ,  ̃  | |           and   is the Jacobian matrix of the 

transformation, i.e.,  

   
  ⃗

  ⃗
 [

    

    
]   (4.3) 

For a quadrilateral element of index   (not related to   of (4.2)), two indices (k,m) are used to denote 

the solution point, and  ̃       denotes the degrees of freedom (DOFs). The CPR formulation is then 

 

  ̃      

  
  

  ̃      

  
 

  ̃      

  
 

 [ ̃   (       )   ̃ (       )]
    

 
  [ ̃   (      )   ̃ (      )]

    

 
               

 [ ̃   (        )   ̃ (        )]
    

 
  [ ̃   (        )   ̃ (        )]

    

 
         

(4.4) 

where the constants    and    are the derivatives of the correction functions, and are also called 
correction coefficients. 

   The extension to simplex and other types of elements is not as straightforward since the correction 

functions are not readily available. The first extension to triangular elements was based on the so-called 
lifting collocation penalty approach (LCP) (Wang & Gao, 2009). As it turns out, the final form is very 

similar to (4.4). The details of the derivation are omitted and we summarize the basic formulation here. 

Define two sets of points, solution points and flux points as shown in Figure 4.1. The CPR formulation 

can be rewritten as   

 

,

, , ,

, ,

( ) ( ) 1
[ ] 0

j

j k j j n

k f l f l f

f V lj k j k j

u f u g u
f S

t x y V




  
   

  
  .    (4.5) 

where  
jV  is the area of the triangle, and fS  is the length of side f , and [ ]nf  is the normal flux 

difference between the common Riemann flux and the internal flux. The extension to 3D elements 

follows a similar path, and can be found in (Haga, Gao, Wang 2011). 
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5   Stability of Flux Reconstruction Methods  

5.1 Energy Stability for Linear Advection Problems in 1D 

Jameson (2010) recently proved that a particular SD scheme (recovered via FR) is energy-stable for 

linear advection problems in 1D. Vincent, Castonguay, and Jameson (2011a) subsequently extended this 

result, and identified a family of stable FR schemes for linear advection problems in 1D (for all orders of 

accuracy). Specifically, it was proven that if the left and right flux correction functions are defined as 

follows 

    
     

 
[   (

           

    

)]  (5.1) 

    
 

 
[   (

           

    

)]  (5.2) 

where       is the degree of the solution polynomial within each element,     ,   , and       are 

Legendre polynomials of the denoted degree (normalized such that |      |    for all  ), and 

   
              

 
  

with 

    
     

       
  

and   a free parameter in the range 

  

                   

then a broken Sobolev type norm of the approximate solution is guaranteed to be non-increasing, and thus 

bounded. Consequently, by equivalence of norms in the finite-dimensional solution space, any norm of 
the solution is guaranteed to remain bounded, and thus the method is guaranteed to be stable.  

The resulting one parameter family of FR schemes, defined in terms of the free parameter  , have been 
referred to as Energy Stable Flux Reconstruction (ESFR) schemes or Vincent-Castonguay-Jameson-

Huynh (VCJH) schemes. It can be noted that judicious choice of the parameter   leads to recovery of 
various known FR schemes. Specifically, if  

     

then a nodal DG scheme is recovered, if 

 

,1[ ]n
fF  

 

,3[ ]n
fF  

 

,2[ ]n
fF  

 

 
Figure 4.1. Solution points (squares) and flux points (circles) for a degree 2 element 
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then a particular SD scheme is recovered (the scheme is, in fact, the particular SD scheme that Huynh 
showed to be Fourier stable, and Jameson (2010) proved to be energy stable), and if 

  
      

                

then the    FR scheme is recovered. 

5.2 Energy Stability for Linear Advection Problems on 2D Triangular Grids  

VCJH schemes for linear advection problems in 1D have been extended by Castonguay, Vincent, and 

Jameson (2012) to treat linear advection problems on 2D triangular grids.  As in the 1D case, a one-

parameter family of correction functions were identified that guarantee a particular norm of the solution is 

non-increasing. However, unlike in the 1D case, an explicit expression for these correction functions was 

not presented (instead the divergence of each correction function was defined implicitly via a matrix 
system). Interestingly, the one-parameter family of schemes did not appear to include a SD scheme as a 

special case—despite the fact that Balan, May, and Schoberl (2012) were able to identify stable SD 

schemes on triangular grids for several orders or accuracy. 

5.3 Energy Stability for Linear Advection-Diffusion Problems in 1D and on 2D Triangular Grids 

Recently Williams et al. (2011), Castonguay et al. (2013) and Williams et al. (2013) have extended 
VCJH schemes for linear advection problems to develop a range of VCJH schemes for linear advection-

diffusion problems. Their approach involves use of VCJH correction functions to construct a    

continuous polynomial representation of the solution (in addition to a    continuous representation of the 
flux) within each element. Development of an energy-stable treatment for diffusive terms is important, 

since it is a prerequisite for effective solution of the Navier-Stokes equations. 

5.4 Non-Linear Stability 

Jameson, Vincent and Castonguay (2012) showed that FR methods can be afflicted by an aliasing 
driven instability if the flux function is non-linear. Such instabilities are a consequence of aliasing errors 

(that occur when a polynomial representation of the non-linear flux is constructed via a collocation 

projection at the solution points). Jameson, Vincent and Castonguay (2012) also demonstrated that the 

location of the solution points plays a critical role in determining the extent of any aliasing driven 

instabilities. Specifically, they suggest that the solution points should be located at the abscissa of a strong 
quadrature rule in order to minimize aliasing driven instabilities. This finding is supported by the 

numerical experiments of Castonguay, Vincent and Jameson (2011), who used the FR approach to solve 

the Euler equations on 2D triangular grids. They found that if the solution points were located at the so-

called alpha-optimized points of Hesthaven and Warburton (2008) then the simulations blew up. 

However, if the solution points were located at the abscissa of a high-strength quadrature rule derived by 

Taylor, Wingate and Bos (2005), then the simulations remained stable (see Fig. 5.1). 

5.5) Von Neumann Analysis 

Energy-based stability proofs are powerful since they apply for all orders of accuracy and on non-

uniform grids. However, they do not offer insight into all the stability properties of a numerical scheme. 

Huynh (2007) and Vincent, Castonguay and Jameson (2011b) presented comprehensive von Neumann 

analyses of FR methods in order to elucidate further stability properties of the schemes. Their results 
indicate that the form of the flux correction function has a significant impact on the CFL stability limit 

associated with a given FR scheme. In the context of 1D VCJH schemes for linear advection, it has been 

shown that increasing the free parameter   (from zero) can increase the CFL limit by over a factor of two 
in certain cases (at the cost of a reduction in the overall accuracy of the scheme). 
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(a) 

 

(b) 

Fig.5.1 Density color maps from inviscid simulation of Euler vortex motion in a cross-flow. In both (a) 
and (b) the domain was meshed with triangular elements, and fourth-order solution polynomials were 

used to represent the solution within each element. However, in (a) solution points are located at the 

alpha-optimized points of Hesthaven and Warburton (2008) and in (b) solution points were located at the 
abscissa of a high-strength quadrature rule derived by Taylor, Wingate and Bos (2005). The solution in 

(a) quickly becomes unstable and the simulation blows-up, whereas the solution in (b) remains stable. 

Adapted from study of Castonguay, Vincent and Jameson (2011). Copyright P. Castonguay, P. E. Vincent 

and A. Jameson. Reproduced with permission. 

 

5.6 Remaining Stability Problems 

The above developments are significant in terms of understanding fundamental stability properties of 

FR schemes. However, there remain various stability issues that need addressing. Firstly, whilst empirical 
evidence suggests that the 1D stability proofs of Vincent, Castonguay and Jameson (2011a) and 

Castonguay et al. (2013) extend to tensor product elements (quadrilaterals and hexahedra), there exists no 

mathematical proof, and it remains an open question as to whether multi-dimension tensor product 

formulations based on 1D VCJH schemes are in fact linearly stable. Moreover, as yet VCJH schemes for 

advection and advection-diffusion problems have not been extended to tetrahedral, prismatic or pyramid 
shaped elements, all of which are widely used to create unstructured meshes of complex 3D geometries.  

Finally, robust strategies for reducing/controlling aliasing driven instabilities in multiple element types 

need to be developed. 

6   Representative Numerical Examples  

In this section, two numerical examples are shown to demonstrate the capability of the CPR 

formulation. 

6.1 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600 

 This is a benchmark case (C3.5) of the 1st International Workshop on High-Order CFD Methods 

(Wang et al. 2013), and was designed to evaluate numerical methods in accurately capturing the evolution 
of a smooth flow to a turbulent flow. A very high-resolution simulation with a spectral method is used as 

the “analytical solution”. In the present simulations, p2, p3 and p4 CPR schemes were used with different 
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mesh sizes ranging from 643 to 963. Table 6.1 summarizes all the cases with the time steps used in the 

simulations. The 3rd-order SSP (strong-stability preserving) Runge-Kutta scheme was used for time 

integration. The computed energy dissipation rate and enstrophy history are displayed in Figure 6.1. The 
obvious trend is that the higher-order schemes perform better than the lower order schemes. For example, 

the p3 scheme with 643 cells performs better than the p2 scheme with 963 elements, and is less expensive. 

  

Table 6.1 Summary of Cases 

 Grid (Hex) p nDOFs Time step 

comp. 1 64x64x64 2 7,077,888 3.92e-04 

comp. 2 64x64x64 3 16,777,216 3.92e-04 

comp. 3 64x64x64 4 32,768,000 2.63e-04 

comp. 4 96x96x96 2 23,887,872 3.92e-04 

 

 

 

 Figure 6.1. Computed histories of energy dissipation rate and enstrophy 

 

 

 

NASA/TM—2013-218078 19



 

6.2 Computations of bio-inspired vortex-dominated flows 

This case was performed by Yu et al (2012), and re-produced here with permission. Flows over a 

rectangular flapping wing, as shown in Fig. 6.2, are studied here. The wing can undergo a flapping or 

combined flapping-pitching motion. A remeshing technique is then used to deform the mesh at each time 

step.  

 

Figure 6.2. Wing surface and root plane meshes for a rectangular wing.   

 

 

 

            (a)                            (b)                             (c)                             (d)        

 

 

 Figure 6.3. Comparison of the vortex topology for the rectangular and bio-inspired wings at four phases 

(            and     ) with the flapping motion. The upper row is for the rectangular wing whereas 
the lower row is for the bio-inspired wing. 

 

In this study, the Strouhal number (St) of the finite-span flapping wing was selected to be well within 

the optimal range usually used by flying insects, birds, and fish (i.e., 0.2 < St < 0.4). The Mach number of 

the free stream is set to be 0.05 to mimic incompressible flow. The Reynolds number (Re) based on the 
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free stream velocity and the maximum chord length is 1200. The reduced frequency of the flapping 

motion is 3.5, and the Strouhal number of the wingtip is 0.38. The space discretization accuracy for the 

simulation is of third order, and the time integration is performed with the explicit third order TVD 
Runge-Kutta method. 

The flapping alone and the combined flapping-pitching were studied. The computed iso-surfaces of the 

Q-criterion at different phase angles for both motions are shown in Figure 6.3. The histories of the thrust 
coefficient from both motions are presented in Figure 6.4. Note that the thrust from the combined motion 

is more than an order of magnitude higher than that from flapping alone. In fact, the averaged thrust from 

the combined motion is 27 times as large as that from the flapping motion.   

 

 

Fig. 6.4 Thrust coefficient histories for the wing with the combined and the root-fixed plunging motions. 

 

7   Additional Recent Research on FR/CPR Methods 

In this section, we briefly discuss additional recent contributions to the development of FR/CPR.  

Suppressing oscillations near shocks via localized artificial diffusivity or LAD was carried out in 

(Miyaji 2011) and (Haga et al. 2013). Initial results are encouraging; however, dealing with shocks 

requires further research and tests, especially for the case of multiple dimensions. 

Concerning SD-type schemes, extensions of a particularly simple FR/CPR scheme called    to the 

Navier-Stokes equations on moving and deforming domains were presented by (Liang, Cox, Plesniak 

2013) and (Liang, Miyaji, and Zhang 2013). They demonstrated that the    scheme is (up to 40%) 
faster and easier to implement than the SD method. Comparison of computational efficiencies for 

various types of schemes versus CPR was carried out (Yu and Wang 2013). Their results show that CPR 

schemes are the most efficient. 

An interface element approach dealing with non-conforming polynomials together with p-adaptation 

for viscous compressible flow simulations was elaborated in (Cagnone and Nadarajah 2012, Cagnone, 

Vermeire, and Nadarajah 2013). In addition, an implicit large eddy simulation (ILES) solver was 

developed for CPR schemes using a third-order singly diagonal implicit Runge-Kutta scheme by 

Vermeire, Cagnone, and Nadarajah (2013). Preliminary work on FR methods for body-fitted Cartesian 

unstructured grids was presented in (Haga et al. 2013). A PnPm-CPR method for the Navier-Stokes 
equations was studied in (Shi et al. 2012). Here, among the main findings in applying PnPm to CPR was 

that the accuracy gain in multiple dimensions with a compact reconstruction stencil is rather limited.   
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It is well-known that hp-adaptation is beneficial for high-order methods (Wang et al. 2013). Adjoint-

based error estimation and hp-adaptation for CPR was studied in (Shi and Wang 2013). Their results 

show significant savings compared to the uniform h or p refinement. 

Progress toward applying FR/CPR methods to solve practical internal flow problems has been made 

by Lu, Dawes, and Yuan (2012), Lu, Liu, and Dawes (2013), and Lu and Dawes (2013). These authors 

have devised a parallel solver on hybrid unstructured meshes including tetrahedra, prisms, pyramids and 
hexahedra for turbulent subsonic/transonic flows.  

8   Pacing Items 

Pacing items are similar to those mentioned by the committee for the International Workshop on High-
Order CFD Methods (Wang et al. 2013). Some of the key items are discussed below. 

High-order mesh generation. In order to achieve high-order accuracy, curved geometries need to be 

represented with high-order polynomials. The generation of unstructured, highly-clustered viscous 
meshes near high-order boundaries requires further research to improve robustness. The main difficulty is 

that cells near the curved geometries can overlap each other. 

Capturing shocks. The two main approaches are local artificial dissipation (LAD) and limiting. The 
former involves user specified parameters, and latter often causes convergence to stall. A third approach 

is via h-p mesh adaptation where, near shocks, the mesh is refined and the method switches to the first-

order upwind scheme; here, deciding when to switch is not trivial. An optimal method should capture 

shocks with high resolution, preserve accuracy at smooth regions of the flow, and be convergent when 

needed.  

Time stepping. Much research is needed on how to handle the stiffness generated by highly-

anisotropic meshes near walls for viscous flows. Low storage and efficient iterative solution methods for 

both steady and unsteady flow problems are active area of research. Time stepping methods are derived 
typically by mathematics where stability and accuracy are the main focus. Can time-stepping methods be 

derived in combination with physics to deal with the stiffness issue? 

Mesh adaptation. There are numerous works on this topic, however, a simple, efficient, and robust 

3D adaptation method requires further research. 

9   Conclusions and Discussion  

In conclusion, we presented a brief review of recent developments for the FR/CPR schemes. Basic 
description and stability of the approach were discussed. Representative numerical examples were shown. 

Some key pacing items were mentioned. The FR/CPR framework appears to be promising and capable of 

contributing toward the goal of faster and higher fidelity CFD capabilities for more accurate flow field 

predictions. 
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