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ABSTRACT 

Human missions to Mars present some unique challenges for photonics devices.  These devices will have exposure to 
many different space environments.  During assembly they will be exposed to the earth orbiting environment.  Upon 
departure they will need to function through the Earth’s Van Allen Radiation Belt.  While the general interplanetary 
environment is less challenging than the radiation belt, they will operate in this environment for 18 months, subject to 
sudden saturation from solar flares.  These components must continue to function properly through these saturation 
events presenting quite a challenge to photonic components, both optical and electronic.  At Mars, the orbital 
environment is more benign than the Earth’s.  Components used as part of the landing vehicles must also deal with the 
pervasive dust environment for 3 – 6 months.  These assembly and mission execution environments provide every form 
of space environmental challenges to photonic components.  This paper will briefly discuss each environment and the 
expectations on the components for successful operation over the life of the mission. 
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INTRODUCTION 

An interplanetary transportation vehicle (ITV) supporting human exploration of interplanetary space, such as missions to 
Mars, will have a significantly longer life in space than previous human exploration missions.  Interplanetary space 
missions will be on the order of 4 years including transportation vehicle assembly time in low earth orbit (LEO).  Figure 
1 shows a possible trajectory for an interplanetary mission to Mars1.  For the Apollo lunar missions, the Apollo 
spacecraft was launched already assembled, spent 4 hours in LEO, 3 days in route to the moon, a week on the lunar 
surface (using the Lunar Excursion Module (LEM)), and then 3 days back from the moon with a direct earth atmosphere 
re-entry2.  The Shuttle Orbiter, using the Extended Duration Orbiter (EDO) kit, could stay up to 16 days in low earth 
orbit3.  Comparing these 3 human rated space transportation systems, an ITV will spend 18 months in LEO, significantly 
longer than Shuttle, and 34 months in interplanetary and Martian space, significantly longer than Apollo for moon 
exploration.  Assembly time in LEO does have some corollary (mainly to the ITV habitation systems) to the 
International Space Station (ISS), which took 60 months to assemble and has been occupied in space for 12.5 years4.   
These legacy systems provide some experience in operation in LEO and the earth moon system, and can be extrapolated 
to missions in interplanetary and Martian space.  Table 1 summarizes the differences in the various space environment 
mission durations. 

Environment ITV Apollo Shuttle Orbiter ISS 
Launch Site 6 months 6 months 30 years 6 months5 
LEO 18 months 2.5 hours 16 Days (EDO) 12.5 years 
MEO 2 hours/2 hours 2 hours/2 hours None None 
Interplanetary/Lunar 18 months 12.5 days None None 
Martian Orbit 12 months None None None 

Table 1: Comparison of Human Rated Vehicles in various Interplanetary Mission Space Environments 

As can be seen in Table 1, the ITV will spend considerably longer time in the various environments than previous human 
rated transportation systems.  The ITV elements, shown in Figure 2, must be assembled and operated successfully and 
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INTERPLANETARY 

Interplanetary space is a more benign 
background radiation environment than 
MEO once through the radiation belt.  
Solar Flares in any space environment 
(Earth Orbit, Interplanetary Space, or 
Mars Orbit) represent the highest space 
radiation levels and mission critical 
photonics will need to operate through 
these events without failure.  Since these 
events travel at the speed of light, 
warning time is very short. A few minutes 
of lower radiation levels are possible as 
the outer boundary of an event encounters 
the ITV should a system need to be safed 
prior to the full intensity of the flare 
engulfing the vehicle.  Figure 4 illustrates 
the total dose levels encountered on a 
single leg in interplanetary space for different levels of aluminum shielding1.   

Solar exposure is constant and will be the most challenging in this region.  Solar intensity is a direct relationship to the 
distance from the Sun.  The ITV trajectory varies from 0.98 AU to 1.7 AU (at Mars)Error! Bookmark not defined..   The ITV will 
likely rotate on its axis to provide cycles in the shade and in direct sun light.  While internal vehicle temperature will be 
kept comfortable for the crew (25 C), external temperatures will again be in the 150 C level while still 1 AU from the 
sun.   

Meteorite impacts are possible in 
interplanetary space.  Figure 4 shows the 
fluence distribution of by mass and 
velocity of the meteorite particles.   This 
shows that the highest fluence is for small 
particles (10-12 to 10-10 g) with velocities 
less than 30 km/s.  Note that the peak is 
for 10-11 g at 10-15 km/s.  In addition to 
this general fluence, there are meteor 
streams have much higher fluence that 
will be encountered during the flight to 
Mars.  These streams will produce a much 
higher probability of impact when they 
are encountered.1   

MARS 

The Martian orbital environment is 
different than the Earth orbital environment due to the further distance from the Sun (1.6 AU) and the chemical content 
of the atmosphere.  Due to free oxygen being present only in trace amounts in the Martian atmosphere, atomic oxygen is 

not an issue in the Martian orbit. The 
Figure 5:  Interplanetary Meteorite Fluence Distribution

Figure 4: One Way Interplanetary Total Dose vs. Al Shielding



radiation environment is similar to the environment in interplanetary space.  Solar flare radiation should be lower as the 
radiation cloud expands with the distance 
from the sun.  The solar irradiance is also 
lower with distance from the Sun at 589 
W/m2.1    UV exposure will be lower and 
external heating will also be much lower. 

TOTAL MISSION 

For photonic application on the ITV, total 
mission effects are perhaps the most 
interesting.  Total mission is defined as Earth 
Departure to Earth Return.  Figure 6 shows 
the total radiation dose from Earth departure 
to Earth return.  Assuming a 0.762 mm thick 
aluminum case, the total dose experienced by 
an instrument is 11.2 krad (Si).  An exposed 
instrument, with no shielding would 
essentially receive 253 krad (Si).1  Assuming 
2 krad(Si)/yr in LEO,  an exposed system would be expected to receive 256 krad(Si) for the Mars mission. 

Thermally, the maximum external temperature is 150 C.  The highest solar irradiance is 1367 W/m2 with 0.5 W/m2 UV 
intensity1.  These provide the bounds for 
externally mounted photonic devices. 

 

Meteorite Fluence is shown in Figure 81.  
The fluence is very similar to the 
interplanetary meteorite fluence.  Since 
fluence is based on area, this is expected 
as a result of the long path length in 
interplanetary space.  However, impact 
flux is expected to be higher near 
planetary bodies and during intersections 
with meteorite streams.  The fluence is 
still predominantly for tiny mass 
particles with velocities below 30 km/s.  
Meteorite Flux is shown in Figure 78.  
This figure shows that the most probable 
impacts are for the low mass particles.  
The main concern for these impacts is in 
abrasion to optical surfaces.  The red region in the chart shows particles with enough mass to penetrate external surfaces.  
These particles will need to potentially be detected and avoided or broken up prior to impact. 

PHOTONIC EFFECTS 

There are many applications for photonics on an ITV.  Various papers have discussed a variety of photonic components 
for space application.6,9,10,11  Optical communication networks onboard the vehicle will be essential.  These networks pro 

Figure 6:  Total Radiation Dose from Earth Departure to Earth Return

Figure 7: Meteorite Flux in Mars Orbit 



vide for very high (> 1 Gpbs) bandwidth 
necessary to support a highly automated 
vehicle.  These networks include laser 
diodes, amplifiers, optical modulators, fiber 
optics, and optical receivers.  Fiber optic 
data busses have a good history in 
spaceflight and have demonstrated good 
performance in the LEO 
environment12,13,14,15,16.  The ISS has been 
operating with a Fiber Distributed Data 
Intreface (FDDI) optical bus17 for 12.5 years 
in LEO.  Various other missions have 
demonstrated good operation in LEO or 
MEO including the Long Duration Exposure 
Facility (LDEF)18,19, Microelectronics and 
Photonics Test Bed (MPTB), Solar 
Anomalous Magnetospheric Panicle 
Explorer (SAMPEX)20, Wilkinson 
Microwave Anisotropy Probe (MAP), X-
Ray Timing Explorer (XTE), Hubble Space 
Telescope (HST) Solid State Recorder 
(SSR), and Photonics Space Experiment (PSE) (all, except LDEF, using MIL-STD-1773 Fiber Optic Multiplexed Data 
Bus) 21,22. The Air Force Research Laboratory (AFRL) is currently planning a MEO test satellite for various photonic 
devices.23,24, 25  Some recent work is showing improvement in the radiation hardness of Er-doped fibers.26,27  Er-Doped 
Fiber Amplifiers gain loss has been improved on 40 krad(Si) irradiation by controlling atomic element content with in 
the fiber.  Operation for the duration of the mission in interplanetary space and Mars orbit is well supported by the level 
of exposure these devices have experienced.  An excellent database of fiber optic radiation test data for commercially 
available fibers in 2002 shows there are many options for fiber selection.28 One are that does need to addressed for fiber 
optic applications are the cable lengths.  An ITV will require lengths of several hundred meters to transport data from 
fore to aft.  Satellite applications have fairly short distances compared with this.  While repeaters can be utilized, these 
present failure and maintenance problems as well as adding to thermal dissipation along the vehicle.  Minimizing or 
eliminating the need for signal repeaters is important for application on long vehicles such as an ITV. 

Free space optical communications with Earth is also a potential application29.  This enables the high bandwidth to return 
mission video, scientific data, and vehicle and crew status for 
strategic mission following on Earth based control centers.  
Several demonstrations of optical communication have been 
successfully accomplished.  The European Space Agency (ESA) 
demonstrated optical communications between satellites 
(ARTEMIS and SPOT4), from satellite to ground, and from 
satellite to an aircraft.  This also included optical communication 
with the Japanese OICET satellite. Laser communication has also 
been demonstrated between the Near Field Infrared Experiment 
(NFIRE) and the TerrSAR-X satellites.30 NASA is currently 
preparing to launch the Lunar Atmosphere and Dust Environment 
Explorer (LADEE) mission with the Lunar Laser Communication 

Demonstration (LLCD)31 shown in Figure 9.   Recent work has focused on locating and tracking the Earth from 
planetary distances within the solar system. 32,33  Free space optical communications scales up significantly from the 

Figure 8: Meteorite Flux from Earth Departure to Earth Return

Figure 9: Lunar Laser Communication Demonstration



photonic scale and will still make use of photonic components to beam steer, transport data to the laser transmitters, and 
transport data from the optical receivers. Testing of liquid crystal beam steering devices has shown no degradation after 
2.2 Mrad (Si) exposures.  Some degradation from < 2 krad (Si) neutron exposure (applicable to nuclear reactor cores) 
was seen. 34,35  Promise was also shown with acousto-optic tunable filters (AOTF) where only small changes in optical 
characteristics where measured after 788.6 krad(Si) proton and 1 Mrad(Si) gamma ray exposures.  An AOTF has flown 
on the ESA Mars Express mission. 36  Much still needs to be demonstrated for planetary communications in this area and 
much progress has been made internationally in this area over the past decade. 

Optical gyroscopes will provide for ITV guidance.  These systems could be either Ring Laser Gyroscopes (RLG) or 
Fiber Optic Gyroscopes (FOG)37,38.  These gyroscopes use many photonic components such as laser sources, modulators, 
receivers, and for the FOG, fiber optics.  FOG’s are currently operating on Mars in the Spirit and Opportunity rovers.  
Recent testing at 100 krad(Si) shows FOG components (super luminescent diodes (SLD), LiNbO3 modulators, couplers, 
detectors) are relatively radiation hardened with selection of geometrical polarization maintaining fiber being a key 

consideration.39  FOGs are used on Soyuz TM spacecraft in support of the ISS40.  RLGs are currently available for space 

application in LEO, MEO, and interplanetary space41,42.   

Light Detection and Ranging (LiDAR) may be used for meteorite detection (for collision avoidance) and Mars 
atmospheric scanning.  NASA has been working on the characterization and 

improvement of space based laser for LiDAR applications.43  The LiDAR In-
space Technology Experiment (LITE) flew on board the Space Shuttle in 
September 1994, as shown in Figure 10, providing some early demonstration of 
LiDAR capabilities.44  LiDAR instruments have since been flying in LEO and 
planetary missions including Mars Orbiter Laser altimeter (MOL), the Ice, 
Cloud, and land Elevation Satellite (ICESAT), and the Mercury surface, space 

environment, geochemistry and ranging (MESSENGER) probe.45    

Sensing of systems will be essential to enable a highly automated vehicle.  There 
are numerous applications of optical sensing that can be applied to the ITV.  
These include fiber brag gratings (FBG) for monitoring stress/strain, 
temperature46 , pressure, infrared sensing for thermal monitoring47, chemical 
sensing for crew cabin environmental monitoring and nuclear reactor monitoring, 

remote sensing48,  and radiation sensors49.  An excellent survey of fiber optic sensing systems was reported, indicating 
optical fiber systems could operate with inorganic fibers and coatings to 1000 C or higher.  Fiber optic sensors with 
organic coatings were reported up to 385 C. This included attachment mechanisms and tubing. 50  Fiber optic sensors are 
also reported to have excellent life in nuclear reactor environments (high gamma and neutron radiation).  FBG’s tested 
well under low reactor exposure levels > 4Mrad(Si) and reactor temperatures of 70 C.51  Fiber extensometers showed 
outstanding response at 1.6 Trad(Si) with reactor temperatures up to 150 C. 52  Fibers along with Vertical Cavity Surface 
Emitting Lasers (VCSEL), and detectors performed well at 1.35 Grad(Si) or greater at reactor temperatures up to 200 C. 
53  Fiber photometers have also been tested to 18 Mrad(Si) at 22 C. 54  Assuming a dose rate of 18 Mrad(Si)/hr in a 
nuclear core yields 35 Grad(Si) total dose over a 4 year mission.  This estimate shows fiber optics are candidates for 
operating in and around nuclear thermal engines. 

Optical coatings are also used for a variety of applications to protect surfaces (i.e., solar cells, lenses, mirrors) against 
abrasion or contamination (e.g., low adhesion of drops or particles)55,56,57,58,59.  These surfaces all show  low adhesion for 
various contaminants.  Data is not available however for the durability under the impact energies for the fluence and flux 
levels estimated for an interplanetary mission. 

Figure 10: LiDAR In‐space Technology 
Experiment (LITE) on‐orbit in 1994 



Each of these applications will need operational reliability in the space environments for the full duration of the 4 year 
mission.  Within this context there are 3 main characteristics that drive photonic component selection and certification:  
Thermal, UV exposure, abrasion resistance (for exposed components), and radiation effects.  Thermal characteristics of 
most photonic components are well known as optical performance is affected by component thermal conditions.  The 
microgravity conditions of space (only solar gravity in interplanetary space) means convective cooling is not a thermal 
control option.  Thus, radiative and conductive thermal controls are the only options.  Most instruments are controlled 
conductively on spacecraft and the heat dumped overboard through large radiators.  For the ITV, heat conduction will be 
a major limitation on the vehicle design and device selection. Devices will need to have extremely low heat dissipation, 
not requiring active thermal control.  This will be a large challenge to laser devices.  At the component level, waste heat 
should be < 5W, < 20 W for an integrated system.  Thus, high efficiency and low dissipative power needs to be a major 
focus for devices inside the ITV compartments.  External devices can dissipate more heat radiatively.  Device selection, 
then, will be based on the intended thermal environment. Thermal relaxation of optical polymers will need to be well 
understood in order to operate in external thermal environments where temperatures of 150 C may be seen for 4 years.  
Fiber optic devices (communication systems, FOG, sensors) have been shown to work well in space and can handle the 
thermal environments imposed by an interplanetary mission.  Similary, free space optical communications and Lidar 
applications have a good history in space operation and appear viable for ITV applications.  The next step in all of these 
photonic devices is to examine packaged devices and ways to minimize the thermal dissipation during operation.  This 
type of work is usually done in produce design but much benefit can be gained from research into materials and 
techniques that optimize performance and minimize thermal dissipation.   

UV performance is also well understood for optical components.  Inorganic photonic devices are much less sensitive to 
UV exposure than organic photonic devices.  The organic devices have cross linking which affect both optical and 
structural properties of the material.  These devices will have to be protected from UV exposure throughout the mission.  

Meteorite impacts are primarily a concern for photonic devices directly exposed to impact.  The small size of the 
particles most likely to impact will create an abrasive effect on the optical surfaces.  The high impact velocity of even the 
smallest particles can be abrasive.  Thus exposed surfaces will need to be insensitive to this effect or some sort of impact 
shielding will need to be considered for the photonic instrument. Thus abrasion resistance is important for coatings and 
testing should be formulated to examine their durability at the fluence and flux levels anticipated for an interplanetary 
mission. 

Radiation testing of various devices again show good performance.  Fiber optic communications have a good history 
with long durations in LEO.  The key to fiber optic applications (communications, FOG, sensors) is to use high purity 
silica fibers to avoid darkening centers.  Free space optical communications also has been demonstrated in space and 
more long distance demonstrations are planned.  Lidar, likewise, has a good history in space enduring the space radiation 
environment in LEO.  Optical coatings do not show sensitivity to radiation levels tested.  Many of the tests, however, are 
at levels of 200 krad(Si) or lower.  For a 4 year interplanetary mission, total dose rates of 260 krad(Si) will be seen and 
testing should be done to levels which exceed this.  300 krad(Si) is a good target for testing of unshielded photonic 
devices and components for an interplanetary mission.  15 krad(Si) is sufficient for photonic devices and components 
with at least 0.762 mm Al shielding (typically provided by the device package or case). 

As mentioned above, organic devices offer much promise for high optical performance with low thermal dissipation.  
Radiation effects need to be understood for these components and have been the focus of much research of the past few 
years for organic photonic components55,60,61,62,63,64 ,65,66.  Table 2 shows a summary of the total dose proton and electron 
radiation testing for various organic photonic devices reported in the literature. This is not an exhaustive summary and 
provides a survey of many recent results.   As can be seen from this table, there is testing on several materials that meet 
the dosage received with some level of Al shielding.  There is little data for these materials at the higher direct exposure 
levels. Table 3 shows the testing results for total dose gamma ray for photonic devices as reported in the literature. 



 

 

Table 2:  Summary of Proton and Electron Total Dose Testing 

 

Table 3:  Summary of Gamma Ray Total Dose Testing 

Most of the organic materials shown in Tables 2 and 3 where tested at much lower levels < 1 Mrad.  Comparing these 
levels to Figure 6, the lowest test levels are still above the 0.0762 mm Al shielding.  Several of the organic materials 

Material Energy MeV Total Dose krad(Si) Result Source

dimethylsilicone (DMS) w 30% SMO 63.8 198.2 No statistical change in response protons

Ge doped SI FBG 63 10000

Shift in optical power wavelength 

center and reflection protons

Mach Zehnder LD‐3 polymer 64 600 EO Polylmer Degradation protons

DR‐1/MA film 64 500 EO Polylmer Degradation protons

polyimide waveguide 64 600 EO Polylmer Degradation protons

polydimethylsiloxane (PDMS) polymers 63.8 148.6 protons

Silicone 64 148.6 no degradation in outgassing protons

Silicone 64 148.6 No degradation over 8 years protons

CLD1/APC optical modulator 0.1 1000

12% increase in Vpi  over 2 weeks 

after exposure electrons

TP7 optical modulator 0.1 1000

20% increase in Vpi  over 2 weeks 

after exposure electrons

EO CPW1/APC modulator 25.6 100 Significantly improved Vpi proton

Material Energy MeV Total Dose krad(Si) Result Source

dimethylsilicone (DMS) w 30% SMO 1.17&1.33 184.956 No statistical change in response gamma rays

Mach Zehnder LD‐3 polymer 4000 EO Polylmer Degradation gamma rays

polyimide waveguide 580 EO Polylmer Degradation gamma rays

5800 EO Polylmer Degradation gamma rays

polydimethylsiloxane (PDMS) polymers 152 gamma rays

Silicone 182.8 no degradation in outgassing gamma rays

Polymer w/ Fullerene on Siloxane 1.17&1.33 204.7 Improved Optical Transmission gamma rays

1.17&1.33 Improved Optical Transmission gamma rays

Polymer w/ DR1 on Siloxane 1.17&1.33 204.7 Improved Optical Transmission gamma rays

1.17&1.33 Improved Optical Transmission gamma rays

Polymer w/ NLS‐1 on Siloxane 1.17&1.33 204.7 Improved Optical Transmission gamma rays

1.17&1.33 Improved Optical Transmission gamma rays

 Polymer w/ SWCNT 1.17&1.33 175.4

No change (several day delay in 

post irradiation measurement) gamma rays

Polymer w/MWCNT 1.17&1.33 175.4

No change (several day delay in 

post irradiation measurement) gamma rays

CLD1/APC 1.17&1.33 208

No change in EO performance

Thermal relaxation biggest effect gamma rays

CLD1/APC 1.17&1.33 428

No change in EO performance

Thermal relaxation biggest effect gamma rays

CLD1/APC 1.17&1.33 850

No change in EO performance

Thermal relaxation biggest effect gamma rays

EO CPW1/APC modulator 100 no change to improvement in Vpi gamma rays

EO CPW1/APC modulator (Dupont) 162 No change in 2, one degraded Vpi gamma rays

EO CPLD75/APC modulator 55 some degradation in Vpi gamma rays



where tested above the 255 krad unshielded level.  And two were tested at or above 4 Mrad.  The silicone testing showed 
that silicone, DMS, and PDMS did not show any changes from their mechanical properties after radiation exposure.  
These materials look promising for interplanetary space application.  It is curious that the polymer with fullerenes, 
polymer with DR1, and polymer with NLS-1 all showed improved optical transmission after exposure to gamma rays. 
This is a good result and may indicate a small radiation dose as part of the production process could improve 
performance for terrestrial and space applications.  However, improved performance levels and trends must be well 
understood and accommodated in photonic system design so that the system is not saturated or driven into a lower 
performance range (i.e., near saturation).  Stable optical performance is the ideal situation.  Improving performance with 
exposure, even degrading performance with exposure, is still useful if the performance changes are well understood and 
accommodated in the design.  The carbon nanotube doped polymers look promising.  However, the question of 
relaxation or healing after exposure needs to be confirmed with further testing.  Similarly, CLD1/APC looks promising 
from a radiation exposure stand point.  However, thermal relaxation is a concern and long term thermal relaxation 
mechanisms and performance impacts need to characterized and understood. 

CONCLUSION 

There are many applications for photonic devices on an Interplanetary Transfer Vehicle (ITV).  Optical communications, 
optical gyroscopes, optical sensing, and optical coatings are all applications that will contribute to a successful human 
mission into interplanetary space.  Many of these devices have a good history in LEO or interplanetary spaceflight and 
will perform well in ITV applications.  Long distance cable runs need to be investigated to minimize or eliminate the 
need for signal repeaters in space rated fiber optic networks.  There are 4 primary space environmental effects that drive 
photonic application:  Thermal, UV exposure, Radiation total dose, and exposed surface abrasion.   Thermal properties 
and UV exposure limits are well understood for photonic materials and devices.  Thermal dissipation of packaged 
devices needs to be investigated to minimize thermal dissipation.  Organic components show promise and thermal 
relaxation of organic electro-optic polymers needs to be characterized and understood to ensure optical performance will 
not degrade unacceptably during the mission duration.  Inorganic devices show good radiation performance.  Fiber optic 
purity is important in selection of fiber.  VCSELs show excellent radiation hardness.  Material selection is also important 
for detector and other optical components.  Testing for space environment exposure should be done to 300 krad (Si) total 
dose for external devices and 15 krad(Si) total dose for devices with at least 0.762 mm Al shielding.  There has been 
much testing on organic photonic materials and devices recently.  These testing results show mixed results.  Some 
applications show no affect or improvement in mechanical or optical performance.  Other testing shows degrading 
optical performance.  Where optical performance is not stable with radiation exposure or thermal environments, further 
testing and understanding of physical and chemical responses is needed.  Optical coatings show low adhesion and 
excellent space radiation hardness.  Their durability to meteorite impact energies at the fluence and flux levels expected 
needs to be investigated.  Fiber optic sensors and communications showed excellent hardness in thermal nuclear rocket 
engine applications.  Overall, Photonic applications are essential for communications bandwidth, accurate guidance, 
accurate sensing, and protective coatings.  These photonic applications offer great benefits to the execution of human 
exploration of Mars.  .  
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